News
Ad
Ad
Ad
Tag

Valentina D’Odorico

Browsing

La “ragnatela cosmica” della materia oscura che forma l’Universo fotografata da ricercatori di Milano-Bicocca

Grazie a uno studio dell’Università di Milano-Bicocca, ottenute le prime immagini del filamento cosmico che unisce due galassie in formazione, risalente a quando l’Universo aveva solo 2 miliardi di anni

Milano, 30 gennaio 2025 – Le prime immagini ad alta definizione della “ragnatela cosmica” che struttura l’Universo sono state ottenute grazie a uno studio guidato da ricercatori dell’Università di Milano-Bicocca in collaborazione con l’Istituto Nazionale di Astrofisica (INAF). Grazie a MUSE (Multi-Unit Spectroscopic Explorer), innovativo spettrografo installato presso il Very Large Telescope dell’European Southern Observatory, in Cile, il team ha catturato una struttura cosmica risalente a un Universo molto giovane. La scoperta è stata recentemente pubblicata su Nature Astronomy nell’articolo “High-definition imaging of a filamentary connection between a close quasar pair at z=3” e apre una nuova prospettiva per comprendere l’essenza della materia oscura.

Sfruttando le capacità offerte dal sofisticato strumento, il gruppo di ricerca coordinato da Michele Fumagalli e Matteo Fossati, professori nell’unità di Astrofisica dell’Università di Milano-Bicocca, ha condotto una delle più ambiziose campagne di osservazione con MUSE mai completata in una singola regione di cielo, acquisendo dati per centinaia di ore. 

Un solido pilastro della cosmologia moderna è l’esistenza della materia oscura che, costituendo circa il 90% di tutta la materia presente nell’Universo, determina la formazione e l’evoluzione di tutte le strutture che osserviamo su grandi scale nel Cosmo.

«Sotto l’effetto della forza di gravità, la materia oscura disegna un’intricata trama cosmica composta da filamenti, alle cui intersezioni si formano le galassie più brillanti», ha spiegato Michele Fumagalli. «Questa ragnatela cosmica è l’impalcatura su cui si creano tutte le strutture visibili nell’Universo: all’interno dei filamenti il gas scorre per raggiungere e alimentare la formazione di stelle nelle galassie».

«Per molti anni, le osservazioni di questa ragnatela cosmica sono state impossibili: il gas presente in questi filamenti è infatti così diffuso da emettere solo un tenue bagliore, indistinguibile dagli strumenti allora disponibili», commenta Matteo Fossati.

MUSE, grazie alla sua elevata sensibilità alla luce, ha consentito agli scienziati di ottenere immagini dettagliate di questa ragnatela cosmica. Lo studio – guidato da Davide Tornotti, dottorando dell’Università di Milano-Bicocca, e collaboratori – ha utilizzato questi dati ultrasensibili per produrre l’immagine più nitida mai ottenuta di un filamento cosmico che si estende su una distanza di 3 milioni di anni luce attraverso due galassie che ospitano ciascuna un buco nero supermassiccio.

«Catturando la debole luce proveniente da questo filamento, che ha viaggiato per poco meno di 12 miliardi di anni prima di giungere a Terra, siamo riusciti a caratterizzarne con precisione la forma e abbiamo tracciato, per la prima volta con misure dirette, il confine tra il gas che risiede nelle galassie e il materiale contenuto nella ragnatela cosmica», spiega Davide Tornotti. «Attraverso alcune simulazioni dell’Universo con i supercomputer, abbiamo inoltre confrontato le previsioni del modello cosmologico attuale con i nuovi dati, trovando un sostanziale accordo tra la teoria corrente e le osservazioni».

«Quando quasi 10 anni fa Michele Fumagalli mi ha proposto di partecipare a queste osservazioni ultra-profonde con lo strumento MUSE ho accettato con grande entusiasmo perché le potenzialità dello studio erano veramente moltissime», commenta Valentina D’Odorico, ricercatrice INAF e co-autrice del lavoro. «Abbiamo già pubblicato vari lavori basati su questi dati, ma il risultato ottenuto nell’articolo guidato da Tornotti può essere considerato il coronamento del progetto. Infatti, non solo vengono identificate le sovradensità occupate dai nuclei galattici attivi presenti nel campo e il filamento che li unisce, ma tali strutture confrontate in modo quantitativo con le predizioni di simulazioni numeriche sono in accordo con un modello di formazione delle strutture cosmiche che adotta materia oscura fredda».

La ricerca è stata supportata da Fondazione Cariplo e dal Ministero dell’Università e Ricerca attraverso il Progetto Dipartimenti di Eccellenza 2023-2027 (BiCoQ, Bicocca Centre for Quantitative Cosmology).

Riferimenti bibliografici:

Tornotti, D., Fumagalli, M., Fossati, M. et al. High-definition imaging of a filamentary connection between a close quasar pair at z = 3, Nat Astron (2025), DOI: https://doi.org/10.1038/s41550-024-02463-w

Testo e immagini dagli Uffici Stampa dell’Università di Milano-Bicocca e dell’Istituto Nazionale di Astrofisica

ERC SYNERGY GRANT 2024: AL PROGETTo RECAP 10 MILIONI DI EURO PER SVELARE I MISTERI DEL COSMO

Il progetto RECAP, presentato da un team di quattro scienziate, di cui tre italiane, ha vinto un finanziamento dal Consiglio Europeo della Ricerca (ERC) da 10 milioni di euro per studiare un periodo fondamentale della storia dell’Universo, la cosiddetta era della reionizzazione.

 Rappresentazione artistica della porzione di storia dell'Universo attorno all’epoca della reionizzazione, il processo che ha ionizzato la maggior parte della materia presente nel cosmo. Crediti: ESA – C. Carreau
Rappresentazione artistica della porzione di storia dell’Universo attorno all’epoca della reionizzazione, il processo che ha ionizzato la maggior parte della materia presente nel cosmo. Crediti: ESA – C. Carreau

Sono stati annunciati oggi alle ore 12 dal Consiglio europeo della ricerca (ERC)  i vincitori degli ERC Synergy Grant 2024 e il progetto RECAP, che sta per REionization Complementary Approach Project si è aggiudicato un finanziamento da 10 milioni di euro. Guidato da un team internazionale composto da quattro scienziate di cui tre italiane, RECAP promette di studiare in dettaglio l’epoca della reionizzazione, uno dei periodi fondamentali per comprendere l’evoluzione dell’Universo. Laura Pentericci e Valentina D’Odorico dell’Istituto Nazionale di Astrofisica (INAF) coordinano due dei team coinvolti nel progetto.

L’epoca della reionizzazione rappresenta l’ultima importante fase di transizione attraversata dall’Universo, iniziata circa 100-200 milioni di anni dopo il Big Bang e protrattasi per molte centinaia di milioni di anni. Il suo nome è dovuto al fatto che in quel periodo il gas presente tra le galassie è stato ionizzato dalla radiazione delle prime sorgenti cosmiche. RECAP si propone di sviluppare simulazioni tridimensionali e osservazioni multi-frequenza sfruttando dati raccolti dal telescopio spaziale James Webb Space, dal Very Large Telescope e dall’Osservatorio Alma, e l’obiettivo è comprendere questa complessa fase dell’Universo, la natura delle prime sorgenti e l’impatto sulla successiva evoluzione del cosmo.

RECAP è un progetto sviluppato da un team interdisciplinare composto da quattro scienziate che lavorano tra l’Italia, la Svezia e la Germania. Oltre a Laura Pentericci e Valentina D’Odorico dell’INAF il team comprende anche Benedetta Ciardi dell’Istituto Max Planck per l’Astrofisica a Garching in Germania e Kirsten Kraiberg Knudsen della Chalmers Università della Tecnologia di Göteborg. Le diverse esperienze e specializzazioni delle quattro ricercatrici, che vanno dall’osservazione di oggetti celesti lontanissimi alla realizzazione di modelli numerici, permetteranno al team di affrontare lo studio della reionizzazione con una nuova prospettiva ad ampio spettro. RECAP è uno dei 57 progetti finanziati nel 2024 dal Consiglio Europeo della Ricerca nell’ambito dei Synergy Grant, tra quasi 550 proposte pervenute.

“Il nostro progetto nasce dalla voglia di combinare le nostre capacità diverse e complementari, per affrontare insieme uno dei più grandi misteri dell’astrofisica moderna, cioè l’epoca della reionizzazione”, dice Laura Pentericci. “Sarà sicuramente entusiasmante e stimolante lavorare con le altre colleghe: unendo le forze saremo in grado di svelare quest’epoca remota e affascinante della storia del nostro Universo, quando si sono formate le prime galassie e finalmente è terminata la cosiddetta ‘età oscura’”.

Il finanziamento stanziato copre un periodo di sei anni e prevede l’assunzione di ricercatori e studenti di dottorato che forniranno il loro contributo ai lavori di simulazione e osservazione. L’intenzione è quella di creare un’eredità scientifica duratura, che guiderà le campagne osservative delle infrastrutture di nuova generazione, come l’Extremely Large Telescope e l’Osservatorio SKA. I risultati ottenuti contribuiranno ad arricchire le conoscenze della comunità scientifica, che potrà programmare in maniera ottimale i futuri progetti di osservazione, dotandosi di nuovi strumenti all’avanguardia.

“Sono molto soddisfatta e orgogliosa di questo risultato», spiega Valentina D’Odorico. «Abbiamo lavorato molto per raggiungerlo e credo che la sinergia fra di noi, sia scientifica che umana, abbia giocato un ruolo fondamentale già nella preparazione della proposta e dell’interview. Questo progetto ci permetterà di allargare i nostri gruppi di ricerca proprio per dedicare il tempo necessario a combinare i nostri risultati e riuscire a rispondere ad alcune delle domande fondamentali legate al processo di reionizzazione cosmica”.

 foto delle ricercatrici che compongono il team RECAP. Da sinistra a destra: Kirsten Kraiberg Knudsen, Laura Pentericci, Benedetta Ciardi e Valentina D'Odorico
foto delle ricercatrici che compongono il team RECAP. Da sinistra a destra: Kirsten Kraiberg Knudsen, Laura Pentericci, Benedetta Ciardi e Valentina D’Odorico

Testo e immagini Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)

VLT E ALMA CATTURANO RAFFICHE DI VENTO RELATIVISTICO DAL QUASAR DELLA GALASSIA J0923+0402, IN PIENA ATTIVITÀ

Un team di ricerca guidato dall’Istituto Nazionale di Astrofisica (INAF) e dall’Università degli studi di Trieste ha di nuovo imbrigliato i lontanissimi ed energici venti relativistici generati da un quasar lontano ma decisamente attivo (uno dei più luminosi finora scoperti). In uno studio pubblicato sulla rivista The Astrophysical Journal viene riportata la prima osservazione a diverse lunghezze d’onda dell’interazione tra buco nero e il quasar della galassia ospite durante le fasi iniziali dell’Universo, circa 13 miliardi di anni fa. Oltre all’evidenza di una tempesta di gas generata dal buco nero, gli esperti hanno scoperto per la prima volta un alone di gas che si estende ben oltre la galassia, suggerendo la presenza di materiale espulso dalla galassia stessa tramite i venti generati dal buco nero.

alone quasar della galassia J0923+0402 Alone gigante di gas freddo, esteso quasi 50 mila anni luce, rivelato attorno ad una galassia dell’Universo di circa 13 miliardi di anni fa tramite osservazioni multibanda. Questa scoperta fornisce informazioni chiave su come il gas venga espulso o catturato dalle galassie dell’Universo giovane. Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani, J. da Silva & M. Bischetti
Alone gigante di gas freddo, esteso quasi 50 mila anni luce, rivelato attorno ad una galassia dell’Universo di circa 13 miliardi di anni fa tramite osservazioni multibanda. Questa scoperta fornisce informazioni chiave su come il gas venga espulso o catturato dalle galassie dell’Universo giovane. Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani, J. da Silva & M. Bischetti

La galassia protagonista dello studio è J0923+0402, un oggetto lontanissimo da noi, per la precisione a redshift z = 6.632 (ossia la sua radiazione che osserviamo è stata emessa quando l’Universo aveva meno di un miliardo di anni) con al centro un quasar. La luce dei quasar (o quasi-stellar radio source) viene prodotta quando il materiale galattico che circonda il buco nero supermassiccio si raccoglie in un disco di accrescimento. Infatti, nell’avvicinarsi al buco nero per poi esserne inghiottita, la materia si scalda emettendo grandi quantità di radiazione brillante nella luce visibile e ultravioletta.

“L’utilizzo congiunto di osservazioni multibanda ha permesso di studiare, in un range di scale spaziali molto ampio e dalle regioni più nucleari fino al mezzo circumgalatico, il quasar più lontano con misura di vento nucleare e l’alone di gas più esteso rilevato in epoche remote (circa 50 mila anni luce)”, spiega Manuela Bischetti, prima autrice dello studio e ricercatrice presso l’INAF e l’Università degli studi di Trieste.

I dati descritti nell’articolo sono frutto della collaborazione di gruppi di ricerca che lavorano su frequenze diverse dello spettro elettromagnetico. In primis lo spettrografo X-Shooter, installato sul Very Large Telescope (VLT) dell’ESO, ha captato raffiche di materia, in gergo BAL winds (dall’inglese venti con righe di assorbimento larghe o broad absorption line), in grado di raggiungere velocità relativistiche fino a decine di migliaia di chilometri al secondo, misurandone e calcolandone le caratteristiche. Le potenti antenne cilene di ALMA (l’Atacama Large Millimeter/submillimeter Array sempre dell’ESO), ricevendo frequenze dai 242 ai 257 GHz provenienti dall’alba del Cosmo, sono state attivate per cercare la controparte nel gas freddo dei venti BAL e capire se si estendesse oltre la scala della galassia.

La ricercatrice sottolinea: “I BAL sono venti che si osservano nello spettro ultravioletto del quasar che, data la grande distanza da noi, osserviamo a lunghezze d’onda dell’ottico e vicino infrarosso. Per fare queste osservazioni abbiamo usato lo spettrografo X-Shooter del Very Large Telescope. Avevamo già scoperto il BAL di questo quasar due anni fa. Il problema è che non sapevamo quantificare quanto fosse energetico. Questo vento BAL è un vento di gas caldo (decine di migliaia di gradi) che si muove a decine di migliaia di km/s. Allo stesso tempo le osservazioni in banda millimetrica di ALMA ci hanno permesso di capire cosa stia succedendo nella galassia e attorno a essa andando a vedere cosa succede al gas freddo (qualche centinaio di gradi). Abbiamo trovato che il vento si estende anche sulla scala della galassia (ma ha delle velocità più basse, 500 km/s. Questa è una cosa aspettata, il vento decelera man mano che si espande), il che ci ha fatto pensare che questo mega alone di gas sia stato creato dal materiale che i venti hanno espulso dalla galassia”.

La posizione della sorgente energetica è stata poi “immortalata” dapprima dalla Hyper Suprime-Cam (HSC), una gigantesca fotocamera installata sul telescopio Subaru e sviluppata dall’Osservatorio Astronomico Nazionale del Giappone (National Astronomical Observatory of Japan – NAOJ), e – con una misura molto più accurata – dalla NIRCam, una fotocamera a raggi infrarossi installata sul telescopio spaziale James Webb (JWST delle agenzie spaziali NASA, ESA e CSA).

“Questo quasar verrà osservato nuovamente dal JWST in futuro per studiare meglio sia il vento che l’alone”, annuncia Bischetti.

La ricercatrice prosegue spiegando il perché di questa survey: “Ci siamo chiesti se l’attività del buco nero potesse avere un impatto sulle fasi iniziali di evoluzione delle galassie, e tramite quali meccanismi questo avvenga. Vincente è stata la combinazione di dati multibanda che vanno dall’ottico e vicino infrarosso – per misurare le proprietà del buco nero, e cosa avviene nel nucleo della galassia – fino alle osservazioni in banda millimetrica – per studiare cosa avviene all’interno e attorno alla galassia”. Le misure effettuate “sono di routine nell’Universo locale, ma questi risultati non erano mai stati ottenuti prima a redshift z>6”, aggiunge.

“Il nostro studio ci aiuta a capire come il gas venga espulso o catturato dalle galassie dell’Universo giovane e come i buchi neri crescono e possono avere un impatto sull’evoluzione delle galassie. Sappiamo che il fato delle galassie come la Via Lattea è strettamente legato a quello dei buchi neri, poiché questi possono generare tempeste galattiche in grado di spegnere la formazione di nuove stelle. Studiare le epoche primordiali ci permette di capire le condizioni iniziali dell’Universo che vediamo oggi”, conclude Bischetti.


 

Per altre informazioni:

L’articolo “Multi-phase black-hole feedback and a bright [CII] halo in a Lo-BAL quasar at z∼6.6”, di Manuela Bischetti, Hyunseop Choi, Fabrizio Fiore, Chiara Feruglio, Stefano Carniani, Valentina D’Odorico, Eduardo Bañados, Huanqing Chen, Roberto Decarli, Simona Gallerani, Julie Hlavacek-Larrondo, Samuel Lai, Karen M. Leighly, Chiara Mazzucchelli, Laurence Perreault-Levasseur, Roberta Tripodi, Fabian Walter, Feige Wang, Jinyi Yang, Maria Vittoria Zanchettin, Yongda Zhu, è stato pubblicato sulla rivista The Astrophysical Journal.

 

 

Testo e immagine dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

Rilevato gas molecolare freddo, sotto forma di monossido di carbonio, nel mezzo interstellare della galassia che ospita il quasar Pōniuā‘ena

Osservato per la prima volta gas molecolare freddo, sotto forma di monossido di carbonio, nella galassia che ospita un buco nero supermassiccio in un’epoca remota della storia del cosmo, quando l’Universo aveva solo settecento milioni di anni. La scoperta, realizzata da un team internazionale guidato da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF), è stata possibile grazie all’osservatorio NOEMA sulle Alpi francesi.

Le 12 antenne dell’osservatorio NOEMA, sulle Alpi francesi.
Crediti: IRAM, J.Boissier

Come si influenzano a vicenda la crescita di un buco nero supermassiccio e quella della galassia che lo ospita? Che impatto hanno questi buchi neri sulle primissime fasi evolutive delle galassie? Un team internazionale guidato da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) si è posto questi quesiti, tra i più spinosi dell’astrofisica contemporanea, e per affrontarli ha osservato uno dei tre quasar luminosi più distanti noti, la cui luce è partita circa tredici miliardi di anni fa, quando l’universo aveva un’età di appena settecento milioni di anni.

Illustrazione del quasar Pōniuāʻena.
Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld

I quasar sono nuclei estremamente brillanti di galassie attive, la cui enorme luminosità deriva dall’intensa attività del buco nero supermassiccio nascosto nel cuore della galassia. Il quasar scelto dal team si chiama Pōniuā‘ena, che in lingua hawaiana “evoca l’invisibile fonte rotante della creazione, circondata da brillantezza”, ed è alimentato da un buco nero la cui massa è pari a un miliardo e mezzo di volte quella del Sole. La galassia che lo ospita si trova nel mezzo dell’epoca della reionizzazione, quel periodo della storia cosmica, verificatosi alcune centinaia di milioni di anni dopo il Big Bang, durante il quale l’Universo è diventato trasparente alla radiazione emessa da stelle e galassie, così che la loro luce può raggiungerci oggi. Quasar come questo si sono formati molto presto nella sequenza temporale del cosmo, trovandosi in ambienti estremi caratterizzati dall’accumulo di enormi quantità di gas e polvere, ma le ragioni di una comparsa così rapida sono ancora uno dei misteri più grandi nell’astrofisica extragalattica.

gas molecolare freddo quasar Pōniuā‘ena
Mappa dell’emissione di gas molecolare (monossido di carbonio) da parte del quasar Poniua‘ena, realizzata dall’osservatorio NOEMA.
Crediti: IRAM/NOEMA/C. Feruglio (INAF)

Osservando il quasar Pōniuā‘ena con il Northern Extended Millimeter Array (NOEMA), il più potente radiotelescopio del suo genere nell’emisfero nord, il team ha rilevato gas molecolare freddo, sotto forma di monossido di carbonio, nel mezzo interstellare della galassia che ospita il quasar. Si tratta di un rilevamento da record: non era mai stato osservato gas molecolare freddo a epoche così antiche nella storia dell’Universo. I risultati sono stati pubblicati su The Astrophysical Journal Letters.

gas molecolare freddo quasar Pōniuā‘ena
Mappa dell’emissione di gas molecolare (monossido di carbonio) da parte del quasar Poniua‘ena, realizzata dall’osservatorio NOEMA.
Crediti: IRAM/NOEMA/C. Feruglio (INAF)

Si ritiene che il gas molecolare freddo sia uno degli ingredienti chiave per una efficiente formazione stellare. Per questo, gli astronomi ritengono che il gas molecolare fosse presente già nell’Universo primordiale, anche prima che le stelle si formassero in grandi quantità. Di conseguenza, la scoperta del monossido di carbonio nel quasar Pōniuā’ena rappresenta una nuova pietra miliare per comprendere la formazione delle primissime molecole nell’Universo.

“È la prima volta che misuriamo la riserva di gas molecolare freddo e polvere nell’Universo primordiale, appena qualche centinaia di milioni di anni dopo il Big Bang”, spiega Chiara Feruglio, ricercatrice INAF a Trieste e prima autrice dello studio. “Troviamo che le galassie ospiti di quasar nell’Universo antico hanno già la capacità di accumulare una massa di gas e polvere molto elevata: circa venti miliardi di masse solari, comparabile con quanto osservato in epoche cosmiche successive. È interessante notare che, nonostante il breve tempo cosmico intercorso dal Big Bang all’epoca in cui osserviamo il quasar Pōniuā‘ena, le quantità relative di gas freddo e polvere fredda è già molto simile al valore misurato nella nostra galassia, la Via Lattea, e altre galassie che popolano l’Universo odierno”.

“Sappiamo che questo quasar ospita un buco nero molto massiccio, che deve essersi formato o da una marcata concentrazione primordiale di massa oppure tramite accrescimento di gas a un tasso molto elevato su concentrazioni di massa più piccole” nota la co-autrice Francesca Civano, Chief Scientist presso il Physics of the Cosmos Program Office del NASA Goddard Space Flight Center a Greenland nel Maryland, Stati Uniti. “Le osservazioni erano state programmate per studiare solamente la componente della polvere, non ci aspettavamo di rilevare anche una grande riserva di gas freddo, anche perché, per gli altri due quasar noti a distanze così elevate, il gas freddo non è stato ancora individuato. Invece con sorpresa abbiamo trovato due righe molto forti, che indicano una massiccia riserva di gas freddo e denso”.

“Solo la notevole sensibilità recentemente raggiunta da NOEMA, unita alla sua ampia larghezza di banda di frequenza, ha consentito la scoperta del monossido di carbonio a Pōniuā’ena” aggiunge Jan Martin Winters, astronomo dell’Institut de radioastronomie millimétrique (IRAM) in Francia e co-autore dello studio. “La potenza recentemente acquisita da NOEMA mantiene ora la promessa di rilevare il gas molecolare freddo in molte più sorgenti che ospitano quasar in queste epoche cosmiche primordiali. Tali rilevazioni permetterebbero di far luce anche sulla produzione di elementi pesanti nelle primissime fasi dell’Universo”.

L’idrogeno molecolare è di fondamentale importanza in quanto è il costituente base da cui nascono le stelle, e spesso viene invocato come il “serbatoio” della formazione stellare. Sfortunatamente, l’idrogeno molecolare non può essere osservato di per sé, ma si può utilizzare una relazione empirica tra la massa del monossido di carbonio e la massa dell’idrogeno molecolare per ricavare la quantità di idrogeno molecolare dalla quantità misurata di monossido di carbonio. L’osservazione del monossido di carbonio nel quasar Pōniuā’ena ha quindi permesso al team di ottenere una prima stima della densità cosmica di idrogeno molecolare. La stima di questo parametro fornisce importanti informazioni sulla chimica primordiale, svelando nuovi dettagli su come si sono formate le prime e più semplici molecole dell’Universo. Queste stime erano finora limitate a epoche cosmiche molto successive, a partire da circa un miliardo di anni dopo il Big Bang. “La densità cosmica di idrogeno molecolare stimata grazie alle osservazioni del quasar Pōniuā‘ena concorda con quanto predetto dai più recenti modelli di formazione ed evoluzione di gas freddo nelle prime fasi dell’Universo e dalle simulazioni cosmologiche”, ricorda il ricercatore INAF Umberto Maio, co-autore dello studio. Questo risultato indica che i modelli teorici sono sulla buona strada per spiegare le proprietà fondamentali dell’Universo primordiale.

Conclude Luca Zappacosta dell’INAF, co-autore della ricerca e a capo della collaborazione scientifica HYPERION: “Pōniuā‘ena fa parte di HYPERION, un campione dei quasar primordiali luminosi, specificamente selezionati per le ‘abitudini alimentari’ estreme dei loro buchi neri massicci. Studiando i quasar di HYPERION miriamo a comprendere la natura della comparsa così precoce di questi oggetti sorprendenti e a caratterizzare l’evoluzione simultanea di un buco nero e della sua galassia ospite. In questo contesto, questo rilevamento da record è cruciale in quanto pone le basi per scoprire il ruolo del gas molecolare freddo accumulato nei primi quasar in formazione e le avide abitudini alimentari dei buchi neri”.

 


 

Per ulteriori informazioni:

L’articolo HYPERION: First constraints on dense molecular gas at z=7.5149 from the quasar Pōniuā‘ena, di Chiara Feruglio, Umberto Maio, Roberta Tripodi, Jan Martin Winters, Luca Zappacosta, Manuela Bischetti, Francesca Civano, Stefano Carniani, Valentina D’Odorico, Fabrizio Fiore, Simona Gallerani, Michele Ginolfi, Roberto Maiolino, Enrico Piconcelli, Rosa Valiante, Maria Vittoria Zanchettin, è stato pubblicato online sulla rivista Astrophysical Journal Letters.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)