CAMPI FLEGREI: Applicata l’Intelligenza Artificiale per sviluppare un catalogo sismico di alta definizione. Un nuovo studio rivela dettagli inediti sull’attività sismica della Caldera
Un team internazionale di scienziati del Dipartimento di Geofisica della Doerr School of Sustainability di Stanford, dell’Osservatorio Vesuviano dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV-OV) e dell’Università degli Studi di Napoli Federico II ha appena pubblicato, sulla rivista scientifica Science, lo studio A clearer view of the current phase of unrest at Campi Flegrei Caldera.
Il lavoro offre una visione più chiara della fase di attività sismica in corso ai Campi Flegrei (unrest). L’area di interesse comprende le zone densamente popolate della periferia occidentale di Napoli e la città di Pozzuoli, dove negli ultimi anni si è registrato un deciso aumento dell’attività sismica, delle emissioni di gas e del sollevamento del suolo.
Localizzazioni dei terremoti contenuti nel nuovo catalogo sismico di alta definizione. Le diverse gradazioni di rosso indicano differenti profondità dei terremoti
I ricercatori hanno utilizzato tecniche di intelligenza artificiale (AI) sviluppate presso l’Università di Stanford e applicate ai sismogrammi registrati dall’INGV nell’area dei Campi Flegrei, identificando oltre 50.000 terremoti nel periodo tra il 2022 e la metà del 2025. Il catalogo sismico di alta definizione ha evidenziato un sistema di faglie attive e ha fornito importanti dettagli sull’origine del fenomeno. In dettaglio, l’AI è stata istruita utilizzando il catalogo sismico compilato dall’INGV-OV dal 2000 e si è avvalsa della densa rete sismica potenziata negli anni dall’Ente anche in risposta all’aumento della sismicità.
I risultati hanno mostrato che la quasi totalità degli eventi sismici ha un’origine tettonica, con profondità inferiori ai 4 km e non si riscontrano evidenze sismiche di una migrazione significativa di magma.
È stato chiaramente identificato un sistema di faglie ad anello, che circonda la zona di sollevamento della caldera, estendendosi sia sulla terraferma sia nel Golfo di Napoli.
“All’interno di tale struttura ad anello la sismicità osservata evidenzia per la prima volta sulla terraferma vicino a Pozzuoli delle faglie specifiche e ben definite, che potrebbero portare a stime più precise della pericolosità e del rischio sismico in questa area”, afferma il Professor Warner Marzocchi dell’Università degli Studi di Napoli Federico II.
L’unica sismicità non puramente tettonica, composta da eventi cosiddetti “ibridi”, è stata osservata a profondità inferiori a un chilometro, vicino al duomo lavico di Accademia.
“Questi eventi provengono dall’interazione tra roccia, fluidi e gas durante una frattura. Analisi più approfondite suggeriscono che i fluidi coinvolti sarebbero di tipo idrotermale”, ha dichiarato la ricercatrice dell’INGV, Anna Tramelli.
Il nuovo sistema di analisi dei segnali sismici, implementato durante la ricerca, è già in funzione.
“Questo sistema, una volta superata la fase di verifica, potrebbe permettere di identificare in tempo quasi reale anche i più piccoli cambiamenti nel comportamento sismico dei Campi Flegrei e, di conseguenza, permettere migliori stime del rischio sismico e vulcanico”, concludono i ricercatori.
Campi Flegrei: applicata l’intelligenza artificiale per sviluppare un catalogo sismico di alta definizione; lo studio è stato pubblicato su Science. Immagine dei Campi Flegrei acquisita da drone. Crediti – Alessandro Fedele, ricercatore INGV
Riferimenti bibliografici:
Xing Tan et al., A clearer view of the current phase of unrest at Campi Flegrei caldera, Science 0, eadw9038, DOI:10.1126/science.adw9038
Roma, 5 settembre 2025
Testo e immagini dall’Ufficio Stampa Rettorato dell’Università degli studi di Napoli Federico II
Una nuova ricerca UniTo approfondisce la complessa relazione tra ghiaccio e magma per prevedere le eruzioni e ridurre i rischi ambientali
Un nuovo studio coordinato dal prof. Matteo Spagnolo del Dipartimento di Scienze della Terra dell’Università di Torino, appena pubblicato su Nature Communications, propone una possibile svolta nel monitoraggio dei vulcani ricoperti da ghiacciai: questi ultimi non sarebbero soltanto un ostacolo logistico per le attività di rilevamento, ma i loro cambiamenti potrebbero diventare nuovi e preziosi precursori di eruzioni future.
La ricerca ha analizzato su scala globale 307 vulcani attivi e 40.667 ghiacciai localizzati sulle loro sommità o nelle immediate vicinanze, confrontando le differenze di quota tra ghiacciai “vulcanici” e ghiacciai circostanti. I risultati mostrano che, nell’80% dei casi, i ghiacciai situati direttamente sopra i vulcani sono mediamente collocati a quote più elevate rispetto a quelli limitrofi.
Questa anomalia sarebbe legata al calore emesso dal sistema vulcanico: la presenza di camere magmatiche e gas ad alta temperatura, inclusi vapor d’acqua e anidride carbonica, provoca infatti un riscaldamento della superficie e un maggiore scioglimento del ghiaccio, che viene confinato a quote più alte rispetto ai ghiacciai circostanti che non risentono dell’effetto vulcanico.
“Poiché la temperatura dei vulcani tende ad aumentare man mano che ci si avvicina a un’eruzione”, spiega il prof. Spagnolo, “è plausibile che anche i ghiacciai reagiscano con un ritiro ancora più marcato. Monitorare la loro quota media potrebbe quindi diventare un nuovo strumento per migliorare le previsioni eruttive”.
Il monitoraggio dei vulcani si basa già sull’analisi di diversi precursori – dalle deformazioni del suolo ai cambiamenti delle emissioni di gas in superficie – nessuno dei quali, preso singolarmente, è sufficiente per predire con certezza un’eruzione. L’aggiunta del comportamento dei ghiacciai come ulteriore indicatore potrebbe rivelarsi strategica, soprattutto in quelle aree del mondo dove vulcani e ghiacciai convivono e dove spesso monitoraggi diretti sul posto non sono possibili per motivi economici o logistici.
Nel mondo circa il 20% dei vulcani è ricoperto da ghiacciai e le loro eruzioni sono particolarmente pericolose.
“La storia ci ricorda quanto questa combinazione possa essere devastante: nel 1985, il vulcano Nevado del Ruiz in Colombia causò una colata di fango e rocce, innescata dallo scioglimento improvviso dei ghiacci sommitali, che travolse intere comunità e uccise oltre 25.000 persone”, prosegue Spagnolo.
Matteo Spagnolo
Grazie a un approccio comparativo basato su banche dati internazionali e tecniche avanzate di analisi, il team di ricerca ha potuto isolare l’effetto del vulcano da quello del clima circostante, limitando lo studio a un raggio di 40 km attorno a ciascun edificio vulcanico. Questo ha permesso di dimostrare che le anomalie osservate nei ghiacciai sono legate direttamente all’attività vulcanica e non a fattori climatici.
Il lavoro del gruppo guidato dal prof. Spagnolo apre la strada a un nuovo capitolo della ricerca sui precursori vulcanici. Integrare i ghiacciai tra gli strumenti di monitoraggio significa non solo comprendere meglio la complessa relazione tra ghiaccio e magma, ma anche offrire un contributo concreto alla riduzione dei rischi naturali per milioni di persone che vivono nelle regioni vulcaniche del pianeta.
Scoperta una cavità nascosta sotto i Campi Flegrei: nuova luce sulla dinamica dei flussi magmatici e sulla gestione dei rischi
Lo studio, pubblicato su Nature Communications Earth and Environment, rivela l’esistenza di una frattura profonda che risuona sotto la caldera napoletana. Il lavoro è frutto di una collaborazione tra Università di Pisa, INGV e GFZ-Potsdam.
Risuona nello stesso modo dal 2018, è così che un team internazionale guidato dall’Università di Pisa ha scoperto una cavità nascosta sotto i Campi Flegrei a 3,6 km di profondità, relativamente vicina alla superficie. La ricerca, pubblicata su Nature Communications Earth and Environmente frutto di una collaborazione con l’Istituto Nazionale di Geofisica e Vulcanologia (INGV) e il Centro GFZ Helmholtz per le Geoscienze di Potsdam (GFZ Helmholtz Centre for Geosciences, Potsdam, Germania), apre nuove prospettive per comprendere l’evoluzione del sistema vulcanico e valutare meglio i rischi associati.
La cavità individuata per la prima volta mette in comunicazione il serbatoio profondo responsabile del sollevamento del suolo con le fumarole superficiali di Solfatara e Pisciarelli. È lunga circa un chilometro, larga circa 650 metri con uno spessore medio di 35 centimetri e un volume complessivo intorno ai 220.000 metri cubi. Le analisi non ha rivelato con certezza il contenuto forse gas ad alta pressione o fluidi magmatici.
“Abbiamo individuato la cavità grazie all’analisi di segnali sismici di lunghissimo periodo (VLP) – spiega Giacomo Rapagnani, dottorando dell’Università di Pisa e e primo autore dello studio – Questa struttura risuona sempre alla stessa frequenza (0,114 Hz) da almeno sette anni, segno che le sue dimensioni e la sua composizione sono rimaste stabili nel tempo, si tratta di un indizio prezioso per comprendere come si evolvono i flussi di fluidi nel sottosuolo e individuare eventuali segnali di variazione strutturale che potrebbero indicare un aumento del rischio vulcanico”.
I Campi Flegrei, situati nel Golfo di Napoli, sono tra i complessi vulcanici più monitorati al mondo. Dal 2005 l’area è interessata da una nuova fase di sollevamento del suolo, nota come bradisisma, accompagnata da terremoti di intensità crescente. L’evento sismico più forte, di magnitudo Md 4.6, è avvenuto il 30 giugno 2025.
“Abbiamo analizzato oltre cento terremoti avvenuti dal 2018 a oggi – continua Rapagnani – è così emerso che in coincidenza con i terremoti più intensi si attiva una “risonanza” a bassa frequenza che ha rilevato appunto l’esistenza della frattura. È un comportamento simile a quello osservato in altri vulcani attivi, ma mai documentato prima nei Campi Flegrei”.
“Questo studio evidenzia come lo sviluppo e l’applicazione di tecniche sofisticate per l’analisi dei dati sismologici siano fondamentali per comprendere a fondo processi geofisici complessi, come i terremoti e le eruzioni vulcaniche – aggiunge Francesco Grigoli coautore dell’articolo e professore di Geofisica dell’Università di Pisa – Solo spingendo al limite le nostre capacità di analizzare grandi quantità di dati eterogenei possiamo migliorare la comprensione di questi fenomeni e mitigare con maggiore efficacia i rischi a essi associati”.
Lo studio è frutto della collaborazione tra l’Università di Pisa, l’Istituto Nazionale di Geofisica e Vulcanologia (INGV) e il Centro GFZ Helmholtz per le Geoscienze di Potsdam (GFZ Helmholtz Centre for Geosciences, Potsdam, Germania). Gli autori sono Giacomo Rapagnani, Simone Cesca, Gilberto Saccorotti, Gesa Petersen, Torsten Dahm, Francesca Bianco e Francesco Grigoli.
da sinistra, Giacomo Rapagnani, Anthony Salvatore Cappetta (Master student Unipi), Francesco Grigoli, Giulio Pascucci (dottorando Unipi), Emanuele Bozzi (Postdoc Unipi)
Riferimenti bibliografici:
Rapagnani, G., Cesca, S., Saccorotti, G., Petersen, G., Dahm, T., Bianco, F., Grigoli, F. (2025). Coupled earthquakes and resonance processes during the uplift of Campi Flegrei caldera, Communications Earth & Environment, 6, 607, DOI: https://doi.org/10.1038/s43247-025-02604-7
Testo e foto dall’Ufficio comunicazione di Ateneo dell’Università di Pisa.
NEL CUORE DELL’ETNA: COME LE ONDE SISMICHE CI RACCONTANO I SEGRETI DEL VULCANO
Team di ricercatori coordinato dall’Università di Padova fornisce un modello strutturale della crosta al di sotto dell’Etna e spiega perché il magma fuoriesce dalle bocche laterali
Sotto la superficie del Monte Etna, il vulcano più grande d’Europa e uno dei più attivi al mondo, si nasconde un mondo che a prima vista può sembrare immobile, ma nelle profondità della sua crosta cela un magma in continuo movimento che spinge e si accumula, trovando talvolta vie di fuga impensabili verso la superficie e scatenando incredibili eruzioni.
Uno degli strumenti più potenti per capire cosa accade sotto i nostri piedi è la sismologia, cioè lo studio delle onde che si propagano nel sottosuolo quando la Terra trema.
Nello studio dal titolo Pressurized magma storage in radial dike network beneath Etna volcano evidenced with P-wave anisotropic imaging, pubblicato sulla rivista «Communications Earth & Environment», il team di ricercatori coordinato da Gianmarco Del Piccolo e Manuele Faccenda del Dipartimento di Geoscienze dell’Università di Padova ha utilizzato un metodo di tomografia sismica innovativo per mappare la struttura del sistema magmatico sotto il monte Etna.
La mappa mostra il sistema magmatico ricostruito sotto il Monte Etna tra i 6 e i 16 km di profondità. Le zone dove le onde sismiche viaggiano più lentamente sono indicate in rosso/giallo, mentre il sistema di fratture indotte dal magma e ricostruite dalla tomografia è rappresentato con un insieme di piani (superfici di frattura)
Basandosi su un approccio probabilistico, i ricercatori hanno analizzato oltre 37.000 segnali sismici raccolti tra il 2006 e il 2016 sotto l’Etna eseguendo una sorta di “TAC” al vulcano, usando però le onde dei terremoti al posto dei raggi X.
Le onde sismiche viaggiano attraverso la crosta terrestre e si modificano in base al tipo di materiale che attraversano. In presenza di fratture aperte o magma, per esempio, queste onde possono propagarsi più velocemente in una direzione rispetto a un’altra; questo fenomeno si chiama anisotropia elastica ed è strettamente legato allo stato di stress della crosta, ossia lo stato di sollecitazione a cui sono soggette le rocce crostali: quando lo sforzo eccede la resistenza massima delle rocce, queste si fratturano.
Il metodo utilizzato dai ricercatori ha permesso di mappare l’orientamento delle fratture e di stimare lo stato di stress in profondità con un dettaglio senza precedenti. Non solo: la tecnica utilizzata, grazie a una sofisticata analisi statistica, ha permesso anche di valutare il grado di incertezza dei risultati, rendendo le interpretazioni più affidabili.
I risultati mostrano l’esistenza di una rete di dicchi verticali — fratture riempite di magma — che si estende tra i 6 e i 16 chilometri di profondità: queste strutture formano una rete radiale che agisce come un sistema di “vie preferenziali” per la risalita del magma, portando all’attività eruttiva dai crateri sommitali e dalle bocche laterali dell’Etna. Le osservazioni suggeriscono inoltre che in questa zona ci sia probabilmente un sistema magmatico profondo caratterizzato da alte pressioni dei fluidi.
«Lo stato di stress influenza una grande varietà di fenomeni geofisici come i terremoti e le eruzioni vulcaniche, ma rimane al tempo stesso una grande incognita in molti ambienti crostali. Lo studio pubblicato apre la strada alla possibilità di invertire dati sismici per produrre ricostruzioni tomografiche delle proprietà del campo di stress»,
commenta Gianmarco Del Piccolo, corresponding author della ricerca e dottorando al Dipartimento di Geoscienze dell’Università di Padova.
Gianmarco Del Piccolo
«Riteniamo che il metodo sviluppato possa avere un forte impatto sulla predicibilità delle vie preferenziali di migrazione del magma e dei fluidi in crosta, oltre che su una generale comprensione dell’effetto dello stress in ambienti crostali come zone sismogenetiche, campi geotermici, campi petroliferi e molti altri»,
conclude Manuele Faccenda, coordinatore della ricerca e docente al Dipartimento di Geoscienze dell’Ateneo patavino.
Riferimenti bibliografici:
Gianmarco Del Piccolo, Brandon P. VanderBeek, Manuele Faccenda, Rosalia Lo Bue, Ornella Cocina, Marco Firetto Carlino, Elisabetta Giampiccolo, Luciano Scarfì, Francesco Rappisi, Taras Gerya, Andrea Morelli, Pressurized magma storage in radial dike network beneath Etna volcano evidenced with P-wave anisotropic imaging – «Communications Earth & Environment» – 2025, link: https://www.nature.com/articles/s43247-025-02328-8
Testo e immagini dall’Ufficio Stampa dell’Università di Padova
L’Eruzione di Maddaloni: scoperta una delle eruzioni più potenti della storia dei Campi Flegrei
Risale a oltre centomila anni fa una delle eruzioni più significative in quest’area. A rivelarlo, uno studio congiunto CNR-IGAG, Sapienza Università di Roma, INGV e Università Aldo Moro di Bari, pubblicato sulla rivista scientificaCommunications Earth and Environment di Nature. La conoscenza approfondita della storia eruttiva di questa regione potrà migliorare la valutazione dei rischi vulcanici associati alla zona.
I Campi Flegrei sono un complesso vulcanico attivo, circondato da aree urbane ad alto rischio. Tra i più studiati al mondo, la loro storia eruttiva è ben documentata solo negli ultimi 40.000 anni. Un nuovo studio rivela che, 109.000 anni fa, si verificò un’eruzione di magnitudo simile all’’Ignimbrite Campana’, la più grande eruzione dell’area mediterranea.
A ricostruire l’entità dell’eruzione, un team italiano di ricercatori e ricercatrici dell’Istituto di geologia ambientale e geoingegneria del Consiglio nazionale delle ricerche (CNR-IGAG), della Sapienza Università di Roma, dell’Istituto nazionale di geofisica e vulcanologia (INGV), e dell’Università di Bari Aldo Moro. Lo studio è stato pubblicato sulla rivista Communications Earth and Environment di Nature.
“Nell’area dei Campi Flegrei, le testimonianze geologiche dell’attività più antica sono difficilmente accessibili perché giacciono in profondità nel sottosuolo, sotto notevoli spessori di rocce vulcaniche più recenti”, spiegano Gianluca Sottili e Giada Fernandez, della Sapienza Università di Roma. “La ricostruzione dell’intera storia eruttiva di questo vulcano è tuttavia cruciale per evidenziare alcuni parametri fondamentali per la definizione della sua pericolosità, quali la frequenza e la magnitudo degli eventi eruttivi. A tal riguardo, le ceneri prodotte dalle grandi eruzioni depositate in aree remote rispetto al vulcano, offrono la possibilità di estendere molto indietro nel tempo lo studio della storia eruttiva di un vulcano, consentendone una ricostruzione più completa”.
“Come le impronte digitali o il DNA distinguono i singoli individui, alcune proprietà stratigrafiche, chimiche e cronologiche dei livelli di cenere rinvenuti nei sedimenti marini o lacustri, anche a migliaia di chilometri dal vulcano, possono consentire agli scienziati di identificare la sorgente vulcanica e, in alcuni casi, persino il singolo evento eruttivo che le ha prodotte”, aggiunge Biagio Giaccio, del CNR-IGAG. “Più precisamente, attraverso la datazione e l’analisi chimica dei micro-frammenti di pomice, di cui è costituito il materiale vulcanico trasportato dal vento in aree lontane, è possibile ricostruire l’area di dispersione della cenere di uno specifico evento eruttivo”.
“Con i dati già a nostra disposizione e tramite modelli di dispersione delle ceneri vulcaniche, abbiamo potuto ricostruire la dinamica e la magnitudo dell’eruzione”, prosegue Antonio Costa, dell’INGV. “Abbiamo così ottenuto le stime di alcuni parametri fondamentali come, ad esempio, il volume del magma eruttato e l’altezza della colonna o nube di cenere e gas”.
Attraverso questo approccio multidisciplinare, comunemente applicato ad eruzioni recenti le cui tracce sono chiaramente documentate intorno al vulcano, i ricercatori hanno ricostruito i principali parametri eruttivi di un’antica eruzione Flegrea di 109.000 anni fa, denominata ‘Eruzione di Maddaloni’, pressoché inaccessibile nell’area del vulcano ma ben documentata dalle ceneri depositate in aree remote, note con la sigla ‘X-6’ e rinvenute in un’ampia area del Mediterraneo, dall’Italia centrale fino alla Grecia.
“Sorprendentemente”, prosegue Antonio Costa, “i risultati della modellazione hanno fornito una stima di magnitudo di 7.6, cioè di poco inferiore a quella della famosa Ignimbrite Campana di circa 40.000 anni fa, definendo l’eruzione di Maddaloni come il secondo più grande evento della storia eruttiva dei Campi Flegrei”.
“Il fatto che questo sistema vulcanico abbia prodotto diverse grandi eruzioni nel corso della sua storia suggerisce che la struttura della caldera, la depressione vulcano-tettonica che si forma durante le grandi eruzioni a seguito del rilascio di un ingente volume di magma in superficie, potrebbe essere molto più complessa di quanto ipotizzato finora”, sottolinea Jacopo Natale, dell’Università Aldo Moro di Bari.
I risultati della ricerca gettano nuova luce sulla ricorrenza degli eventi di grande magnitudo ai Campi Flegrei ed evidenziano come, anche per un vulcano intensamente studiato, una dettagliata e completa ricostruzione della sua storia necessiti di ulteriori indagini per una migliore valutazione della pericolosità vulcanica.
Riferimenti bibliografici:
Fernandez, G., Costa, A., Giaccio, B. et al. The Maddaloni/X-6 eruption stands out as one of the major events during the Late Pleistocene at Campi Flegrei, Commun Earth Environ6, 27 (2025), DOI: https://doi.org/10.1038/s43247-025-01998-8
Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma
I fossili raccontano la fine dell’era glaciale del tardo Paleozoico, 294 milioni di anni fa
Un team internazionale di scienziati di cui fanno parte l’Università degli Studi di Milano e l’Università Sapienza di Roma, analizzando fossili di brachiopodi ha dimostrato come nel Paleozoico l’incremento di anidride carbonica (CO2), dovuto a un’intensa attività vulcanica, sia risultato concomitante alla riduzione dei ghiacciai e a un incremento della temperatura superficiale media degli oceani fino a 4 gradi centigradi. Questo studio pubblicato su Nature Geoscience ci può aiutare a comprendere meglio i cambiamenti climatici attualmente in atto e le loro conseguenze.
1. Ricostruzione artistica della deglaciazione avvenuta nel Permiano Inferiore causata da un rapido incremento della CO2, avvenuta circa 294 milioni di anni fa (realizzato da Dawid Adam Iurino)
Studiare il riscaldamento globale del passato per capire i cambiamenti climatici del presente. Durante la sua lunga storia, la Terra ha sperimentato condizioni climatiche molto diverse, alternando fasi glaciali a periodi di riscaldamento globale che hanno plasmato il pianeta e influenzato l’evoluzione degli organismi. Ancor prima della comparsa dei dinosauri, durante il tardo Paleozoico (circa 300 milioni di anni fa) ebbe luogo una delle glaciazioni più estese, terminata con una fase di riscaldamento che portò alla scomparsa quasi completa dei ghiacciai e delle calotte polari con importanti conseguenze sulla biodiversità.
2. Variazioni della concentrazione di CO2 in atmosfera prima, durante e dopo la deglaciazione di fine Paleozoico
Un team internazionale di scienziati, tra cui ricercatori dell’Università Statale di Milano, dell’Università la Sapienza di Roma e dell’Università di St. Andrews in Scozia, ha preso in esame la glaciazione del tardo Paleozoico e il suo declino, seguito da un considerevole aumento delle temperature, per comprendere meglio l’attuale emergenza climatica.
I risultati di questo studio, pubblicati sulla rivista internazionale Nature Geoscience, ricostruiscono per la prima volta i livelli atmosferici di CO2 lungo un arco temporale di 80 milioni di anni.
L’atmosfera del passato viene spesso studiata attraverso l’analisi di piccole bolle d’aria inglobate nelle calotte polari, grazie alle quali siamo capaci di ricostruire con precisione le variazioni climatiche fino a circa 800 mila anni fa. Ma la sfida affrontata da questo studio è stata quella di sviluppare metodologie in grado di risalire a un intervallo compreso tra 340 e 260 milioni di anni fa. Sono stati così presi in oggetto i fossili brachiopodi, invertebrati marini con una conchiglia costituita da carbonato di calcio, molto abbondanti durante il Paleozoico e tuttora rappresentati da alcune specie viventi. Dalle analisi è emerso come i livelli di CO2 fossero intimamente connessi all’evoluzione della glaciazione e alla sua fine. I ricercatori hanno infatti misurato bassi livelli di anidride carbonica concomitanti alla formazione di estese calotte polari. Viceversa, l’incremento di CO2, che fu il prodotto di un’intensa attività vulcanica, è risultato contemporaneo a una riduzione globale dei ghiacciai e a un incremento della temperatura superficiale media degli oceani fino a 4 gradi centigradi. E oggi, proprio come è avvenuto 300 milioni di anni fa, il riscaldamento dell’atmosfera, causato dall’aumento della presenza di CO2 e di gas metano, ha innescato una evidente riduzione dei ghiacciai e delle calotte polari.
“I fossili e le caratteristiche geochimiche dei loro resti sono una preziosa fonte di informazioni, che ci permette di ricostruire il clima e gli ambienti in cui questi organismi sono vissuti, anche nel tempo profondo, e confrontare questi dati con i cambiamenti attualmente in atto” afferma Lucia Angiolini, docente del Dipartimento di Scienze della Terra Ardito Desio dell’Università degli Studi di Milano.
3. La prof. Lucia Angiolini osserva e campiona materiale fossile da alcuni affioramenti rocciosi del Carbonifero in Scozia
“Mentre l’organismo cresce, la sua conchiglia si espande ed incorpora numerosi elementi e composti chimici che vanno a costituire una sorta di archivio per tutto il suo ciclo vitale. Infatti è noto come le conchiglie siano legate alla composizione dell’acqua marina e alla variazione di molteplici parametri tra cui la temperatura e l’acidità (pH)”, sottolinea Claudio Garbelli, docente dell’Università Sapienza di Roma.
“Alcuni elementi presenti nel carbonato di calcio delle conchiglie sono determinati dai valori di pH dell’acqua marina che, a sua volta, dipende dalla quantità di CO2 atmosferica”, aggiunge Hana Jurikova, ricercatrice dell’Università di St. Andrews in Scozia e prima autrice dello studio. “Misurando alcuni degli elementi contenuti nelle conchiglie fossili (quali ad esempio il boro e lo stronzio) e con l’ausilio di sofisticati modelli matematici, siamo stati in grado di ricostruire con una certa precisione la quantità di CO2 presente in atmosfera lungo un arco temporale di 80 milioni di anni, tra 340 e 260 milioni di anni fa”, conclude Jurikova.
Studi come questo, oltre ad evidenziare l’importanza dei fossili come archivi di informazioni utili per comprendere le dinamiche dei cambiamenti climatici e ambientali avvenuti nel passato, rappresentano una fonte di dati indispensabile per sviluppare modelli predittivi dei fenomeni attualmente in atto e del loro impatto sulla biodiversità.
4. I fossili raccontano la fine dell’era glaciale del tardo Paleozoico: un brachiopode fossile del Permiano, chiamato Pachycyrtella, proveniente dal Permiano inferiore dell’Oman
Riferimenti bibliografici:
Jurikova, H., Garbelli, C., Whiteford, R. et al. Rapid rise in atmospheric CO2 marked the end of the Late Palaeozoic Ice Age, Nat. Geosci. (2025), DOI: https://doi.org/10.1038/s41561-024-01610-2
Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma e dall’Ufficio Stampa Direzione Comunicazione ed Eventi istituzionali Università Statale di Milano.
Sotto la superficie di Io non c’è un oceano di magma liquido, ma un mantello solido
Un nuovo studio pubblicato su Nature, basato sui dati di gravità raccolti dalla sonda Juno della NASA durante dei sorvoli della luna Io di Giove esclude la presenza di un oceano di magma sotto la sua superficie
Sotto la superficie di Io, il satellite Galileiano più vicino a Giove, non c’è un oceano di magma liquido come si era pensato fino ad oggi, ma un mantello solido. A rivelarlo è uno studio pubblicato su Nature realizzato anche grazie al lavoro di diversi ricercatori della Sapienza Università di Roma e dell’Università di Bologna.
La ricerca, coordinata da Ryan Park del Jet Propulsion Laboratory dalla NASA, ha sfruttato i dati collezionati dalla sonda Juno della NASA durante due recenti sorvoli ravvicinati della luna insieme ai dati storici della missione Galileo, la sonda della NASA che tra il 1995 e il 2003 ha esplorato il sistema di Giove.
“La combinazione dei dati acquisiti da Juno con quelli collezionati dalla sonda Galileo oltre 20 anni fa – spiega Daniele Durante, ricercatore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – ha permesso di migliorare la stima della risposta mareale di Io, che fornisce indicazioni dirette della deformabilità della struttura interna della luna.”
Io è un satellite unico nel sistema di Giove grazie alla sua intensa attività vulcanica, che lo rende l’oggetto geologicamente più attivo del sistema solare. Per decenni si è creduto che l’enorme attrazione gravitazionale di Giove fosse sufficiente a creare un oceano di magma sotto la sua superficie, che alimentasse i suoi vulcani. Le misure di induzione magnetica condotte dalla sonda Galileo avevano infatti suggerito la presenza di un oceano di magma sotto la superficie di questa luna.
Questo scenario è stato però rivisto a seguito delle nuove osservazioni realizzate da Juno, la sonda che dal 2016 sta esplorando Giove e, più recentemente, le sue lune. Juno ha sorvolato per due volte Io a circa 1.500 chilometri di quota, raccogliendo dati del campo gravitazionale della luna molto accurati. I risultati dell’analisi mostrano una risposta gravitazionale della luna alle forze di marea piuttosto modesta.
“La risposta della luna alle forze di marea esercitate da Giove è risultata piuttosto bassa – afferma Luciano Iess, professore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – indicazione dell’assenza di un oceano di magma vicino alla superficie e, piuttosto, della presenza di un mantello solido profondo al suo interno”.
Lo studio è stato pubblicato su Nature con il titolo “Io’s tidal response precludes a shallow magma ocean”. Per Sapienza Università di Roma hanno partecipato Daniele Durante e Luciano Iess, in collaborazione con i colleghi dell’Università di Bologna, Luis Gomez Casajus, Marco Zannoni, Andrea Magnanini e Paolo Tortora. Le attività di ricerca sono state realizzate nell’ambito di un accordo finanziato dall’Agenzia Spaziale Italiana.
Struttura interna di Io. La nuova misura della deformazione mareale suggerisce che la luna non abbia un oceano globale di magma vicino la superficie ma è coerente con la presenza di un mantello più solido (sfumature di verde), con una quantità significativa di materiale fuso (in giallo e arancione) che ricopre un nucleo liquido (in rosso/nero). Illustrazione di Sofia Shen (JPL/Caltech).
Riferimenti bibliografici:
Park, R.S., Jacobson, R.A., Gomez Casajus, L. et al. Io’s tidal response precludes a shallow magma ocean, Nature (2024), DOI: https://doi.org/10.1038/s41586-024-08442-5
Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma
A Milano-Bicocca un ERC Consolidator Grant da 2 milioni di euro al Progetto MATRICs, per studiare come le emissioni vulcaniche di CO2 abbiano influenzato l’evoluzione del clima
Con il finanziamento europeo vinto dal professore del dipartimento di Scienze dell’ambiente e della terra Pietro Sternai, il progetto di ricerca MATRICs ricostruirà gli effetti delle emissioni vulcaniche di CO2 sul clima nel passato geologico della Terra per migliorare la comprensione delle conseguenze delle emissioni antropiche sul clima presente e futuro
Milano, 3 dicembre 2024 – Studiare come le emissioni di CO2 dai vulcani abbiano influenzato il clima nel passato geologico per migliorare le previsioni dei cambiamenti climatici futuri dovuti alle emissioni antropiche di anidride carbonica. È l’obiettivo del progetto di ricerca “MATRICs” (“Magmatic Triggering of Cenozoic Climate Changes”, tradotto: “Innesco magmatico dei cambiamenti climatici del Cenozoico), coordinato da Pietro Sternai, professore di Geofisica al dipartimento di Scienze dell’ambiente e della terra dell’Università di Milano-Bicocca, che è stato appena premiato dall’Unione Europea con un ERC da 2 milioni di euro, della durata di 5 anni, nella categoria Consolidator Grant.
Gli ERC Consolidator Grant vengono assegnati dall’European Research Council a quei ricercatori che vantano una decina di anni di esperienza di riconosciuto valore alle spalle e che siano promotori di un progetto di ricerca ritenuto eccellente e particolarmente innovativo. Pietro Sternai coinvolgerà un’equipe di 3 dottorandi e 4 assegnisti di ricerca.
Il progetto “MATRICs” prende spunto da una constatazione.
«Conosciamo l’evoluzione del clima durante l’Era Cenozoica, da 60 milioni circa di anni fa fino a oggi, ma non sappiamo con certezza quali siano stati i motori dei suoi cambiamenti»,
afferma Pietro Sternai. Il primo obiettivo è fare luce sui possibili effetti di uno di questi: lo spegnimento di un arco vulcanico che si estendeva a sud del continente asiatico ma che scomparve dopo la collisione con il continente indiano per effetto della tettonica delle placche.
«La collisione tra India e Asia, tutt’ora in corso e iniziata tra 60 e 50 milioni di anni fa – prosegue il professore di Milano-Bicocca – oltre a portare alla formazione dell’Himalaya e del Tibet con grandi effetti a lungo termine sul clima globale provocò anche lo spegnimento di un arco magmatico che si estendeva per oltre 5mila chilometri, paragonabile a quello che c’è oggi nelle Ande. La domanda del progetto è: cosa succede al clima se cessano le emissioni di CO2 di un arco vulcanico di quel tipo? Il clima si raffredda? Si riscalda? Vogliamo capire come questo processo di variazione del magmatismo possa avere influenzato l’evoluzione del clima su scala globale, durante il Cenozoico inferiore».
Pietro Sternai nel suo ufficio con in mano un campione di Riolite proveniente dalle rocce magmatiche di Linzizong, nel Linzhou basin, in Tibet
L’attività di ricerca prevede analisi petrografiche e geochimiche di campioni di roccia provenienti da tre zone situate lungo il margine collisionale e oggi oggetto di studio geologico: in Iran, nel Ladakh (India nord-occidentale) e in Tibet. «Andremo a campionare le rocce magmatiche – spiega Sternai – e misureremo il loro contenuto di CO2. Campioneremo anche rocce sedimentarie per rilevarne i valori di mercurio e tellurio, che possono dare informazioni indirette sull’attività magmatica in quelle tre zone. I valori misurati verranno interpretati con modelli numerici, integrandoli alla scala di tutto l’arco magmatico, per stimare l’effetto che potrebbe avere avuto sul clima e sul ciclo del carbonio la variazione di emissioni di CO2 dovuta alla cessazione dell’attività vulcanica».
Obiettivo finale: una volta validato il modello, comprendere cosa il passato possa rivelarci sul futuro. «Definita una correlazione tra le emissioni di CO2 vulcanica e le variazioni climatiche sul lungo periodo, l’ipotesi è quella di confrontare i valori ottenuti con le emissioni di anidride carboniche antropiche e i cambiamenti climatici attuali e in divenire. La conoscenza che produrremo sul ciclo geologico del carbonio ci consentirà di valutare meglio i fattori trainanti della variabilità climatica naturale e, per confronto, le conseguenze climatiche delle attuali emissioni antropiche.», conclude il geologo.
Dal 2014 l’Università di Milano-Bicocca ha ricevuto finanziamenti per 19 progetti ERC: 8 Consolidator Grant, compreso quello di “MATRICs”, 2 Advanced Grant, 5 Starting Grant, 2 Proof of Concept e 2 Synergy Grant.
«Lo studio e la comprensione dei meccanismi alla base dei cambiamenti climatici – afferma Guido Cavaletti, prorettore alla Ricerca dell’Università di Milano-Bicocca – rivestono una rilevanza che appare sempre più significativa e spingono ad applicare metodologie sempre più sofisticate. L’approccio proposto da questo progetto è sicuramente molto innovativo, pienamente in linea con lo spirito di una università come Milano-Bicocca».
Testo e immagini dall’Ufficio Stampa dell’Università di Milano-Bicocca
LA PIÙ ACCURATA MAPPA VULCANICA DEL SATELLITE GIOVIANO IO
Grazie ai dati raccolti dallo stumento JIRAM a bordo della missione NASA Juno, un team di ricerca a guida INAF ha identificato 242 “hot spot”, ovvero zone calde che indicano la presenza di vulcani, di cui 23 non osservati precedentemente sul satellite più interno di Giove. I dati indicano una maggiore concentrazione di punti vulcanici caldi nelle regioni polari rispetto alle latitudini intermedie. Si tratta della mappatura migliore mai ottenuta da remoto.
La più accurata mappa vulcanica del satellite gioviano Io, grazie allo strumento JIRAM. Insieme di figure chiamate “super immagini”, ottenute calcolando la media di più osservazioni JIRAM acquisite in un lasso di tempo di pochi minuti. Questo approccio riduce la possibilità di falsi positivi. Le immagini ritraggono gli hot spot di Io nel corso degli anni. Crediti: F. Zambon et al. / Geophysical Research Letters
L’infernale luna Io (la più interna fra quelle regolari del sistema gioviano) è il corpo vulcanicamente più attivo dell’intero Sistema solare. Un recente articolo pubblicato sulla rivista Geophysical Research Letters (GRL) fa nuova luce sulle proprietà vulcaniche di questo satellite, in particolare grazie a nuovi dati raccolti da JIRAM (Jovian InfraRed Auroral Mapper), uno degli otto strumenti a bordo della sonda NASA Juno. Finanziato dall’Agenzia Spaziale Italiana (ASI) e realizzato da Leonardo, lo strumento vede la responsabilità scientifica dell’Istituto Nazionale di Astrofisica (INAF). L’articolo delinea la mappa più recente della distribuzione degli hot spot (punti vulcanici caldi) di Io prodotta con dati JIRAM da remoto alla migliore scala spaziale attualmente disponibile. I ricercatori, guidati dall’INAF, sono riusciti a ottenere, inoltre, una migliore copertura delle regioni di Io prossime ai poli rispetto al passato.
Francesca Zambon, membro del gruppo JIRAM, ricercatrice dell’INAF di Roma e prima autrice dell’articolo pubblicato su GRL, spiega:
“La mappa degli hot spot presentata nel nostro lavoro è la più aggiornata tra quelle basate su dati di telerilevamento spaziale. Analizzando le immagini infrarosse acquisite da JIRAM, abbiamo individuato 242 punti vulcanici caldi, di cui 23 non presenti in altri cataloghi e localizzati nella maggior parte dei casi nelle regioni polari, grazie alla peculiare orbita della sonda Juno”.
La ricercatrice sottolinea: “Il confronto tra il nostro studio e il catalogo più recente rivela che JIRAM ha osservato l’82% degli hot spot più potenti precedentemente individuati, e la metà degli hot spot di potenza intermedia, dimostrando quindi che questi sono ancora attivi. Tuttavia, JIRAM ha rilevato solo circa la metà degli hot spot più deboli precedentemente segnalati. Le spiegazioni sono due: o la risoluzione di JIRAM non è sufficiente per rilevare questi deboli punti caldi, oppure l’attività di questi centri effusivi potrebbe essersi sbiadita o interrotta”.
Quando la sonda spaziale NASA Voyager 1 avvicinò Io, il più interno dei satelliti galileiani di Giove, nel marzo 1979, le immagini inviate alla Terra rivelarono che la sua superficie appariva punteggiata da una moltitudine di centri vulcanici caldi, con imponenti colate laviche e pennacchi alti fino a qualche centinaio chilometri. In seguito, l’esplorazione condotta soprattutto dalla missione NASA Galileo chiarì che questi punti caldi sono moltissimi: alcune centinaia, molti dei quali con attività pressoché costante.
La luna Io mostra molti centri vulcanici, innescati principalmente dalle potenti forze mareali esercitate da Giove. Lo studio dell’attività vulcanica di questo satellite gioviano è la chiave per comprendere la natura dei suoi processi geologici e la sua evoluzione interna. La distribuzione degli hot spot e la loro variabilità spaziale e temporale sono importanti per definire le caratteristiche del riscaldamento delle maree e i meccanismi attraverso i quali il calore fuoriesce dall’interno.
Alessandro Mura, leader del gruppo JIRAM e ricercatore dell’INAF di Roma, prosegue:
“Uno dei maggiori punti aperti nella comprensione della struttura interna di Io è se l’attività vulcanica osservabile in superficie sia dovuta a un oceano di magma globale presente nel mantello, oppure a camere magmatiche che si insinuano nella crosta a minori profondità. Le osservazioni di JIRAM sono tuttora in corso, e le future immagini a maggiore definizione saranno fondamentali per meglio evidenziare i punti caldi deboli e per chiarire la struttura interna di Io”.
Giuseppe Sindoni, responsabile del progetto JIRAM per l’ASI, aggiunge:
“La superficie della luna gioviana Io è molto dinamica, con vulcani ed emissioni laviche in continua evoluzione, come dimostrato da questo importante risultato ottenuto dal nostro strumento JIRAM e dall’ottimo lavoro svolto dal team. L’estensione della missione Juno fino al 2025 ci permetterà di monitorare questa evoluzione e di comprendere meglio i processi fisici che guidano un corpo così complesso e dalle fattezze simili alla nostra Terra primordiale, anche in previsione di future missioni dedicate.”
La sonda Juno è stata lanciata ad agosto 2011 dalla base di Cape Canaveral ed è in orbita attorno a Giove dal luglio del 2016. Da allora ha percorso 235 milioni di chilometri. Juno è tuttora la sonda in orbita planetaria più distante della NASA, e continuerà le sue indagini sul pianeta più grande del Sistema solare fino a settembre 2025.
Alla fine dell’anno, il 30 dicembre 2023, durante la 57ma orbita attorno a Giove, la sonda Juno effettuerà il suo passaggio più ravvicinato in assoluto a Io, a una distanza minima di circa 4800 chilometri. Le missioni Europa Clipper della NASA e JUICE di ESA, che opereranno nel sistema di Giove negli anni 2030, non potranno mai avvicinarsi a simili distanze. Sarà quindi cruciale che Juno possa condurre osservazioni anche con JIRAM durante tutte le prossime opportunità previste nel 2023.
Per ulteriori informazioni:
L’articolo “Io hot spot distribution detected by Juno/JIRAM”, di F. Zambon, A. Mura, R. M. C. Lopes, J. Rathbun, F. Tosi, R. Sordini, R. Noschese, M. Ciarniello, A. Cicchetti, A. Adriani, L. Agostini, G. Filacchione, D. Grassi, G. Piccioni, C. Plainaki, G. Sindoni, D. Turrini, S. Brooks, C. Hansen-Koharcheck, S. Bolton, è stato pubblicato su Geophysical Research Letters.
Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF sulla mappa vulcanica di Io prodotta dallo strumento JIRAM
Il Carbonio controlla la profondità di genesi dei magmi nel mantello superiore della Terra
In un nuovo studio (https://www.nature.com/articles/s41561-021-00797-y), pubblicato sulla rivista Nature Geoscience (https://www.nature.com/ngeo/), un team di ricercatori italiani guidato da Alessandro Aiuppa (Università di Palermo) e che vede fra i co-autori Federico Casetta (Università di Ferrara), Massimo Coltorti (Università di Ferrara), Vincenzo Stagno (Sapienza Università di Roma) e Giancarlo Tamburello (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna), ha sviluppato un nuovo approccio per ricostruire la quantità di Carbonio immagazzinato nel mantello superiore della terra, dalla cui fusione sono segregati i magmi.
Il Carbonio, il quarto elemento più abbondante in termini di massa nell’universo, è un elemento chiave per la vita. Il suo ricircolo, da e verso l’interno della Terra, regola i livelli di CO2 nell’atmosfera, giocando quindi un ruolo fondamentale nel rendere il nostro pianeta abitabile. Il Carbonio è un elemento unico, perché può essere immagazzinato nelle profondità della Terra in varie forme: all’interno di fluidi, come componente di fasi minerali, oppure disciolto nei magmi. Si ritiene, inoltre, che il Carbonio giochi un ruolo chiave nella geodinamica terrestre, in quanto questo elemento è in grado di controllare i processi di fusione che avvengono mantello superiore. Vista la sua tendenza ad essere incorporato nei magmi prodotti per fusione delle rocce peridotitiche nel mantello superiore, il Carbonio è facilmente trasportato verso la superficie terrestre, ove viene poi rilasciato come CO2 nelle emissioni gassose di vulcani attivi o quiescenti. I magmi ed i gas derivati dal mantello sono, pertanto, i mezzi di trasporto più efficaci per portare il Carbonio verso l’idrosfera e l’atmosfera, dove gioca un ruolo primario nel controllo dei cambiamenti climatici su scala geologica.
Ma quanto Carbonio è immagazzinato all’interno della Terra?
Questa domanda ha ispirato ricerche in diversi ambiti delle geoscienze, che si sono avvalse di molteplici approcci empirici, quali lo studio dei gas emessi in aree vulcaniche, del contenuto in CO2 nelle lave eruttate lungo le dorsali medio-oceaniche e/o nelle inclusioni di magma all’interno dei cristalli, delle inclusioni fluide in xenoliti di mantello portati in superficie dai magmi, e le misure sperimentali sviluppate con lo scopo di comprendere la massima quantità di CO2 che può essere disciolta nei magmi a pressioni e temperature tipiche dell’interno della Terra. Sfortunatamente, questi approcci hanno portato spesso a conclusioni contrastanti, al punto che le stime sul contenuto di Carbonio del mantello (così come dell’intera Terra) divergono di più di un ordine di grandezza. Le “melt inclusions”, o inclusioni di magma, cioè piccole goccioline di fuso silicatico intrappolate nei cristalli al momento della loro formazione nei magmi, possono essere sorgenti di informazione uniche per quantificare il contenuto di Carbonio del mantello da cui i magmi stessi sono segregati. Tuttavia, il massivo rilascio di gas (degassamento), tra cui CO2, a cui i magmi sono soggetti durante la loro risalita verso la superficie (prima della loro messa in posto ed eruzione) ha rappresentato un fattore limitante nella comprensione delle variazioni di concentrazione di Carbonio nel mantello.
Nel loro studio, Aiuppa e co-autori hanno revisionato e catalogato i dati relativi al contenuto in CO2 (e zolfo) nei gas vulcanici emessi da 12 vulcani di hot-spot e di rifting continentale, i cui magmi sono generati da sorgenti mantelliche più profonde rispetto a quelle del mantello impoverito da cui derivano i magmi delle dorsali medio-oceaniche.
Gas magmatici ricchi in CO2 rilasciati dal degassamento del lago di lava a condotto aperto presso il vulcano Nyiragongo, Repubblica Democratica del Congo (foto di Sergio Calabrese, Università di Palermo)
I risultati ottenuti hanno permesso di comprendere che il mantello superiore (50-250 km di profondità) che alimenta il vulcanismo in aree di rifting continentale e di hot-spot contiene in media 350 parti per milione (ppm) di Carbonio (intervallo compreso tra 100 e 700 ppm di C). Questo ampio range conferma la visione di un mantello superiore fortemente eterogeneo, la cui composizione è stata variabilmente modificata, in tempi geologici, dall’infiltrazione di fusi carbonatici-silicatici generati in profondità. Le nuove stime ottenute da Aiuppa e co-autori indicano che il mantello superiore ha una capacità totale di Carbonio di circa ~1.2·1023 g. È possibile che la Terra, nelle sue porzioni interne, sia in grado di contenere ancora più Carbonio, come suggerito dai diamanti provenienti da profondità sub-litosferiche (fino a 700 km), i quali mostrano evidenze dell’esistenza di minerali e fusi che contengono significative quantità di C.
In aggiunta, il team di ricercatori ha stimato che il contenuto di Carbonio aumenta con la profondità di fusione parziale nel mantello. Questa scoperta permette di validare i dati sperimentali, che suggeriscono come il Carbonio giochi un ruolo nel determinare percentuale e profondità di fusione parziale nelle sorgenti di mantello che alimentano i vulcani in aree di rift continentali e di hot-spot. I risultati ottenuti, indicando che le porzioni di mantello ricche in Carbonio fondono più in profondità rispetto a porzioni povere in Carbonio, confermano il ruolo di primaria importanza giocato da questo elemento nel guidare i cicli geodinamici.
Aumento della concentrazione di Carbonio con la profondità di fusione nel mantello superiore terrestre. I magmi prodotti in contesti di Isole Oceaniche e di Rift Continentale sono alimentati da sorgenti di mantello più ricche in Carbonio rispetto alle porzioni di “Depleted MORB Mantle (DMM)”, cioè di mantello impoverito da cui sono prodotti i “Mid-Ocean Ridge Basalts (MORB)”, ovvero basalti di dorsale medio-oceanica
L’esistenza di un mantello ricco in Carbonio, evidenziata da Aiuppa e co-autori, ha profonde implicazioni rispetto alle modalità di immagazzinamento del Carbonio primordiale nel mantello, e per il suo riciclo nel tempo e nello spazio. I risultati ottenuti con questo studio sono anche importanti per comprendere le possibili variazioni nel ciclo geologico del Carbonio causate da eventi vulcanici di grande magnitudo, quali la messa in posto delle “Large Igneous Provinces (LIP)”, o grandi province ignee. Se i magmi prodotti dai “plume”, o pennacchi, di mantello sono ricchi in Carbonio, come suggerito da questo studio, allora il rilascio di Carbonio dalle grandi province ignee nel Fanerozoico può aver contribuito a causare le estinzioni di massa, le cui tracce sono preservate nei record sedimentari in tutto il mondo.
Sezione schematica dall’Oceano Atlantico all’Oceano Indiano (passando attraverso il cratone Africano), che mostra le variazioni nelle concentrazioni di Carbonio ricostruite nelle sorgenti di mantello da cui sono prodotti i magmi delle Isole Oceaniche e dei Rift Continentali
Il Carbonio controlla la profondità di genesi dei magmi nel mantello superiore della Terra
CITAZIONE
Alessandro Aiuppa, Federico Casetta, Massimo Coltorti, Vincenzo Stagno and Giancarlo Tamburello (2021), Carbon concentration increases with depth of melting in Earth’s upper mantle, Nature Geoscience, https://doi.org/10.1038/s41561-021-00797-y
Il Carbonio controlla la profondità di genesi dei magmi nel mantello superiore della Terra. Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma, Università di Palermo, Università di Ferrara, Istituto Nazionale di Geofisica e Vulcanologia.