News
Ad
Ad
Ad
Tag

astrofisica

Browsing

GRB 231115A: LA GALASSIA SIGARO SI ACCENDE CON UN MEGA BRILLAMENTO, UN RAPIDO LAMPO DI RAGGI GAMMA

Il satellite Integral, realizzato con un fondamentale contributo dell’Agenzia Spaziale Italiana, scopre il primo caso di giant flare proveniente da una magnetar fuori dalla Via Lattea. Lo studio a guida INAF pubblicato su Nature.

La sezione di cielo osservata dal rilevatore di raggi gamma sul satellite INTEGRAL dell’ESA. Uno dei due riquadri mostra i dati a raggi X della galassia M82 e l'altro mostra un'osservazione in luce visibile. Il cerchio blu sulle due immagini ritagliate indica la posizione corrispondente al brillamento gigante. Crediti: ESA/Integral, ESA/XMM-Newton, INAF/TNG, M. Rigoselli (INAF)
La sezione di cielo osservata dal rilevatore di raggi gamma sul satellite INTEGRAL dell’ESA. Uno dei due riquadri mostra i dati a raggi X della galassia M82 e l’altro mostra un’osservazione in luce visibile. Il cerchio blu sulle due immagini ritagliate indica la posizione corrispondente al brillamento gigante GRB 231115A. Crediti: ESA/Integral, ESA/XMM-Newton, INAF/TNG, M. Rigoselli (INAF)

Utilizzando i dati del satellite dell’Agenzia Spaziale Europea (ESA) Integral (International Gamma-Ray Astrophysics Laboratory), costruito con il contributo dell’Agenzia Spaziale Italiana (ASI) responsabile del telescopio principale IBIS, il 15 novembre 2023 un gruppo di ricercatrici e ricercatori guidati dall’Istituto Nazionale di Astrofisica (INAF) ha individuato l’improvvisa esplosione di un oggetto raro: per solo un decimo di secondo, un rapido lampo di raggi gamma è apparso dalla direzione di una luminosa galassia vicino alla nostra. Di cosa si tratta? Il team ha scoperto la presenza di un brillamento gigante (Giant Flare, in inglese) generato da una magnetar nella galassia Sigaro (conosciuta anche con le sigle M82 o NGC 3034), uno degli oggetti celesti più affascinanti che costellano il cielo. L’articolo relativo alla scoperta è stato pubblicato oggi sulla rivista Nature.

Particolare classe di stelle di neutroni (resti stellari super-densi delle esplosioni di supernovae), le magnetar sono i magneti più potenti dell’universo noti per emettere brevi esplosioni di raggi gamma che in genere durano meno di un secondo ma sono miliardi di volte più luminose del Sole. Le magnetar possono produrre brillamenti giganti, cioè brevi esplosioni durante le quali possono emettere in meno di un secondo l’energia che il Sole irradia in un milione di anni, ma individuarle è davvero arduo.

La scoperta è stata ottenuta grazie all’Integral Burst Alert System (IBAS), che permette la localizzazione in tempo reale di lampi di raggi gamma e altri fenomeni transienti nei raggi gamma. Nello specifico, Integral ha rilevato un lampo di raggi gamma solo per un decimo di secondo. Il software di IBAS, che esamina i dati ricevuti al data center scientifico Integral di Ginevra, ha determinato la localizzazione precisa di questo evento e l’ha distribuita agli astronomi di tutto il mondo solo tredici secondi dopo che Integral lo aveva rivelato.

“Quando il software automatico IBAS ci ha allertati per questo evento, ci  siamo subito resi conto che si trattava di qualcosa di speciale. Si sospetta da tempo che alcuni dei lampi di raggi gamma di breve durata (GRB, lampi luminosi di raggi gamma osservati al ritmo di uno al giorno da direzioni imprevedibili del cielo) potrebbero essere Giant Flare provenienti da magnetar nelle galassie vicine, ma ciò non era stato ancora dimostrato in maniera inequivocabile”, spiega Sandro Mereghetti, primo autore dell’articolo e ricercatore presso l’INAF di Milano.

Mereghetti aggiunge: “I brillamenti giganti sono la manifestazione più estrema delle magnetar, in termini di energia emessa e rapidità, ma non si conosce ancora bene cosa li produca”.

Quello scoperto dal team guidato da INAF (GRB 231115A) è il primo Giant Flare generato da una magnetar in una galassia che non appartiene al Gruppo Locale.

“Sono eventi estremamente rari, tanto che ne sono stati osservati solo tre in 50 anni: due nella nostra Galassia e uno nella Grande Nube di Magellano. Poterli rivelare anche in galassie più lontane, come nel presente caso, permette di studiarne un maggior numero e in condizioni più favorevoli”, sottolinea l’autore. “I casi precedenti di ‘candidati’ Giant Flare al di fuori del gruppo locale non erano stati individuati in tempo reale e le incertezze sulla loro posizione rende incerte anche le associazioni con galassie vicine”, continua.

“Integral è un telescopio spaziale longevo e a 22 anni dal lancio continua a fornire contributi sorprendenti”, sottolinea Elisabetta Cavazzuti, responsabile ASI del programma Integral. “Il team scientifico ha migliorato sempre più l’utilizzo di tutti gli apparati del satellite, sviluppando un software che sfrutta ogni singola informazione trasmessa dal telescopio anche in maniera completamente nuova. Questo modo di osservare e sfruttare gli strumenti in ottica sempre innovativa consente di raggiungere risultati importanti confermando che l’universo è fonte inesauribile di scoperte”.

La rilevazione del fenomeno con Integral ha avviato poi una serie di osservazioni rapide ad altre lunghezze d’onda (ottiche, X, radio) che hanno permesso di stabilirne la natura. Nell’articolo i ricercatori presentano, infatti, anche dati richiesti al satellite XMM-Newton e dati ottici provenienti da telescopi italiani dell’INAF (il TNG alle Canarie, lo Schmidt di Asiago e lo Schmidt di Campo Imperatore) e francesi (come il French Observatoire de Haute-Provence): se si fosse trattato di un lampo di raggi gamma causato dalla collisione di due stelle di neutroni, lo scontro avrebbe creato onde gravitazionali e avrebbe avuto un intenso bagliore residuo nei raggi X e nella luce visibile. Le osservazioni di XMM-Newton hanno mostrato solo il gas caldo e le stelle nella galassia.

L’articolo pubblicato su Nature conferma quindi un’ipotesi che si sospettava da diversi anni.

“Inoltre non è casuale che questo brillamento gigante provenga proprio da una delle galassie che sta formando nuove stelle di alta massa a un ritmo elevato. In queste regioni ci si aspetta, infatti, di trovare il maggior numero di stelle di neutroni e quindi di magnetar”, aggiunge Ruben Salvaterra,  ricercatore INAF di Milano e coautore dell’articolo.

Osservabile anche con piccoli telescopi, M82 è una galassia starburst (in cui appunto il processo di formazione stellare è eccezionalmente elevato) a spirale barrata che si trova a circa 12 milioni di anni luce dalla Terra, in direzione della costellazione dell’Orsa Maggiore. L’interazione gravitazionale con altre galassie vicine, in particolare M81, ha accelerato drasticamente il suo tasso di formazione stellare che è almeno dieci volte maggiore di quello della Via Lattea.

“Dopo questa scoperta, la galassia M82 diventa un ‘sorvegliato speciale’ da cui aspettarci altri eventi simili nei prossimi anni”, conclude Mereghetti.


 

Per altre informazioni:

L’articolo “A magnetar giant flare in the nearby starburst galaxy M82”, di S. Mereghetti et al., è stato pubblicato sulla rivista Nature.

Testo e immagine dagli Uffici Stampa ASI e Istituto Nazionale di Astrofisica – INAF

TRIPUDIO DI GALASSIE IN TRE NUOVE IMMAGINI DEL TELESCOPIO VST MOSTRANO ABELL 1689, HGC 90 ED ESO 510-G13

L’Istituto Nazionale di Astrofisica (INAF) pubblica tre splendide immagini di galassie, gruppi e ammassi di galassie, realizzate con il telescopio italiano VST, gestito da INAF nel deserto di Atacama, in Cile. Le immagini sono state presentate oggi durante il VST Science Workshop a Napoli.

Galassie, lontane e lontanissime. Galassie interagenti, la cui forma è stata scolpita dalla reciproca influenza gravitazionale, ma anche galassie che formano gruppi e ammassi, tenute insieme dalla mutua gravità. Sono le protagoniste di tre nuove immagini rilasciate dal VLT Survey Telescope (VST) in occasione del convegno dedicato alle attività scientifiche del telescopio, in corso dal 16 al 18 aprile presso l’Auditorium nazionale dell’Istituto Nazionale di Astrofisica (INAF) a Napoli.

Il VST è un telescopio ottico dal diametro di 2,6 metri, costruito completamente in Italia e operativo dal 2011 presso l’osservatorio dello European Southern Observatory (ESO) di Paranal, in Cile. Da ottobre 2022, il telescopio è gestito interamente da INAF attraverso il Centro Italiano di Coordinamento per VST presso la sede INAF di Napoli, con il 90% del tempo osservativo dedicato alla comunità astronomica italiana. Il VST è specializzato nelle osservazioni di grandi aree del cielo grazie alla sua fotocamera a grande campo, OmegaCAM, un vero e proprio “grandangolo celeste” in grado di immortalare, in ciascuna ripresa, un grado quadrato di cielo, ovvero una porzione della volta celeste larga due volte il diametro apparente della Luna piena. Oltre alle immagini raccolte per la ricerca astrofisica, che per il VST spazia dalle stelle alle galassie fino alla cosmologia, nell’ultimo anno il telescopio ha condotto un nuovo programma dedicato al grande pubblico, osservando nebulose, galassie e altri oggetti celesti iconici durante alcune notti di Luna piena, nelle quali la luminosità del nostro satellite naturale disturba l’acquisizione dei dati scientifici. Nuove immagini saranno pubblicate nei prossimi mesi.

“Oltre alla ricerca scientifica, uno degli obiettivi del centro VST è quello di disseminare la conoscenza scientifica e condividere le meraviglie dell’universo con i non-esperti del settore. In particolare, ci piacerebbe che le nuove generazioni di ragazze e ragazzi, attraverso queste fantastiche immagini, possano scoprire ed alimentare l’interesse per l’astrofisica”, commenta Enrichetta Iodice, ricercatrice INAF a Napoli e responsabile del Centro Italiano di Coordinamento per VST.

ESO 510-G13, HGC 90 e Abell 1689 nelle nuove immagini dal Telescopio VST. Gallery

ESO 510-G13 Telescopio VST galassie
Crediti: INAF/VST. Acknowledgment: M. Spavone (INAF), R. Calvi (INAF)

Una delle tre immagini rilasciate oggi ritrae ESO 510-G13, una curiosa galassia lenticolare a circa 150 milioni di anni luce da noi, in direzione della costellazione dell’Idra. Spicca il rigonfiamento centrale della galassia, su cui si staglia la silhouette scura del disco di polvere visto di taglio, che ne oscura parte della luce. La forma distorta del disco ricorda vagamente una S rovesciata, indice del passato turbolento di ESO 510-G13, che potrebbe aver acquisito la sua attuale conformazione a seguito di una collisione con un’altra galassia. Nell’angolo in basso a destra, tra le tantissime stelle della Via Lattea disseminate nell’immagine, si distingue anche una coppia di galassie a spirale a circa 250 milioni di anni luce da noi. Zoomando nell’immagine, si possono notare molte altre galassie ancora più distanti, visibili come piccole macchie di luce elongate tra i tanti puntini sullo sfondo.

Hickson Compact Group 90 HGC 90 Telescopio VST galassie
Crediti: INAF/VST. Acknowledgment: M. Spavone (INAF), R. Calvi (INAF)

La seconda immagine mostra un piccolo gruppo formato da quattro galassie, chiamato Hickson Compact Group 90 (HGC 90), che dista circa 100 milioni di anni luce di distanza dalla Terra, verso la costellazione del Pesce Australe. Le due macchie di luce rotondeggianti vicino al centro dell’immagine sono le galassie ellittiche NGC 7173 e NGC 7176. La striscia luminosa che si biforca e collega queste due galassie è la terza componente del gruppo, la galassia a spirale NGC 7174: la sua forma singolare tradisce l’interazione in corso tra i tre corpi celesti, che ha strappato loro stelle e gas, rimescolandone la distribuzione. Un alone di luce diffusa avvolge le tre galassie. Non sembra partecipare a questa danza celeste la quarta galassia appartenente al gruppo, NGC 7172, visibile nella parte superiore dell’immagine: si tratta di una galassia il cui nucleo, solcato da scure nubi di polvere, nasconde un buco nero supermassiccio che divora attivamente il materiale circostante. Il quartetto di galassie HGC 90 è immerso in una struttura molto più vasta, che comprende decine di galassie, alcune delle quali visibili in questa immagine.

Abell 1689 Telescopio VST galassie
Crediti: INAF/VST. Acknowledgment: M. Spavone (INAF), R. Calvi (INAF)

La terza immagine mostra un raggruppamento di galassie molto più ricco e ancora più distante: l’ammasso di galassie Abell 1689, che si può osservare nella costellazione della Vergine. Abell 1689 contiene più di duecento galassie, visibili per lo più come macchie di colore giallo-arancio, la cui luce ha viaggiato per circa due miliardi di anni prima di raggiungere il VST. L’enorme massa, che oltre alle galassie comprende anche enormi quantità di gas caldo e della misteriosa materia oscura, deforma lo spazio-tempo in prossimità dell’ammasso, che funge così da “lente gravitazionale” sulle galassie ancora più lontane, amplificando la  loro luce e creando immagini distorte, in modo non dissimile da quanto farebbe una comune lente ottica. Alcune di queste galassie si possono distinguere sotto forma di puntini e di minuscoli trattini dalla forma leggermente curva, in particolare intorno alle regioni centrali dell’ammasso.


 

Per ulteriori informazioni:

L’immagine di HCG 90 fa parte del progetto di ricerca VST Elliptical Galaxy Survey (VEGAS) e consiste di 266 immagini per un totale di circa 11 ore di osservazioni. Le immagini di ESO 510-G13 e di Abell 1689 fanno parte del programma GIOB, dedicato alla raccolta di immagini per il public engagement, e consistono rispettivamente di 19 immagini (1,5 h) e 66 immagini (5,5 h).

Il sito web del VST: https://vst.inaf.it/

 

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)

A Milano-Bicocca un ERC Advanced Grant da 2,3 milioni di euro al progetto PINGU per mappare i buchi neri più grandi dell’Universo

Grazie al finanziamento europeo vinto dal professore del dipartimento di Fisica Alberto Sesana, il progetto di ricerca PINGU permetterà di individuare binarie di buchi neri supermassicci nelle galassie che le ospitano

Milano, 11 aprile 2024 – Il progetto PINGU (Pulsar timing array Inference of the Nanohertz Gravitational wave Universe) di Alberto Sesana, professore di Astrofisica del dipartimento di Fisica dell’Università di Milano-Bicocca, è stato premiato dall’Unione Europea con un ERC Advanced Grant da 2,3 milioni di euro. L’obiettivo, per i prossimi cinque anni, è capitalizzare al massimo il potenziale scientifico della tecnica di natura astronomica nota come “Pulsar Timing Array (PTA)” – basata sull’osservazione degli impulsi estremamente regolari (timing) provenienti da un gruppo (array) di stelle “morte” chiamate “pulsar” – per comprendere l’evoluzione dell’universo e dei buchi neri supermassicci, i più grandi buchi neri dell’universo.

In basso a sin.: “Sistemi binari di buchi neri supermassicci nell'universo lontano generano onde gravitazionali”. Crediti per l'immagine: Danielle Futselaar / MPIfR Traduzione
in alto a sin. “Le onde gravitazionali comprimono e dilatano lo spazio-tempo”;
in alto a des.: “I più grandi telescopi sulla terra vengono utilizzati per monitorare il preciso ticchettio di queste pulsar per decenni, per rivelare il flebile eco dei buchi neri lontani”; in basso a sin.: “Sistemi binari di buchi neri supermassicci nell’universo lontano generano onde gravitazionali”; in basso a des.: “Le pulsar funzionano come ‘orologi cosmici’ permettendo la misura di piccole variazioni di distanza”. Crediti per l’immagine: Danielle Futselaar / MPIfR Traduzione

Le pulsar ruotano a velocità elevatissime – tra 100 e 1.000 rotazioni al secondo – emettendo due fasci di radiazione in direzioni antipodali. Se uno dei fasci che emettono intercetta la Terra, viene osservato sotto forma di impulsi molto regolari dai radiotelescopi.

«Questi corpi celesti sono eccellenti “orologi galattici” – spiega Alberto Sesana – che consentono di misurare onde gravitazionali a bassissima frequenza. Confrontando i “ticchettii” di questi “orologi”, ovvero i tempi di arrivo dei fasci di radiazioni, siamo in grado di stabilire se lo spazio tra noi e le stelle osservate si sta dilatando o contraendo. Possiamo quindi usare l’incredibile regolarità dei segnali delle pulsar per cercare minuscoli cambiamenti causati dal passaggio di onde gravitazionali provenienti dall’Universo lontano».

Alberto Sesana  ERC Advanced Grant
Alberto Sesana

Recentemente, diverse collaborazioni scientifiche internazionali, tra le quali l’European PTA (EPTA) – alla quale partecipa anche l’equipe di ricercatori guidata da Alberto Sesana –, NANOGrav, Parkes PTA (PPTA) e la Chinese PTA (CPTA), hanno riportato nelle loro osservazioni evidenza di un segnale compatibile con un’origine di onda gravitazionale.

«Questa osservazione apre una finestra completamente nuova sull’universo – continua il professore del dipartimento di Fisica di Milano-Bicocca –. Le PTA sono sensibili a onde di alcuni nanohertz (miliardesimo di hertz), cioè a frequenze di più di 10 ordini di grandezza più basse rispetto a quelle rivelate dagli interferometri di terra LIGO e Virgo. A frequenze così basse, ci si aspetta di osservare onde provenienti da una popolazione cosmologica di buchi neri supermassicci, oppure un “fondo gravitazionale” proveniente dall’universo primordiale, in pratica l’analogo gravitazionale della radiazione cosmica di fondo. Sebbene il segnale osservato sia compatibile con quello prodotto da una popolazione cosmica di buchi neri supermassicci, al momento non è possibile determinarne con certezza l’origine».

Entro la fine del decennio, nuove osservazioni delle PTA svolte dalle collaborazioni scientifiche internazionali, insieme a quelle eseguite dal radiotelescopio MeerKAT, in Sudafrica, combinate insieme sotto il coordinamento dell’International PTA (IPTA), consentiranno non solo di confermare il segnale, ma anche di mapparne la provenienza nel cielo.

«PINGU si propone di cross-correlare questa “mappa gravitazionale” – afferma Sesana – con una “mappa sintetica” di binarie di buchi neri supermassicci nell’universo, costruita combinando modelli teorici per l’evoluzione delle galassie e dei buchi neri che esse ospitano con dettagliate mappe di galassie e ammassi di galassie provenienti dalle più avanzate campagne di osservazioni. Cross-correlando queste mappe, PINGU consentirà di stabilire l’origine di questo segnale, e se l’origine è astrofisica, consentirà anche di individuare le binarie di buchi neri supermassicci più brillanti (in senso gravitazionale) e le galassie che le ospitano, consentendo così di mappare l’universo gravitazionale nel nanohertz, dandoci indicazioni uniche sull’evoluzione dei buchi neri supermassicci e sul loro ruolo nell’evoluzione galattica, aggiungendo quindi un importante tassello mancante alla nostra comprensione della formazione ed evoluzione delle strutture cosmiche».

Alberto Sesana  ERC Advanced Grant
Alberto Sesana

Se il segnale rivelato fosse invece incompatibile con un’origine astrofisica, ma provenisse dall’universo primordiale, sarebbe di gran lunga il segnale più vicino al Big Bang mai osservato, «consentendoci di avvicinarci come mai prima alle origini dell’universo», conclude il responsabile del Progetto PINGU.

A Pingu, sotto la guida di Alberto Sesana, lavorerà una decina tra dottorandi e assegnisti di ricerca di Milano-Bicocca.

Dal 2014 l’Università di Milano-Bicocca ha ricevuto finanziamenti per 18 progetti ERC: 2 Advanced Grant, compreso quello di “PINGU”, 5 Starting Grant, 7 Consolidator Grant, 2 Proof of Concept e 2 Synergy Grant.

«Il finanziamento del progetto PINGU – afferma Guido Cavaletti, prorettore alla Ricerca dell’Università di Milano-Bicocca – è un risultato importante per il nostro Ateneo, che conferma la capacità dei nostri ricercatori di condurre ricerca di eccellenza e di avanguardia in contesti scientifici internazionali. È un successo che ci indica chiaramente che la via che stiamo perseguendo è corretta e siamo quindi molto fiduciosi, oltre che nell’esito positivo di questo specifico progetto, anche riguardo la possibilità per altri colleghi di ottenere analoghi risultati nelle call europee dove abbiamo dimostrato di poter essere molto competitivi».

progetto PINGU
Crediti per l’immagine: Danielle Futselaar / MPIfR Traduzione

Testo e immagini dall’Ufficio Stampa dell’Università di Milano-Bicocca.

AMMASSO DELLA VERGINE: DISTANZE GALATTICHE MAI COSÌ PRECISE

Misurate con grande accuratezza le distanze di circa 300 galassie con il metodo cosiddetto delle fluttuazioni di brillanza superficiale

Un nuovo studio, accettato per la pubblicazione sulla rivista The Astrophysical Journal, getta nuova luce sulle caratteristiche delle galassie che costituiscono l’ammasso della Vergine e soprattutto sulla loro distanza dalla Terra, sfruttando il metodo delle fluttuazioni di brillanza superficiale (SBF, dall’acronimo inglese surface brightness fluctuations) delle galassie ospiti. Il team di ricerca, guidato dall’Istituto Nazionale di Astrofisica (INAF) e composto da scienziati di varie istituzioni internazionali, ha condotto un’analisi dettagliata su un campione di circa 300 galassie nell’ambito della Next Generation Virgo Cluster Survey (NGVS). A parte il valore intrinseco della misura di distanze, con l’accuratezza permessa dal metodo SBF, l’analisi della distribuzione 3D delle galassie, anche di quelle più deboli e quindi meno luminose, è la più precisa mai realizzata su questo ammasso di galassie.

NGVS è un programma di osservazioni realizzato con il Canada France Hawaii Telescope (CFHT), guidato da Laura Ferrarese del Centro di Rircerca di Astronomia e Astrofisica Herzberg, di Victoria (Canada), volto a esaminare un’area di 104 gradi quadrati nella regione dell’Ammasso della Vergine, ossia la più grande concentrazione di galassie nell’universo vicino. La survey copre una vasta area dell’ammasso, dalle regioni centrali sino a quelle periferiche, e viene eseguita in cinque bande ottiche a cavallo fra la radiazione ultravioletta e il vicino infrarosso.

“Le fluttuazioni di brillanza superficiale derivano dalle fluttuazioni casuali di stelle non risolte all’interno della galassia osservata”, spiega Michele Cantiello, primo autore dell’articolo e ricercatore presso INAF d’Abruzzo. “Qualitativamente, per la stima delle distanze, l’idea alla base del metodo è piuttosto semplice: una popolazione di stelle più vicina appare più ‘granulosa’ rispetto a una popolazione lontana, il cui profilo di luminosità appare invece relativamente liscio. Questo metodo risulta particolarmente efficace in galassie ellittiche molto massicce, dominate da stelle vecchie ad alta metallicità, dove l’accuratezza del metodo può essere migliore del 2% sulla distanza per singole galassie”.

Attualmente, con questo metodo, è possibile misurare distanze fino a circa 600 milioni di anni luce (potenzialmente oltre un miliardo di anni luce con il James Webb Space Telescope), e non solo per galassie ellittiche, ma anche per galassie nane, nuclei di spirale, galassie peculiari, e altri oggetti celesti.

“La forza di questo metodo risiede nel fatto che le misure di fluttuazioni di brillanza superficiale non richiedono lunghe campagne osservative, ma rivaleggiano per precisione con metodi che utilizzano le stelle variabili di tipo Cefeide e le supernove del tipo Ia”, aggiunge Cantiello.

Il catalogo, pubblicato inizialmente con 89 galassie, fa riferimento adesso a un altro campione di ben 300 oggetti, tutti nell’ammasso della Vergine. Questo agglomerato galattico è caratterizzato dalla presenza di numerose sotto-strutture, oggetto di studio da diversi decenni.

“Attraverso il nostro lavoro, siamo riusciti ad esplorare la struttura tridimensionale dell’ammasso con un livello di precisione mai raggiunto prima su un così ampio campione di galassie. Questo ammasso, il più ricco di galassie entro i 50 milioni di anni luce dal Gruppo Locale, rappresenta un punto di particolare interesse. Il nostro lavoro ha permesso di evidenziare chiaramente, ad esempio, una struttura ‘filamentosa’ che collega il nucleo principale e più vicino dell’ammasso a una struttura più distante, nota come la nube W”, aggiunge il ricercatore.

Durante la fase conclusiva dell’analisi, i ricercatori hanno notato che, esaminando le distanze delle galassie nel gruppo principale dell’ammasso (comunemente noto come sotto-ammasso A e considerato una struttura unica e “rilassata”), si individua per la prima volta un sotto-raggruppamento di galassie posizionato circa il 15% più lontano rispetto all’ammasso principale.

“In pratica, sembra che il sotto-ammasso A ospiti un ulteriore piccolo gruppo lungo la stessa linea di vista, ma leggermente più distante. Per dare un’immagine visiva, potremmo pensare al sotto-ammasso A come ad una forma ‘a pera’, con una parte più larga rivolta verso l’osservatore e una parte più stretta, che ospita questo piccolo gruppo aggiuntivo”, sottolinea Cantiello.

La misura delle distanze è di fondamentale importanza in qualsiasi campo dell’astronomia, sia che si tratti dello studio di pianeti, stelle, galassie o delle costanti del modello cosmologico. Una stima affidabile delle distanze è un prerequisito essenziale per conoscere le caratteristiche fisiche fondamentali dell’oggetto studiato, come le dimensioni fisiche, la luminosità, la massa, e così via.

Lo studio rappresenta un passo significativo verso una comprensione più approfondita della formazione e dell’evoluzione delle galassie e degli ammassi galattici.

“Da questo lavoro seguirà una serie di studi dello stesso tipo realizzati con i dati dal satellite Euclid, dal telescopio LSST e altri, che copriranno però l’intero cielo”.

Cantiello conclude: “Attualmente, la comunità mondiale che si occupa di misure di SBF è numericamente esigua, e le persone coinvolte possono essere contate sulle dita di due mani. Oggi, nella comunità italiana, con il coinvolgimento del gruppo Euclid di Roma e Firenze, insieme alla partecipazione italiana alle attività di LSST, l’interesse e la discussione su questo argomento sono decisamente più ampi”.

una visuale sull'Ammasso della Vergine con alcune delle stelle più brillanti evidenziate. Crediti per l'immagine: Sloan Digital Sky Survey, Canada-France-Hawaii Telescope and the NGVS team
Ammasso della Vergine: distanze galattiche mai così precise grazie al metodo delle fluttuazioni di brillanza superficiale. Una visuale sull’Ammasso della Vergine con alcune delle stelle più brillanti evidenziate. Crediti per l’immagine: Sloan Digital Sky Survey, Canada-France-Hawaii Telescope and the NGVS team

 

Per altre informazioni:

L’articolo “The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond)”, di Michele Cantiello, J.P. Blakeslee, L. Ferrarese, P. Cote, J.C. Roediger, G. Raimondo, E.W. Peng, S. Gwyn, P.R. Durrell, J.C. Cuillandre, è stato accettato per la pubblicazione sulla rivista The Astrophysical Journal.

Testo dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF). Immagine dal Canada France Hawaii Telescope (CFHT).

STELLE DI NEUTRONI: LE ESPLOSIONI TERMONUCLEARI RINFORZANO I GETTI

Improvvisi e luminosi lampi di raggi X emessi dalla superficie delle stelle di neutroni in accrescimento fanno brillare i loro getti immettendo gas extra al loro interno. I ricercatori hanno scoperto inoltre che il gas nel getto si muove a circa un terzo della velocità della luce.

Un team internazionale di ricercatori guidato dall’Istituto Nazionale di Astrofisica (INAF) ha scoperto l’esistenza di una connessione tra le esplosioni termonucleari di raggi X che si verificano sulla superficie delle stelle di neutroni in accrescimento e i potenti getti emessi da queste sorgenti. I ricercatori hanno inoltre misurato per la prima volta, in maniera diretta, la velocità di un getto, migliorando la nostra comprensione sul loro meccanismo di lancio. I risultati sono stati appena pubblicati sulla rivista Nature.

Le stelle di neutroni sono i resti di stelle massicce che hanno concluso la loro evoluzione con un’esplosione di supernova. Caratterizzati dall’avere un’enorme massa compressa in un volume molto piccolo – motivo per cui vengono anche chiamati oggetti compatti – questi corpi celesti possono trascorrere tutta la loro esistenza in solitudine, ma possono anche fare coppia, nelle cosiddette binarie a raggi X (X-ray binaries, in inglese). Si tratta di sistemi astrofisici in cui una stella di neutroni (o un buco nero) attrae a sé materia dalla malcapitata stella compagna, utilizzandola a proprio vantaggio per aumentare di massa in un processo noto come accrescimento.

Una delle conseguenze di questo processo è l’accumulo di grandi quantità di materia sulla superficie della stella di neutroni. Con il progredire dell’accumulo, questa materia può raggiungere valori di temperatura e densità tali innescare potenti esplosioni termonucleari simili a quelle prodotte dalle bombe a idrogeno: improvvisi e luminosi lampi di luce X, di durata compresa tra i 10 e i 100 secondi, denominati burst di tipo I, il segno tangibile di un pasto abbondante in corso.

Nonostante la loro avidità, non tutta la materia in accrescimento viene però inghiottita dalla stella di neutroni: una parte viene infatti espulsa nello spazio sotto forma di potenti deflussi di materia collimati, osservabili anche nella banda radio dello spettro elettromagnetico: i cosiddetti getti.

Lanciati da tutti i sistemi binari con stella di neutroni o buco nero, questi getti sono studiati fin dagli anni ’70. Tuttavia, ci sono ancora molte domande aperte sul loro conto. Come vengono effettivamente lanciati? Qual è la relazione che lega il processo di accrescimento di un oggetto compatto e l’emissione di questi getti? E ancora, quanto velocemente vengono lanciati?

Rappresentazione artistica di come le esplosioni nucleari su una stella di neutroni alimentano i getti che escono dalle sue regioni magnetiche polari. In primo piano, al centro a destra, vediamo una sfera bianca molto luminosa, che rappresenta la stella di neutroni; dei filamenti bianchi/viola fuoriescono dalla sua regione polare. La stella di neutroni è circondata da una sfera più grande, la corona, e più all'esterno da un disco con fasce concentriche di diversi colori. Una fascia arancione collega la parte esterna del disco a una grande sezione giallo-arancione-rossa di una sfera nell'angolo in alto a sinistra. Questa rappresenta la stella compagna della stella di neutroni. Crediti: Danielle Futselaar, Nathalie Degenaar, Anton Pannekoek Institute, University of Amsterdam.
Nelle stelle di neutroni, esiste una stretta connessione tra le esplosioni termonucleari e i getti, le prime rinforzano i secondi. Rappresentazione artistica di come le esplosioni nucleari su una stella di neutroni alimentano i getti che escono dalle sue regioni magnetiche polari. In primo piano, al centro a destra, vediamo una sfera bianca molto luminosa, che rappresenta la stella di neutroni; dei filamenti bianchi/viola fuoriescono dalla sua regione polare. La stella di neutroni è circondata da una sfera più grande, la corona, e più all’esterno da un disco con fasce concentriche di diversi colori. Una fascia arancione collega la parte esterna del disco a una grande sezione giallo-arancione-rossa di una sfera nell’angolo in alto a sinistra. Questa rappresenta la stella compagna della stella di neutroni. Crediti: Danielle Futselaar, Nathalie Degenaar, Anton Pannekoek Institute, University of Amsterdam

Ora, grazie a una articolata campagna di osservazioni in banda radio e X, un team internazionale guidato da ricercatori dell’INAF, in collaborazione con scienziati dell’Agenzia Spaziale Europea (ESA), dell’Università di Amsterdam e della Texas Tech University, non solo ha scoperto che esiste una stretta connessione tra le esplosioni termonucleari e i getti, ma, per la prima volta, ha misurato la velocità di questi getti, parametro fondamentale per la comprensione del loro meccanismo di lancio.

“Gli oggetti compatti in accrescimento (buchi neri e stelle di neutroni) sono onnipresenti nell’universo” dice Thomas Russell, ricercatore presso l’INAF di Palermo con una Inaf astrophysics fellowship (IAF), e primo autore dello studio. “Questi oggetti – continua Russell – non sono semplici aspirapolvere unidirezionali. Parte della materia in ingresso viene infatti sparata fuori sotto forma di deflussi di materia ed energia veloci e focalizzati, chiamati getti. Questi getti possono propagarsi verso l’esterno a velocità prossime a quella della luce, rilasciando enormi quantità di energia nell’ambiente circostante che possono condizionare la formazione stellare. Tuttavia, nonostante la loro importanza, attualmente non sappiamo come questi getti vengano lanciati. Il nostro studio fornisce uno strumento completamente nuovo per rispondere a questa importante domanda  rimasta finora senza risposta”.

Il satellite INTEGRAL (International Gamma-Ray Astrophysics Laboratory) dell’ESA. Crediti: ESA
Il satellite INTEGRAL (International Gamma-Ray Astrophysics Laboratory) dell’ESA. Crediti: ESA

Le stelle di neutroni oggetto dello studio sono quelle dei sistemi binari a raggi X 4U 1728-34 e 4U 1636-536, che mostrano entrambe frequenti esplosioni di raggi X di tipo I. Per ognuna delle due sorgenti, i ricercatori hanno condotto una campagna di osservazioni simultanee nell’X e nel radio. Le osservazioni in banda X, che tracciano il flusso di accrescimento della stella di neutroni, sono state condotte utilizzando il satellite INTEGRAL dell’Agenzia Spaziale Europea (ESA). Il monitoraggio in banda radio, che permette di studiare l’emissione dei getti, è stato condotto invece con l’Australia Telescope Compact Array (ATCA), una schiera di sei antenne radio situate presso l’Osservatorio Paul Wild, in Australia, gestite dall’Agenzia scientifica nazionale australiana (CSIRO).

L’Australia Telescope Compact Array (ATCA). Crediti: Alex Cherney/CSIRO
L’Australia Telescope Compact Array (ATCA). Crediti: Alex Cherney/CSIRO

L’obiettivo dei ricercatori era di individuare eventuali cambiamenti nell’emissione radio in seguito al verificarsi dei burst X di tipo I. E li hanno trovati: incrementi della luminosità radio, detti flare, sono stati osservati entro pochi minuti dopo ogni singola esplosione termonucleare.

Mettendo insieme tutti i pezzi del puzzle, la loro conclusione è che l’evoluzione dei getti è strettamente correlata a queste esplosioni.

“Grazie alla capacità di INTEGRAL di osservare ininterrottamente un oggetto celeste per circa tre giorni, abbiamo catturato quattordici burst X emessi da 4U 1728-34, che ci hanno permesso di determinare per la prima volta il loro impatto sull’evoluzione dei getti radio”, sottolinea Erik Kuulkers,  già Project scientist della missione INTEGRAL presso l’ESA e co-autore dello studio. “Non sapevamo davvero cosa aspettarci. Inizialmente pensavamo che il ruolo di queste esplosioni sui getti fosse minimo. Tuttavia, le nostre osservazioni mostrano un impatto drammatico, in cui i burst potenziano la luminosità dei getti pompando ulteriore materia al loro interno”.

Nello studio, i ricercatori sono riusciti anche a misurare la velocità dei getti del sistema binario 4U 1728-34 attraverso osservazioni a due diverse frequenze radio: a 5,5 e 9 gigahertz (GHz). Le frequenze più elevate provengono da regioni del getto più vicine alla stella di neutroni, mentre quelle più basse provengono da regioni più lontane.

“Poiché abbiamo le misure precise dei tempi di arrivo sia dei burst X che dei brillamenti radio, possiamo misurare la velocità con cui il materiale extra ha percorso il getto fino al punto in cui si sono verificati i flare”, spiega Melania Del Santo, ricercatrice all’INAF di Palermo e coautrice della pubblicazione. “Nel caso di 4U 1728-34 questa velocità risulta pari a 0,38 c, ovvero ad un terzo della velocità della luce, corrispondente a circa 114.000 chilometri al secondo. Si tratta di una velocità elevata, ma notevolmente inferiore rispetto a quella dei getti nei sistemi binari con buco nero, il cui valore stimato può essere anche superiore a 0,9 c”.

La scoperta che i burst di raggi X di tipo I influenzano l’evoluzione dei getti e la determinazione della velocità di questi deflussi offre un modo completamente nuovo e robusto per comprendere quale sia il loro meccanismo di lancio, attualmente non ancora ben compreso. Ulteriori studi permetteranno di capire se il meccanismo di lancio sia basato sulla rotazione della stella di neutroni o sulla rotazione del suo disco di accrescimento.

“Ora che disponiamo di un metodo robusto per misurare la velocità dei getti, possiamo eseguire questo esperimento in sistemi binari in cui le stelle di neutroni hanno velocità di rotazione, masse e campi magnetici diversi” conclude Russell. “Con più di 120 stelle di neutroni nella nostra galassia che sappiamo produrre esplosioni di raggi X di tipo I, saremo in grado di determinare il meccanismo che guida il lancio di questi getti, confrontando la loro velocità con le proprietà del sistema binario”.


 

Per altre informazioni:

L’articolo “Thermonuclear explosions on neutron stars reveal the speed of their jets”, di Thomas D. Russell, Nathalie Degenaar, Jakob van den Eijnden, Thomas Maccarone, Alexandra J. Tetarenko, Celia Sánchez-Fernández, James C.A. Miller-Jones, Erik Kuulkers & Melania Del Santo, è stato pubblicato sulla rivista Nature.

 

Testo, video e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF)

LICIACUBE ANALIZZA I LUNGHI PENNACCHI DI DIMORPHOS

Roma, 28 febbraio 2024 – Il 26 settembre 2022 la sonda spaziale DART (Double Asteroid Redirection Test) della NASA – un oggetto da mezza tonnellata lanciato a 22.500 chilometri all’ora – ha colpito Dimorphos (il satellite dell’asteroide Didymos) nel corso del primo esperimento di difesa planetaria mai tentato nella storia, modificandone la traiettoria. Tutto questo “sotto gli occhi vigili” del cubesat dell’Agenzia Spaziale Italiana (ASI) LICIACube (Light Italian Cubesat for Imaging of Asteroids), che dopo un anno e mezzo ci restituisce un’ulteriore “fotografia” di ciò che è successo nei secondi successivi l’impatto. In un articolo pubblicato oggi sulla rivista Nature, il gruppo internazionale di ricercatrici e ricercatori guidati dall’Istituto Nazionale di Astrofisica (INAF) analizza la composizione della nube di detriti e di polvere (plume, in inglese) espulsa dall’asteroide Dimorphos in seguito all’impatto esplosivo.

La prima sonda interplanetaria made in italy (progettata, costruita e operata per l’ASI dalla società torinese Argotec) è parte integrante della missione statunitense e il team scientifico italiano di LICIACube è coordinato da INAF e ASI in collaborazione con l’Istituto di fisica applicata “Nello Carrara” del Consiglio Nazionale delle Ricerche (CNR-IFAC), il Politecnico di Milano, l’Università di Bologna e l’Università Parthenope di Napoli.

Gli strumenti a bordo di LICIACube, LUKE (LICIACube Unit Key Explorer) e LEIA (LICIACube Explorer Imaging for Asteroid), hanno inviato a terra dati straordinari prima e dopo l’impatto.

Elisabetta Dotto, ricercatrice presso l’INAF di Roma, prima autrice dell’articolo e coordinatrice del gruppo che lavora al programma LICIACube sin dalla sua ideazione, racconta:

“La fase scientifica è iniziata 71 secondi prima dell’impatto di DART, testimoniato ‘in diretta’ misurando una rapida variazione della luminosità del piccolo asteroide. Viaggiando ad una velocità relativa di circa 6,1 chilometri al secondo, LICIACube ha effettuato un sorvolo dell’oggetto raggiungendo, nel suo punto di massimo avvicinamento a Dimorphos, una distanza di soli 58 km, 174 secondi dopo l’impatto. LICIACube ha acquisito 426 immagini degli effetti prodotti dall’impatto”.

I risultati ottenuti da LICIACube sono importanti a livello scientifico per la comunità internazionale, trattandosi delle sole immagini raccolte in situ della prima missione di Difesa Planetaria mai condotta finora.

I pennacchi di Dimorphos sono simili alla coda di una cometa e sono generati dalla polvere espulsa nello spazio. A differenza delle comete, però, i “ciuffi” di Dimorphos sono stati generati artificialmente.

Ma come è cambiato Dimorphos dopo l’arrivo di DART? “La prima cosa stupefacente è stata che la superficie di Dimorphos – prosegue Dotto – non è stata più visibile a causa del materiale espulso. Oltre a testimoniare l’evento unico della deflessione di un asteroide grazie a un impatto cinetico, sono state ottenute immagini dettagliate di un asteroide binario che ci possono permettere di capire meglio la natura di questi oggetti. Poiché gli asteroidi sono ciò che resta di una fase intermedia del processo che ha portato alla formazione dei pianeti, i dati acquisiti forniscono informazioni importanti nello studio delle prime fasi di aggregazione del materiale che compone il Sistema solare”.

La ricercatrice INAF spiega che “il materiale espulso dal cratere di impatto ha formato un cono con un angolo di apertura di circa 140 gradi e una struttura complessa e disomogenea, caratterizzata da filamenti, granelli di polvere e massi singoli o raggruppati espulsi a seguito dell’impatto stesso di DART. Le immagini hanno mostrato che la parte più interna della coda aveva un colore bluastro e diventava via via più rossa con l’aumentare della distanza da Dimorphos. La velocità dei materiali espulsi varia da poche decine di m/s fino a circa 500 metri al secondo”.

Aggiunge Alessandro Rossi dell’ IFAC-CNR: “La complessa dinamica delle particelle  espulse dall’impatto costituisce  un’affascinante laboratorio di meccanica orbitale che verrà studiato a lungo dalla comunità delle scienze planetarie”.

Marco Zannoni, ricercatore presso il Dipartimento di Ingegneria Industriale (DIN) e responsabile tecnico delle attività affidate all’Università di Bologna, commenta:

“Il contributo dell’Università di Bologna, nell’ambito di questo progetto, ha riguardato la determinazione ed il controllo della traiettoria di LICIACube, a partire dai dati di tracking ricevuti dalle antenne di terra del Deep Space Network della NASA. La sfida più grande è stata quella di guidare il nanosatellite LICIACube, che si trovava a 10 milioni di chilometri dalla Terra e viaggiava a più di 6 chilometri al secondo, a posizionarsi nel punto giusto ed al momento giusto per scattare le foto dell’impatto di DART con Dimorphos”.

Angelo Zinzi, Project Scientist ASI per LICIACube, commenta così:

“Il lavoro pubblicato può essere considerato un punto di partenza per la missione DART-LICIACube e, più in generale, nell’ambito della difesa planetaria. Grazie al grande lavoro realizzato da gli enti e le industrie coinvolte nella missione LICIACube, con il coordinamento del team di progetto dell’ASI, è stato dimostrato che i cubesat sono ormai pronti per missioni sia tecnologiche sia scientifiche nello spazio profondo e che l’Italia è in grado di essere un attore principale in questo contesto”.

E aggiunge: “LICIACube ha permesso di ottenere immagini e dati altrimenti impossibili da acquisire e che hanno fornito un impulso fondamentale alla conoscenza dell’evento di impatto avvenuto tra la sonda DART e Dimorphos. È importante anche sottolineare che tutti i dati e il Software di archiviazione e calibrazione dati sono stati gestiti dal centro dati scientifico di ASI (SSDC), utilizzando standard internazionalmente riconosciuti per la corretta preservazione e la disseminazione del dato. A seguito di questo lavoro, sono già in fase di pubblicazione e/o revisione, altri lavori dai quali ottoneremo un’analisi dei dati di LICIACube di maggiore dettaglio e conoscenza”.

“Grazie al grande lavoro del team scientifico sulle immagini, il Politecnico di Milano collaborando con CNR ha potuto contribuire al raffinamento dei modelli di espulsione dei frammenti e al miglioramento dello studio dell’evoluzione del loro moto nel sistema binario asteroideo”,

sostiene Michèle Roberta Lavagna, professoressa di Flight Mechanics del Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali.

I dati a oggi ottenuti stanno dimostrando come, pur attraverso una piccola sonda, sia possibile raccogliere importanti dati scientifici e come, un team ben affiatato e coordinato possa ottenerne risultati unici di grande rilevanza scientifica.


 

Per ulteriori informazioni:

L’articolo “The Dimorphos ejecta plume properties revealed by LICIACube”, di E., Dotto, J.D.P., Deshapriya, I., Gai, P.H., Hasselmann, E., Mazzotta Epifani, G.,Poggiali, A., Rossi, G., Zanotti, A., Zinzi, I., Bertini, J.R., Brucato, M., Dall’Ora, V., Della Corte, S.L., Ivanovski, A., Lucchetti, M., Pajola, M., Amoroso, O., Barnouin, A., Campo Bagatin, A., Capannolo, S., Caporali, M., Ceresoli, N.L., Chabot, A.F., Cheng, G., Cremonese, E.G., Fahnestock, T.L., Farnham, F., Ferrari, L., Gomez Casajus, E., Gramigna, M., Hirabayashi, S., Ieva, G., Impresario, M., Jutzi, R., Lasagni Manghi, M., Lavagna6, J.-Y., Li, M., Lombardo, D., Modenini, P., Palumbo, D., Perna, S., Pirrotta, S.D., Raducan, D.C., Richardson, A.S., Rivkin, A.M., Stickle, J.M. Sunshine, P., Tortora, F., Tusberti, M., Zannoni, è stato pubblicato sulla rivista Nature.

Testo e immagini dagli Uffici Stampa INAF, ASI, CNR, Politecnico di Milano e Alma Mater Studiorum – Università di Bologna.

INTELLIGENZA ARTIFICIALE: PESARE LE GALASSIE CON IL PROGETTO MELA

Gli algoritmi e le applicazioni di intelligenza artificiale fanno ormai parte della nostra vita quotidiana. La comunità scientifica, tuttavia, ne fa largo utilizzo già da diversi anni e l’Italia, in questo, è all’avanguardia. L’Istituto Nazionale di Astrofisica (INAF), per esempio, ha partecipato ad un progetto guidato da Nicola R. Napolitano, da cinque anni presso l’Università Sun Yat-sen (Cina), che per la prima volta è riuscito a dimostrare che l’intelligenza artificiale può imparare dalle simulazioni cosmologiche di formazione ed evoluzione dell’universo a misurare correttamente la massa delle galassie. Lo studio che è stato pubblicato oggi sulla rivista Astronomy & Astrophysics, descrive una nuova metodologia per stimare la massa delle galassie (incluso il loro contenuto di materia oscura) usando il machine learning.

Nicola R. Napolitano, già ricercatore INAF e ora professore ordinario presso l’Università degli Studi di Napoli Federico II, spiega che

“in questo modo, è possibile superare i problemi intrinseci alla dinamica delle galassie. I modelli dinamici, infatti, hanno bisogno di pesanti assunzioni sulla distribuzione dei moti interni delle galassie, che possono non essere totalmente corrette, e necessitano un esborso di risorse enorme per ottenere risultati sufficientemente accurati”.

Nicola R. Napolitano
Nicola R. Napolitano

L’articolo “Total and dark mass from observations of galaxy centers with Machine Learning” dimostra per la prima volta che questa metodologia funziona su cataloghi di galassie reali. Gli esperti hanno confrontato le stime del nuovo codice, denominato MELA (Mass Estimator machine Learning Algorithm), con stime di procedure dinamiche classiche verificando quindi che MELA può riprodurre con incredibile accuratezza le masse dei metodi classici, in alcuni casi molto più laboriosi e basati su dati molto più complessi (per esempio la cinematica 3D) dei dati più semplici di cui MELA ha bisogno e che saranno prodotti per milioni di galassie con i progetti di spettroscopia di nuova generazione in cui INAF è coinvolta, come WEAVE e 4MOST.

Crescenzo Tortora, ricercatore dell’INAF di Napoli che ha partecipato allo studio, aggiunge:

“Il lavoro è stato possibile grazie ad un percorso intrapreso dal nostro gruppo che negli ultimi anni ha esteso le applicazioni dell’intelligenza artificiale a diversi settori dell’analisi dati di grandi survey astronomiche. Questo è stato anche possibile grazie all’esperienza acquisita negli ultimi anni con survey a grande campo (nello specifico KiDS al telescopio VST) nella ricerca di lenti gravitazionali, l’analisi della struttura e delle popolazioni stellari delle galassie”.

Crescenzo Tortora
Crescenzo Tortora

Come in tanti altri settori, il machine learning è una realtà sempre più concreta nell’ambito dell’astrofisica, non solo nell’analisi dei dati ma anche nel loro sfruttamento scientifico. Napolitano prosegue:

“In questo lavoro abbiamo chiesto a MELA di mostrarci come otteneva i suoi risultati e quali fossero le osservabili che avessero più importanza per derivare le sue conclusioni. La cosa straordinaria è che abbiamo capito che MELA può capire la fisica delle gravità”.

L’INAF, e in particolare la sede di Napoli, vanta una storica expertise in materia di dinamica delle galassie con la partecipazione a progetti nati sul solco della tradizione delle fisica delle galassie. I ricercatori Italiani, in particolare Tortora e Napolitano, sono diventati, negli anni, specialisti a livello mondiale con collaborazioni con i gruppi di dinamica delle galassie più importanti nel contesto internazionale e con progetti, come MELA, che sono unici al mondo.

“Da questo lavoro abbiamo capito che l’intelligenza artificiale è pronta a imparare la fisica a partire dai dati”, conclude Napolitano. “Nella fattispecie abbiamo verificato che MELA può utilizzare le leggi fisiche che conoscevamo, ma presto l’intelligenza artificiale potrà ”imparare anche la Fisica che non conosciamo”.


Riferimenti bibliografici:

L’articolo “Total and dark mass from observations of galaxy centers with Machine Learning”, di   Sirui Wu, Nicola R. Napolitano, Crescenzo Tortora, Rodrigo von Marttens, Luciano Casarini, Rui Li,  Weipeng Lin, è stato pubblicato sulla rivista Astronomy & Astrophysics.

intelligenza artificiale progetto MELA pesare galassie
Il nuovo codice del progetto MELA (Mass Estimator machine Learning Algorithm) sa pesare le masse delle galassie con incredibile accuratezza

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF

MARGHERITA DELLE STELLE, un film TV per la regia di Giulio Base

con Cristiana Capotondi

una coproduzione RAI Fiction – Minerva Pictures

 

Un ritratto intimo ed emozionante della grande astrofisica italiana Margherita Hack (Cristiana Capotondi), vero modello di emancipazione ed eccezionale autenticità. Il film ripercorre la vita della ricercatrice fiorentina, da bambina autonoma e curiosa a ragazza libera e anticonformista, fino a diventare la prima donna a dirigere l’Osservatorio Astronomico di Trieste.

SINOSSI

Il film racconta la storia di una bambina come tante altre che però ha avuto la fortuna di avere due genitori che – con qualche generazione d’anticipo – le hanno insegnato i valori della libertà, della parità, del contatto con la natura e della curiosità. Margherita gira per le campagne fiorentine in bicicletta, coi capelli sciolti, i vestiti comodi e una naturale predisposizione all’autonomia. Quella bambina si trasforma poi in una liceale che, durante il ventennio fascista decide di seguire l’istinto, rischiando di farsi espellere dai licei italiani perché non crede sia giusto che la sua insegnante ebrea venga cacciata per le sue origini. È anche la ragazza che se ne frega delle mode, di quello che pensano gli altri e che preferisce lo sport e le gite in bicicletta alle serate mondane.

Con Aldo, prima amico d’infanzia e poi compagno di tutta una vita, costruisce un matrimonio su misura, al di là di ogni usanza e tradizione, tra lunghe chiacchierate sotto le stelle e la scelta condivisa di prediligere la libertà alla famiglia. L’adolescente diventa infine la giovane donna che si innamora del mondo delle stelle e, a dispetto di tutte le convenzioni e del ruolo della donna in uso all’epoca, riesce a emergere in un mondo fatto e governato da soli uomini grazie alla sua passione e dedizione.

Ancora una volta la sua eccezionalità nasce da uno spontaneo istinto, una libertà autentica e da una curiosità inesauribile: qualità che la rendono una ricercatrice fenomenale. Tanto che, dopo dieci anni al centro Astronomico di Merate, dove si è scontrata con le dinamiche baronali del mondo accademico italiano, Margherita Hack diventa finalmente la prima direttrice dell’Osservatorio Astronomico di Trieste. E da lì proseguirà il suo viaggio pluridecennale tra i meandri del cosmo, con gli occhi sempre puntati in alto.

In prima visione su RAI 1 martedì 5 marzo in prima serata

 

MARGHERITA DELLE STELLE

CRISTIANA CAPOTONDI, CESARE BOCCI, SANDRA CECCARELLI, FLAVIO PARENTI

Regia di GIULIO BASE

Una coproduzione Rai Fiction – Minerva Pictures

Un film TV di 100’

in onda su RAI 1 il 5 Marzo 2024

NOTE DI REGIA

È stato con grande onore che ho accettato la proposta fattami da Rai Fiction di tornare al racconto televisivo dopo più di dieci anni dedicati ad opere cinematografiche destinate alle sale. Ho acconsentito con gioia proprio perché fortemente interessato al racconto così poco ortodosso, così poco lineare, così poco scontato, di una donna che ha segnato il Novecento, italiano e non solo. 

Una donna libera, estroversa, simpatica, forte, indipendente, volenterosa, operativa e – oltre a tutte queste caratteristiche – con l’acume e la profondità di una cultura e di una genialità scientifica assoluta, infatti apprezzata nel mondo. La sua vita ha viaggiato parallela al cammino della stessa tormentata vita della Repubblica italiana: Margherita Hack ha attraversato ‘atleticamente’ il ventennio, ha sopravvissuto solamente con ‘amore’ alla guerra e solo dopo fatica e tenacia da femminista ante litteram sono arrivate le conquiste accademiche che strettamente la riguardavano, all’alba del terzo millennio. 

Io, Cristiana Capotondi e tutti coloro che si sono messi artisticamente o tecnicamente all’opera su questo film (ringrazio la Minerva Pictures per la quasi totale libertà d’azione concessami) abbiamo ovviamente cercato di dare tutto il possibile affinché la meravigliosa epopea della professoressa Hack potesse emozionare nonché insegnare qualcosa al pubblico televisivo. 

Di sicuro da parte mia ho imparato ad amarla: proprio grazie a lei ho avuto una buona scusa per poter approfondire le prime basi dell’astrofisica e quindi ad innamorarmi delle stelle, fra le quali senz’altro brilla oggi anche quella di Margherita. 

Giulio Base

 

 

PRESENTAZIONE

Margherita delle stelle” è un film TV che vuole restituire un ritratto intimo ed emozionante della grande astrofisica italiana Margherita Hack, vero modello di emancipazione, curiosità ed eccezionale autenticità. La storia di una donna che non si è mai piegata a compromessi e che ha scelto sempre per se stessa costruendosi una realtà che la rappresentasse davvero: a partire dal modo di vestire così lontano dalle regole del tempo, fino ad arrivare alla costruzione di un matrimonio tanto felice quanto non convenzionale.

Liberamente ispirata al libro “Nove vite come i gatti” di Margherita Hack e Federico Taddia, la sceneggiatura di Monica Zapelli è un coming of age che racconta volutamente gli anni meno noti di Margherita Hack, partendo proprio dalla sua infanzia e adolescenza con dei genitori straordinariamente anticonformisti che le hanno insegnato la libertà di scegliere e l’hanno portata a rompere gli schemi imposti dalla società, primi fra tutti quelli dell’ideologia fascista.

Margherita delle stelle” è quindi un tributo ad una figura nota in tutto il mondo per il suo enorme apporto alla scienza ma è anche una storia di empowerment femminile perseguito con tenacia da una donna che in fondo non si è mai posta come obiettivo di andare controcorrente, ma ha sempre fatto tutto con profonda leggerezza e libertà.

 

CAST ARTISTICO

MARGHERITA HACK CRISTIANA CAPOTONDI

ROBERTO HACK CESARE BOCCI

MARIA LUISA POGGESI SANDRA CECCARELLI

ALDO DE ROSA FLAVIO PARENTI

BETTY GIULIA BATTISTINI

RACHELE CATERINA ROSSI

IRMA FRANCESCA ORSINI

GIORGIO ABETTI MARIO GROSSI

MANLIO BASSO NICOLA STRAVALACI

GIROLAMO FRACASTORO LORENZO BALDUCCI

DANILO INNOCENTI ALESSIO DI CLEMENTE

MARGHERITA HACK BAMBINA SVEVA ZALLI

ALDO DE ROSA BAMBINO GIOVANNI SALOMONE

PROF. MANCINELLI ROBERTO CACCAVO

PROFESSORE FILOSOFIA TOMMASO AMADIO

PROFESSORE DI RELIGIONE FABRIZIO APOLLONI

DIRETTORE MERATE MAURO TARANTINI

STUDENTE MARGHERITA VALERIO BASE

PRESIDE LICEO PAOLO FOSSO

FABIO GIOVANNI NERI

CAST TECNICO

PRODOTTO DA SANTO VERSACE – GIANLUCA CURTI

PRODUTTRICE CREATIVA FRANCESCA DE MICHELE

PRODUTTRICE DELEGATA CAROLINA RUFFINO

PRODUTTORE ESECUTIVO EMANUELE NESPECA

ORGANIZZATORE GENERALE JACOPO NUNZIATI

DIRETTORE DI PRODUZIONE GIANLUCA LANARI

PRODUTTORE RAI ERICA PELLEGRINI

SOGGETTO MONICA ZAPELLI; COSETTA LAGANI

SCENEGGIATURA MONICA ZAPELLI con FEDERICO TADDIA

RESPONSABILE SVILUPPO COSETTA LAGANI

LIBERAMENTE ISPIRATO A NOVE VITE COME I GATTI (M. HACK; F. TADDIA) EDITO DA RIZZOLI

REGIA GIULIO BASE

DIRETTORE DELLA FOTOGRAFIA GIUSEPPE RICCOBENE

SCENOGRAFIA ENRICO SERAFINI

COSTUMI LAURA COSTANTINI

MONTAGGIO NATASCIA DE VITO

MUSICHE GINEVRA NERVI

CASTING STEFANO RABBOLINI

AIUTO REGIA CRISTINA CORNA

FONICO SAVERIO DAMIANI

 

 

Testi e immagini dagli Uffici Stampa RAI Fiction, Minerva Pictures, Manzo Piccirillo.

TOI-5398, IL PIÙ GIOVANE SISTEMA MULTI-PLANETARIO COMPATTO

Il pianeta gigante al suo interno risulta essere il miglior candidato per studi di caratterizzazione atmosferica con il telescopio spaziale James Webb tra tutti i giganti caldi conosciuti.

TOI-5398 b dal sito della NASA: https://exoplanets.nasa.gov/exoplanet-catalog/8661/toi-5398-b/

TOI-5398, una sigla che potrebbe non dirci molto eppure nasconde un record: si tratta del più giovane sistema multi-planetario “compatto”, in cui vi è la compresenza di un piccolo pianeta vicino alla stella assieme a un compagno planetario gigante con periodo orbitale di circa 10 giorni. Questo sistema è solamente il sesto con tale caratteristica compresenza tra i più di 500 sistemi che ospitano pianeti giganti a corto periodo. I dati relativi a questa conferma sono stati pubblicati sulla rivista Astronomy & Astrophysics da un gruppo guidato dall’Istituto Nazionale di Astrofisica e dall’Università di Padova. Secondo gli autori dell’articolo, questo sistema è praticamente unico nel suo genere, potenzialmente una “pietra miliare” per lo studio e la comprensione dei pianeti giganti a corto periodo.

 Il Telescopio Nazionale Galileo (TNG) di INAF, un telescopio di 3,58 metri di diametro situato sulla sommità dell'isola di San Miguel de La Palma. Il TNG è il più importante strumento ottico della comunità astronomica italiana. Crediti: G. Mantovan/Università di Padova - INAF
Il Telescopio Nazionale Galileo (TNG) di INAF, un telescopio di 3,58 metri di diametro situato sulla sommità dell’isola di San Miguel de La Palma. Il TNG è il più importante strumento ottico della comunità astronomica italiana. Crediti: G. Mantovan/Università di Padova – INAF

Le misurazioni sono state ottenute con lo spettrografo HARPS-N al Telescopio Nazionale Galileo (TNG) di INAF alle Canarie (INAF) nell’ambito della collaborazione nazionale GAPS (Global Architecture of Planetary Systems). In questo studio, è stato inoltre fondamentale l’utilizzo di dati spaziali del Transiting Exoplanet Survey Satellite (TESS) della NASA, e del coordinamento di numerosi ricercatori ed osservatori astronomici sparsi in tutto il mondo.

TOI-5398 è di gran lunga il più giovane tra i cosiddetti sistemi “compatti”: 650 milioni di anni contro i 3-10 miliardi di anni degli altri sistemi. Un infante, si potrebbe dire. Inoltre, il pianeta maggiore nel sistema risulta il miglior candidato per studi di caratterizzazione atmosferica tramite il telescopio spaziale James Webb della NASA tra tutti i giganti caldi conosciuti. Per “giganti caldi” si intende pianeti giganti tra 10 e 100 giorni di periodo orbitale (inglese “warm giants”), da non confondere con gli “hot giants”, che possiedono periodi orbitali sotto i 10 giorni”.

TOI-5398 è costituito da un “sub-Nettuno” caldo (TOI-5398 c) orbitante internamente rispetto al suo compagno di massa simile a Saturno a corto periodo orbitale (TOI-5398 b).

“Tale studio – afferma Valerio Nascimbeni, ricercatore presso l’INAF di Padova – supporta una delle teorie di formazione dei pianeti giganti a corto periodo, la quale vede questi ultimi formarsi nelle regioni esterne del sistema e farsi spazio (in un sistema multi-planetario) tramite migrazioni ‘tranquille’, che prevengono il sovrapponimento delle orbite planetarie e della conseguente distruzione del sistema. Tale teoria risale al 1996, frutto di uno studio teorico guidato dal Prof. Lin dell’University of California, Santa Cruz, ma è da pochissimi anni che abbiamo un riscontro osservativo di simili sistemi (solo 5 su più di 500 sistemi con pianeti giganti a corto periodo mostra tale configurazione/architettura orbitale)”.

Gli altri cinque sistemi planetari con queste caratteristiche, ossia un’origine non violenta e la compresenza di piccoli pianeti assieme al pianeta gigante a corto periodo sono WASP-47, Kepler-730, WASP-132, TOI-1130, e TOI-2000. ovvero pianeti giganti tra 10 e 100 giorni di periodo orbitale (inglese “warm Jupiter”), da non confondere con gli “hot jupiter”, i quali possiedono periodi orbitali < 10 giorni.

TOI-5398, come detto, è solo il sesto sistema in questa ristrettissima cerchia e mostra una caratteristica molto particolare, perchè rispetto agli altri è giovanissimo. Giacomo Mantovan, primo autore dell’articolo e ricercatore del dipartimento di Fisica e Astronomia dell’Università di Padova nonché associato INAF, aggiunge:

“La sua formazione, infatti, anziché datare, come gli altri, fra i 3 e 10 miliardi di anni, viene misurata in circa 650 milioni di anni. Questo è l’aspetto eccezionale, perché tale sistema non si trova in una situazione congelata e definitiva come gli altri, ma è appunto giovane e quindi in evoluzione. Può offrire quindi nuove risposte rispetto all’evoluzione dei pianeti e della loro atmosfera”.

“Comprendere il processo di formazione e sviluppo dei pianeti giganti a corto periodo è di estrema importanza anche per la comprensione del Sistema solare, in quanto non esiste un corrispettivo planetario del nostro vicinato planetario. Per comprendere questa mancanza nel nostro sistema e le sue possibili implicazioni – ad esempio sulla presenza della vita – è fondamentale esaminare la storia di formazione di tali pianeti nei sistemi planetari in cui essi sono presenti”, prosegue il ricercatore.

Mantovan analizza gli sviluppi futuri di questa ricerca. “TOI-5398 è un interessante sistema in ottica futura, in quanto entrambi i pianeti del sistema sono candidati ideali per svolgere caratterizzazioni atmosferiche precise, ed anche grazie alla loro giovane età. L’unione di queste due proprietà ed alla presenza di due pianeti con differenti caratteristiche (raggio, massa, ecc), offre la rara opportunità di poter studiare i segni distintivi di differenti storie di formazione planetaria sotto l’influenza della stessa stella, solitamente inaccessibili in sistemi planetari più evoluti e vecchi”.

E conclude: “TOI-5398 potrebbe quindi potenzialmente diventare una pietra miliare per comprendere la formazione di sistemi planetari dove sono presenti giganti a breve periodo orbitale, e potrebbe diventare un punto di riferimento anche all’interno del limitatissimo sottocampione di sistemi ove sono presenti anche piccoli compagni planetari tra il gigante a corto periodo e la stella”.

 Il ricercatore Giacomo Mantovan, primo autore dell’articolo su TOI-5398 e ricercatore del dipartimento di Fisica e Astronomia dell’Università di Padova nonché associato INAF. Crediti: G. Mantovan/Università di Padova - INAF
Il ricercatore Giacomo Mantovan, primo autore dell’articolo su TOI-5398 e ricercatore del dipartimento di Fisica e Astronomia dell’Università di Padova nonché associato INAF. Crediti: G. Mantovan/Università di Padova – INAF


 

Per altre informazioni:

L’articolo “The GAPS programme at TNG XLIX. TOI-5398, the youngest compact multi-planet system composed of an inner sub-Neptune and an outer warm Saturn”, di G. Mantovan et al., è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo e immagini dagli Uffici Stampa  Istituto Nazionale di Astrofisica – INAF e Università di Padova

LISA: c’è il via libera dell’ESA per la missione spaziale che rivelerà onde gravitazionali dal cosmo

La missione LISA, un trio di satelliti in orbita attorno al Sole, ha ottenuto l’“adozione” da parte dell’Agenzia Spaziale Europea ESA: ora si procederà alla costruzione, che consentirà l’osservazione dei segnali più sfuggenti dell’Universo, le onde gravitazionali. Cruciale il ruolo dell’Università di Milano-Bicocca

Milano, 26 gennaio 2024 – È arrivato il via libera alla missione spaziale LISA. Si tratta di un passaggio cruciale, denominato in gergo “adozione”, con cui ESA ha approvato la costruzione dei satelliti e della strumentazione di bordo con l’importante contributo di ASI, l’Agenzia Spaziale Italiana. Grazie a LISA, il cui nome sta per Laser Interferometer Space Antenna, si aprirà una nuova finestra sull’Universo: l’obiettivo è infatti costruire un osservatorio spaziale per la rivelazione delle onde gravitazionali provenienti da molteplici sorgenti cosmiche. Centrale, nell’ambito del programma scientifico Cosmic Vision dell’ESA in cui rientra questa missione, è il ruolo dell’Università di Milano-Bicocca e del team dalla professoressa Monica Colpi del dipartimento di Fisica “Giuseppe Occhialini” che ha ricoperto posizioni di guida in diversi gruppi di ricerca, in ESA e nel LISA Consortium, un consorzio internazionale di scienziati che ha definito gli obiettivi scientifici di LISA e progettato la missione.

LISA non è una sola navicella spaziale, ma un trio di satelliti in orbita attorno al Sole disposti ai vertici di un triangolo equilatero. Ogni lato del triangolo sarà lungo 2,5 milioni di km (più di sei volte la distanza Terra-Luna) e le navicelle si scambieranno raggi laser su questa distanza. Il lancio di LISA è previsto per il 2035 e avverrà a bordo di un razzo Ariane 6. 

Ma che cosa sono le onde gravitazionali che LISA potrà osservare? Albert Einstein, un secolo fa, aveva dimostrato nella sua teoria della Relatività Generale che corpi celesti molto massicci, quando accelerati, scuotono il tessuto dello spazio-tempo, producendo minuscole increspature note appunto come onde gravitazionali che viaggiano nell’Universo alla velocità della luce. Ora, grazie agli sviluppi tecnologici moderni, siamo in grado di rivelare il passaggio di queste onde, tra le più sfuggenti nell’Universo al fine di risalire alla natura delle loro sorgenti.

LISA catturerà onde gravitazionali provenienti dalle regioni più remote dell’Universo, causate dallo scontro tra buchi neri massicci che risiedono al centro delle galassie, milioni di volte più pesanti del nostro Sole. Questo permetterà agli scienziati di scoprire l’origine di questi oggetti, ricostruirne la storia e il ruolo giocato nell’evoluzione delle galassie. La missione sarà anche pronta ad ascoltare il “mormorio” gravitazionale della nascita del nostro Universo, e sarà una finestra aperta sui primi istanti dopo il Big Bang. Inoltre, LISA aiuterà i ricercatori a misurare con accuratezza la velocità di espansione dell’Universo usando la gravità e non la luce come messaggero, confrontando il risultato con misure ottenute con altre tecniche e missioni (come Euclid). LISA osserverà anche un elevatissimo numero di sorgenti nella nostra Galassia, tra cui sistemi binari stellari composti da nane bianche e stelle di neutroni: un’opportunità senza precedenti per studiare gli stadi evolutivi finali delle stelle. Misurando la loro posizione e distanza, LISA creerà una mappa della struttura della Via Lattea, osservando oltre la buia cortina del Centro Galattico. Insieme alla missione ESA Gaia, conosceremo come la nostra Galassia, il nostro habitat ambiente si sia formato.

«Il primo disegno di LISA risale agli anni Settanta: è stato un lungo viaggio che ci ha portato oggi, dopo salite e discese, all’“adozione”, ovvero al passo decisivo verso la costruzione di LISA», spiega Monica Colpi. «Cruciale è stato il successo della missione LISA Pathfinder e la scoperta da parte degli interferometri a Terra LIGO-Virgo-KAGRA di onde gravitazionali emesse da buchi neri stellari in collisione. Con LISA cattureremo le vibrazioni dello spazio-tempo provenienti dalla fusione di buchi neri giganti. Qui, all’Università di Milano-Bicocca, stiamo cercando di capire come e quando, nell’Universo, queste collisioni avvengono e come LISA le osserverà».

Come avverrà dunque l’osservazione delle onde gravitazionali? LISA impiegherà coppie di cubi di una lega di oro e platino – le cosiddette “masse di test” (ognuna poco più piccola di un cubo di Rubik) – che galleggeranno in “caduta libera” al centro di ogni satellite, provviste di speciali schermature da disturbi esterni. Le onde gravitazionali causeranno minuscoli cambiamenti nella distanza tra le masse di test di due satelliti, e la missione traccerà queste variazioni usando l’interferometria laser. Questa tecnica richiede di far propagare fasci laser da un satellite all’altro nella costellazione. Confrontando i segnali registrati misureremo cambiamenti nelle distanze tra le masse di test fino a un miliardesimo di millimetro. I satelliti devono essere progettati per assicurare che nulla, eccetto la geometria dello spazio-tempo, possa perturbare il moto delle masse, che saranno perciò in quasi perfetta caduta libera. I satelliti della missione seguiranno appunto le orme di LISA PAthfinder, che ha dimostrato che è possibile mantenere le masse test in caduta libera con un impressionante livello di precisione. Lo stesso sistema di propulsione con cui sono state equipaggiate le missioni ESA Gaia e Euclid garantirà che ogni satellite mantenga la posizione e l’orientazione richieste con grandissima accuratezza. 

Per rendere l’idea della complessità dell’operazione, Riccardo Buscicchio, ricercatore di Milano-Bicocca che lavora all’analisi dei dati prodotti da LISA, usa una metafora musicale:

«I rivelatori terrestri oggi in funzione ricevono segnali isolati, uno alla volta, un po’ come ascoltare brevi concerti per violino solista. Il tipico timbro dello strumento ci permette di individuarlo, anche in presenza di “rumore”.

I satelliti di LISA ascolteranno invece un concerto a volume estremamente alto, eseguito da strumenti fuori-tempo, fuori-armonia, per tutta la durata della missione spaziale. Nondimeno, l’orchestra sarà composta da milioni di archi, legni, ottoni e percussioni». Conclude Buscicchio: «Il mio lavoro all’Università di Milano-Bicocca è di riscrivere le partiture del concerto, a partire da una singola registrazione in alta-fedeltà, estraendo più strumenti possibile, anche quelli di cui ancora non conosciamo l’esistenza».

«Ora che LISA viene “adottata” da ESA, la sua realizzazione richiede un grande contributo di tutta la comunità scientifica internazionale»,

aggiunge Alberto Sesana, astrofisico, professore del dipartimento che lavora al progetto.

«In Italia questo sforzo si va concretizzando sempre più, con una lunga collaborazione tra l’Università di Milano-Bicocca e altri atenei italiani».

Selezionata come missione di bandiera del programma ESA Cosmic Vision 2015-2025, LISA sarà parte della flotta di “osservatori cosmici” dell’ESA per rispondere a due profonde domande: quali sono le leggi fondamentali della fisica che descrivono l’Universo? Come si è formato l’Universo e di che cosa è composto? In questa avventura, LISA lavorerà in congiunzione con NewAthena, un’altra missione ESA al momento in fase di studio. NewAthena sarà il più grande osservatorio di raggi X mai costruito nello spazio e il suo lancio è previsto per il 2037.

ESA guida la missione LISA e fornirà satelliti, lanciatori, supporto alla missione e alla raccolta dati. I laser ultra-stabili, i telescopi da 30 cm di diametro per raccogliere la luce laser, e le sorgenti di luce ultravioletta per neutralizzare la carica elettrostatica sulle masse test, saranno forniti dalla NASA. Gli altri componenti chiave saranno: le masse di test schermate da forze esterne, fornite da ASI Italia con contributo da parte della Svizzera; il sistema di misura del segnale interferometrico, con accuratezza picometrica fornito da Germania, Regno Unito, Francia, Olanda, Belgio, Polonia e Repubblica Ceca; il Science Diagnostics Subsystem (un arsenale di sensori a bordo dei satelliti) fornito dalla Spagna.

Illustrazione della Missione LISA. Crediti per l'immagine: Riccardo Buscicchio
Illustrazione della Missione LISA. Crediti per l’immagine: Riccardo Buscicchio

 

Testo e immagine dall’Ufficio Stampa dell’Università di Milano-Bicocca