News
Ad
Ad
Ad
Tag

Università degli Studi di Padova

Browsing

L’ORSO BRUNO IN LETARGO CONSERVA LA MASSA MUSCOLARE

Questi animali non sviluppano l’atrofia muscolare tipicamente associata al disuso prolungato. Pubblicato su «Nature Communications» lo studio del team di ricercatori dell’Università di Padova e dell’Istituto Veneto di Medicina Molecolare guidati da Bert Blaauw sulla riduzione dell’attività ATPasica della miosina nel muscolo scheletrico a riposo.

 

“Reduced ATP turnover during hibernation in relaxed skeletal muscle” è il titolo dello studio pubblicato sulla prestigiosa rivista internazionale Nature Communications dal team di ricercatori guidato da Bert Blaauw, professore ordinario al Dipartimento di Scienze Biomediche dell’Università di Padova oltre che Principal investigator dell’Istituto Veneto di Medicina Molecolare (VIMM).

Lo studio ha rivelato un fenomeno sorprendente negli orsi bruni durante il letargo: nonostante una drastica riduzione dell’attività, questi animali non sviluppano l’atrofia muscolare tipicamente associata al disuso prolungato. La ricerca ha messo in luce un meccanismo chiave di questo adattamento: l’attività ATPasica della miosina nel muscolo scheletrico a riposo che subisce modifiche significative. Questa alterazione dell’attività enzimatica contribuisce in modo sostanziale al risparmio energetico, permettendo agli orsi di preservare la massa muscolare durante i lunghi mesi di inattività invernale.

L’analisi di singole fibre muscolari, prelevate agli orsi sia durante il letargo che in estate, ha rivelato importanti cambiamenti durante il periodo di svernamento. Le fibre degli orsi in letargo mostrano un lieve calo nella produzione di forza, accompagnato da una significativa riduzione dell’attività ATPasica della miosina a riposo. La miosina, che funge da motore molecolare del muscolo scheletrico, presenta quindi una marcata diminuzione della sua attività enzimatica quando il muscolo è in stato di quiescenza durante il letargo. Questi risultati evidenziano un adattamento fisiologico che potrebbe contribuire al risparmio energetico durante lo svernamento.

«I risultati che emergono dallo studio dimostrano che il muscolo scheletrico limita la perdita di energia riducendo l’attività dell’ATPasi della miosina, indicandone un possibile ruolo in molteplici condizioni di atrofia muscolare – sottolinea Bert Blaauw –. Questa ricerca apre quindi nuove prospettive terapeutiche, suggerendo potenziali strategie per contrastare la perdita di massa e forza muscolare associata a periodi di inattività prolungata o al processo di invecchiamento nell’uomo. Le scoperte sui meccanismi di adattamento degli orsi in letargo potrebbero fornire preziose indicazioni per lo sviluppo di interventi mirati a preservare la funzionalità muscolare in condizioni di disuso o senescenza”.

La proteomica condotta sulle singole fibre e le analisi immunoistochimiche hanno rivelato un importante rimodellamento del proteoma mitocondriale durante il letargo. Utilizzando approcci bioinformatici e biochimici, i ricercatori hanno scoperto che la catena leggera della miosina fosforilata, noto stimolatore dell’attività ATPasica della miosina nel muscolo a riposo, diminuisce nei muscoli in letargo. Questa scoperta fornisce ulteriori dettagli sul meccanismo molecolare alla base del risparmio energetico e della preservazione muscolare durante l’inattività invernale degli orsi bruni.

Lo studio è stato finanziato dal programma STARS Grants per la ricerca individuale dell’Università di Padova e da AFM Telethon.

Bert Blaauw ha avviato il suo laboratorio indipendente nel 2012 e attualmente ricopre il ruolo di Professore Ordinario al Dipartimento di Scienze Biomediche dell’Università di Padova ed è Principal investigator all’Istituto Veneto di Medicina Molecolare (VIMM). Nel corso della sua carriera, Blaauw ha dato un contributo significativo al campo della ricerca sulla fisiologia muscolare. Ha pubblicato numerosi articoli di ricerca peer-reviewed, collaborato come autore senior in pubblicazioni dove membri del suo team figuravano come primi autori, e partecipato complessivamente a oltre 100 articoli scientifici incentrati sulla fisiologia muscolare, il signaling e l’approfondimento delle conoscenze sul muscolo scheletrico. Negli ultimi dieci anni, il team guidato dal professor Blaauw ha ottenuto notevoli riconoscimenti a livello internazionale per i suoi studi innovativi sulla determinazione della funzione muscolare adulta, sia in condizioni fisiologiche che patologiche. Questi successi testimoniano l’importanza e l’impatto del lavoro svolto dal suo gruppo di ricerca nel campo della biologia muscolare.

Bert Blaauw
Bert Blaauw

Riferimenti bibliografici:

Autori: Cosimo De Napoli, Luisa Schmidt, Mauro Montesel, Laura Cussonneau, Samuele Sanniti, Lorenzo Marcucci,Elena Germinario, Jonas Kindberg, Alina Lynn Evans, Guillemette Gauquelin-Koch, Marco Narici, Fabrice Bertile, Etienne Lefai, Marcus Krüger, Leonardo Nogara, Bert Blaauw*,  “Reduced ATP turnover during hibernation in relaxed skeletal muscle”  «Nature Communications» 2025, DOI: https://doi.org/10.1038/s41467-024-55565-4

L’orso bruno in letargo conserva la massa muscolare: questi animali non sviluppano l’atrofia muscolare tipicamente associata al disuso prolungato. Un orso bruno (Ursus arctos), da Viiksimo, nella regione finlandese di Kainuu. Foto Flickr di , CC BY 2.0

Testo e foto dall’Ufficio Stampa dell’Università di Padova

LE CAPSULE CHE “CATTURANO” GLI INQUINANTI: poliedri supramolecolari artificiali con la geometria del cubo simo, capsule in grado di immagazzinare sostanze (anche inquinanti)

Pubblicato su «Nature» lo studio di un team internazionale di ricercatori delle Università di Padova e Hong-Kong che svela un nuovo materiale “intelligente” di dimensioni nanoscopiche per immagazzinare e rilasciare sostanze in modo controllato

 Studiare materiali innovativi che individuino e catturino sostanze inquinanti per aria e acqua è oggi di fondamentale importanza: un aiuto nella preparazione di questi nuovi materiali arriva dalle capsule proteiche artificiali. In biologia le capsule proteiche svolgono funzioni essenziali in diversi processi, tra cui il trasporto e l’immagazzinamento di sostanze che spaziano dal fragile materiale genetico dei virus al ferro contenuto nelle ferritine.

Luka Ðorđević

Un team internazionale di ricercatori delle Università di Padova e Hong-Kong, con la collaborazione di università statunitensi (Duke, Northwestern, South Florida, California Institute of Technology) e cinesi (Tianjin, Anhui, Zhejiang), ha scoperto un nuovo materiale con caratteristiche simili alle capsule biologiche: lo studio, dal titolo Dynamic supramolecular snub cubes e pubblicato sulla rivista scientifica «Nature», è stato coordinato da Sir James Fraser Stoddart, premio Nobel per la chimica nel 2016 venuto a mancare il 30 dicembre 2024.

Le capsule biologiche sono dei poliedri supramolecolari, cioè subunità proteiche che si auto-assemblano attraverso numerosi legami deboli per creare delle strutture ben definite e simmetriche. Gli scienziati hanno provato a lungo a replicare queste strutture naturali e dopo molti tentativi sono riusciti a preparare poliedri supramolecolari artificiali e produrre capsule con caratteristiche simili a quelle biologiche che possano immagazzinare sostanze e rilasciarle in modo intelligente e controllato.

La scoperta del processo che porta dal riconoscimento delle molecole alla preparazione di capsule artificiali ha reso possibile lo studio di due caratteristiche fondamentali di questi nuovi materiali, che trovano una similitudine con le proprietà delle capsule biologiche: le proprietà dinamiche e la capacità di incapsulare altre sostanze, doti essenziali per lo sviluppo di questa classe di sistemi altamente “intelligenti” dal momento che consentono una cattura e un rilascio controllato delle sostanze utilizzando la luce come stimolo. Tra le numerose applicazioni possibili c’è, ad esempio, la purificazione dell’aria o dell’acqua attraverso l’immagazzinamento di idrocarburi.

«Per la preparazione di questo nuovo materiale è stato fondamentale sfruttare delle molecole chirali – spiega Luka Ðorđević, autore della ricerca e docente al Dipartimento di Scienze Chimiche dell’Università di Padova –. La chiralità è una proprietà di oggetti che sono immagini speculari l’uno dell’altro ma non sono sovrapponibili, come le nostre mani destra e sinistra. Questa proprietà è universale in natura e si manifesta ovunque, dal DNA alle proteine. Nel nostro studio abbiamo osservato come delle molecole chirali possano riconoscersi e auto-assemblarsi in capsule sintetiche dalle dimensioni di solo un paio di nanometri. La dimensione della capsula determina ciò che questa riesce a immagazzinare: creare poliedri da oggetti macroscopici risulta molto facile, ma produrne di dimensioni nanoscopiche è estremamente complicato. Il nostro studio dimostra che le dimensioni di un paio di nanometri sono sufficienti per consentire di immagazzinare idrocarburi come il benzene e il cicloesano, inquinanti di aria e acqua».

Luka Ðorđević
Luka Ðorđević

La geometria di un materiale ne influenza le proprietà e quindi le sue possibili applicazioni: questo nuovo poliedro sintetico è interessante perché riproduce la geometria del cubo simo (snub cube), uno dei 15 poliedri archimedei con 60 spigoli, 24 vertici e 38 facce. Inoltre, anche il cubo simo è chirale e quindi si presenta in due forme speculari.

Riferimenti bibliografici: Huang Wu, Yu Wang, Luka Đorđević, Pramita Kundu, Surojit Bhunia, Aspen X.-Y. Chen, Liang Feng, Dengke Shen, Wenqi Liu, Long Zhang, Bo Song, Guangcheng Wu, Bai-Tong Liu, Moon Young Yang, Yong Yang, Charlotte L. Stern, Samuel I. Stupp, William A. Goddard III, Wenping Hu & J. Fraser Stoddart, Dynamic supramolecular snub cubes – «Nature» – 2025, link: https://www.nature.com/articles/s41586-024-08266-3

Luka Ðorđević
Poliedri supramolecolari artificiali con la geometria del cubo simo, capsule in grado di immagazzinare sostanze (anche inquinanti)

Testo e foto dall’Ufficio Stampa dell’Università di Padova

TERREMOTI | Lo studio sul ruolo delle acque accumulate negli acquiferi carsici offre nuovi spunti per l’analisi dell’attività sismica di un team di ricercatori di INGV, UNIPD, FEDERICO II e Acquedotto Pugliese ha investigato le relazioni tra effetti idrologici e processi crostali che rivelano le caratteristiche meccaniche delle rocce di faglia responsabili dei terremoti in Appennino

Uno studio recentemente pubblicato sulla rivista scientifica ‘Nature Communications’, intitolato “Non-linear elasticity, earthquake triggering and seasonal hydrological forcing along the Irpinia fault, Southern Italy” fornisce approfondimenti innovativi sui processi che collegano la variazione stagionale delle masse d’acqua, l’elasticità delle rocce crostali e l’attività sismica in Irpinia.

La ricerca, condotta nell’ambito del progetto multidisciplinare Pianeta Dinamico-MYBURP (Modulation of hYdrology on stress BUildup on the IRPinia Fault), è stata realizzata da un team di ricercatori dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV), dell’Università degli Studi di Padova, dell’Università degli Studi di Napoli Federico II e della società Acquedotto Pugliese.

“Il nostro studio ha rivelato come gli effetti idrologici influenzino le caratteristiche meccaniche del sistema di faglie in Irpinia e la distribuzione temporale della sua sismicità”, spiega Nicola D’Agostino, ricercatore dell’INGV e coordinatore del team di ricerca. “Per scoprirlo, abbiamo analizzato le variazioni stagionali di velocità delle onde sismiche nella crosta terrestre e le serie temporali di deformazione provenienti da una rete avanzata di stazioni sismiche e GNSS dell’Irpinia Near Fault Observatory e della Rete GNSS RING”.

 Analisi della sensitività (β) delle variazioni di velocità delle onde sismiche (δv/v) in funzione della deformazione orizzontale (strain). δv/v è stato misurato attraverso l'analisi temporale delle variazioni del rumore sismico ambientale mentre la deformazione è stata calcolata attraverso i dati delle stazioni della rete GNSS RING. β è un parametro significativo per definire la non-linearità delle proprietà elastiche della crosta terrestre e delle modalità di accumulo e rilascio della deformazione sismica nelle zone di faglia. In a) e b) sono mostrati i valori di δv/v e deformazione in funzione della fase annuale (a) e della velocità di deformazione (b). In c-h sono mostrate le variazioni di δv/v e deformazione per singole annualità
Analisi della sensitività (β) delle variazioni di velocità delle onde sismiche (δv/v) in funzione della deformazione orizzontale (strain). δv/v è stato misurato attraverso l’analisi temporale delle variazioni del rumore sismico ambientale mentre la deformazione è stata calcolata attraverso i dati delle stazioni della rete GNSS RING. β è un parametro significativo per definire la non-linearità delle proprietà elastiche della crosta terrestre e delle modalità di accumulo e rilascio della deformazione sismica nelle zone di faglia. In a) e b) sono mostrati i valori di δv/v e deformazione in funzione della fase annuale (a) e della velocità di deformazione (b). In c-h sono mostrate le variazioni di δv/v e deformazione per singole annualità

I ricercatori hanno infatti scoperto che la ricarica idrologica degli acquiferi carsici dell’Appennino genera deformazioni naturali che modulano la velocità delle onde sismiche e la sismicità locale. Attraverso una tecnica innovativa di analisi del rumore sismico ambientale è stato possibile misurare le variazioni stagionali di velocità delle onde sismiche che attraversano la crosta terrestre e confrontarle con le misure di deformazione crostale indotte dagli effetti idrologici.

“Queste due informazioni ci hanno permesso di misurare le variazioni di velocità delle onde sismiche in funzione della deformazione crostale, parametro importante per quantificare la non-linearità delle proprietà elastiche delle rocce”, sottolinea Stefania Tarantino, assegnista di ricerca dell’INGV e prima autrice dell’articolo.

Piero Poli, Professore dell’Università degli Studi di Padova e coautore dell’articolo aggiunge, infatti, che “osservazioni di laboratorio mostrano come le proprietà elastiche varino in funzione dello stato di deformazione dei materiali (elasticità non-lineare), con significative implicazioni sulle caratteristiche meccaniche con cui le rocce di faglia rispondono all’accumulo di deformazione che precede i terremoti. La sensitività osservata è risultata simile ai valori misurati in laboratorio, confermando la validità dell’approccio scientifico adottato.

“Le nostre osservazioni mostrano inoltre un aumento degli eventi sismici di bassa magnitudo (M < 3.7) in primavera-estate, quando il carico idrologico è maggiore, suggerendo che l’elasticità non-lineare possa giocare un ruolo chiave non solo nei fenomeni sismici minori, ma anche nella preparazione di terremoti di grande magnitudo, come quello che colpì l’Irpinia nel 1980″, sottolinea Aldo Zollo, Professore dell’Università degli Studi di Napoli Federico II e coautore dell’articolo.

Gaetano Festa, Professore dell’Università degli Studi di Napoli Federico II e coautore dell’articolo, aggiunge che “l’area geografica oggetto dello studio è oggi monitorata da un’infrastruttura multiparametrica avanzata denominata ‘Irpinia Near Fault Observatory’ e costituita da stazioni sismiche, geodetiche e geochimiche, nonché da un sistema di rilevamento sismico mediante fibra ottica (DAS), gestiti dall’INGV e dall’Università Federico II“.

Aspetto importante del lavoro è stata la sinergia con la società Acquedotto Pugliese, importante infrastruttura pubblica di approvvigionamento idrico-potabile della regione Puglia e gestore della Sorgente Sanità di Caposele, che ha fornito dati indispensabili per la comprensione della relazione tra effetti idrologici e processi crostali. “Siamo particolarmente soddisfatti di aver offerto il nostro contribuito alla realizzazione dello studio. Un contributo reso possibile dall’approfondita conoscenza della materia e dalla vasta esperienza sul campo, come testimoniato, tra l’altro, nel corso del convegno sul tema, organizzato con INGV nel nostro palazzo nel maggio scorso”, dichiara Domenico Laforgia, presidente di Acquedotto Pugliese.

I risultati di questo studio offrono nuove prospettive per comprendere e monitorare sempre meglio i processi di accumulo e rilascio della deformazione sismica, con l’obiettivo di migliorare le tecniche di mitigazione del rischio sismico.

a) Distribuzione dell'intensità della deformazione tettonica (scala cromatica e vettori di velocità) misurati dalle stazioni GNSS della rete RING. Le aree in verde mostrano la distribuzione degli acquiferi carsici responsabili delle deformazioni idrologiche osservate. b) sismicità nell'area irpina, segmenti attivati e meccanismo focale del terremoto Ms 6.9 del 23 novembre 1980. c) Serie temporali delle osservabili usate nello studio: portate della sorgente di Caposele (blu), variazioni di velocità δv/v (verde) e di spostamento alle stazioni MCRV e CAFE (in rosso). Osservare la stretta correlazione tra effetti idrologici, variazioni di velocità e di spostamento alla stazione MCRV (posta in prossimità degli acquiferi carsici) e la mancanza di correlazione a CAFE (posta in posizione più distante). d) rappresentazione schematica delle deformazioni idrologiche e loro relazione con le fasi di ricarica degli acquiferi carsici
a) Distribuzione dell’intensità della deformazione tettonica (scala cromatica e vettori di velocità) misurati dalle stazioni GNSS della rete RING. Le aree in verde mostrano la distribuzione degli acquiferi carsici responsabili delle deformazioni idrologiche osservate. b) sismicità nell’area irpina, segmenti attivati e meccanismo focale del terremoto Ms 6.9 del 23 novembre 1980. c) Serie temporali delle osservabili usate nello studio: portate della sorgente di Caposele (blu), variazioni di velocità δv/v (verde) e di spostamento alle stazioni MCRV e CAFE (in rosso). Osservare la stretta correlazione tra effetti idrologici, variazioni di velocità e di spostamento alla stazione MCRV (posta in prossimità degli acquiferi carsici) e la mancanza di correlazione a CAFE (posta in posizione più distante). d) rappresentazione schematica delle deformazioni idrologiche e loro relazione con le fasi di ricarica degli acquiferi carsici

Riferimenti bibliografici: 

Tarantino, S., Poli, P., D’Agostino, N. et al. Non-linear elasticity, earthquake triggering and seasonal hydrological forcing along the Irpinia fault, Southern Italy, Nat Commun 15, 9821 (2024), DOI: https://doi.org/10.1038/s41467-024-54094-4

Link utili:

Istituto Nazionale di Geofisica e Vulcanologia (INGV)

Università degli Studi di Padova

Università degli Studi di Napoli Federico II

Acquedotto Pugliese

Progetto Pianeta Dinamico-MYBURP

Irpinia Near Fault Observatory

Rete GNSS RING

 

 

Testo e immagini dall’Ufficio Stampa Rettorato Università degli Studi di Napoli Federico II.

L’ATTIVITÀ CEREBRALE A RIPOSO DEI BAMBINI CAMBIA IN BASE AL SESSO

Ricerca dell’Università di Padova, in collaborazione con IRCCS “E. Medea” di Conegliano e Università di Cambridge, scopre relazione tra il funzionamento neurale in condizioni di riposo e il funzionamento cognitivo quotidiano in bambini di età prescolare

L’attività cerebrale dei bambini a riposo cambia in base al sesso biologico e all’età? È possibile prevedere eventuali problemi comportamentali, emotivi o legati alle funzioni esecutive attraverso questa attività?

La risposta arriva dalla ricerca dal titolo Dynamic transient brain states in preschoolers mirror parental report of behavior and emotion regulation, pubblicata sulla rivista «Human Brain Mapping», guidata da Lisa Toffoli e Giovanni Mento del Dipartimento di Psicologia Generale dall’Università di Padova in collaborazione con Gian Marco Duma dell’IRCCS “E. Medea” di Conegliano e Duncan Astle dell’Università di Cambridge.

La ricerca dimostra che esiste una relazione tra il funzionamento neurale in condizioni di riposo (chiamato resting state, stato in cui il cervello non è impegnato in attività cognitive attive o compiti specifici) e il funzionamento cognitivo quotidiano in bambini di età prescolare (4-6 anni). I ricercatori hanno evidenziato che la stabilità, la durata e la direzione delle comunicazioni cerebrali – il modo in cui le informazioni vengono trasmesse ed elaborate all’interno di una singola area o tra diverse aree del cervello – in assenza di richieste cognitive non cambiano all’interno della fascia di età considerata ma differiscono in base al sesso biologico.

Le richieste cognitive si riferiscono alle sollecitazioni e alle sfide che il nostro cervello deve affrontare per elaborare informazioni, risolvere problemi, prendere decisioni e svolgere attività che richiedono attenzione e concentrazione; possono variare in intensità e complessità e sono fondamentali nello sviluppo delle abilità cognitive, specialmente nei bambini.

In particolare, i maschi mostrano un’attività cerebrale più variabile e meno prevedibile, caratterizzata inoltre da una maggiore attivazione del Default-Mode Network, il circuito associato alla “testa tra le nuvole” (mind wandering). Al contrario, le femmine attivano più spesso le aree prefrontali, maggiormente associate alla capacità di concentrazione e attivazione cognitiva.

I ricercatori hanno inoltre osservato, sulla base dei questionari compilati dai genitori, che i bambini e le bambine che attivano di più le aree prefrontali mostrano una migliore regolazione comportamentale ed emotiva, mentre chi attiva più spesso il Default-Mode Network riporta maggiori difficoltà.

«Questo studio aveva due obiettivi principali: il primo era capire se e come l’attività cerebrale a riposo dei bambini differisce in base al sesso biologico e all’età. Il secondo era esaminare se questa attività fosse in grado di prevedere eventuali problemi comportamentali, emotivi o legati alle funzioni esecutive, cioè quelle abilità mentali che ci aiutano a pianificare e portare a termine azioni» afferma Lisa Toffoli, prima autrice dello studio e ricercatrice dell’Università di Padova.

«Per la prima volta in questa fascia d’età è stata utilizzata una tecnica innovativa di machine learning chiamata “Hidden Markov Models” (HMM) applicata a dati di elettroencefalografia ad alta risoluzione spaziale, che ha permesso di identificare quali aree del cervello comunicano tra loro e come queste comunicazioni cambiano in tempi rapidissimi, nell’ordine di millisecondi» spiega Gian Marco Duma, che ha supervisionato la collaborazione con l’IRCCS E. Medea.

«Questi risultati potrebbero avere significative implicazioni per popolazioni cliniche, in particolare per i disturbi del neurosviluppo come autismo e ADHD, identificando potenziali target neurali nei processi riabilitativi. Questo potrebbe facilitare approcci terapeutici personalizzati soprattutto in età prescolare, una fase cruciale per lo sviluppo cognitivo» conclude Giovanni Mento, corresponding author dello studio e docente al Dipartimento di Psicologia Generale dall’Ateneo patavino.

Link alla ricerca: https://onlinelibrary.wiley.com/doi/10.1002/hbm.70011

Titolo: Dynamic transient brain states in preschoolers mirror parental report of behavior and emotion regulation – «Human Brain Mapping» – 2024

Autori: Lisa Toffoli, Natalia Zdorovtsova, Gabriela Epihova, Gian Marco Duma, Fiorella Del Popolo Cristaldi, Massimiliano Pastore, Duncan E. Astle, Giovanni Mento

Da sinistra: Giovanni Mento, Lisa Toffoli, Gian Marco Duma
Da sinistra: Giovanni Mento, Lisa Toffoli, Gian Marco Duma

Testo e foto dagli Uffici Stampa dell’Università di Padova e dell’Associazione La Nostra Famiglia – IRCCS E. Medea

ALTERAZIONE DEI RITMI CIRCADIANI, ISOLAMENTO E STRESS PSICOFISICO: L’UNIVERSITÀ DI PADOVA TESTA I LIMITI DI CORPO E MENTE IN AMBIENTI ESTREMI

Pubblicata su «European Journal of Applied Physiology» la ricerca dell’Ateneo patavino che studia gli effetti dell’esposizione a condizioni difficili sul corpo umano

In che modo l’esposizione a condizioni ambientali estreme, simili a quelle spaziali, può influenzare il corpo umano? Come reagisce il corpo allo stress dell’isolamento e del distacco dalle condizioni abituali terrestri? L’esplorazione spaziale non è più un sogno lontano ma una realtà tangibile: capire come questi fattori interagiscono con i processi biologici è fondamentale non solo per preparare gli astronauti a missioni future, ma anche per applicare tali conoscenze al miglioramento della sicurezza e della salute in ambienti estremi sulla Terra come quelli affrontati da subacquei, aviatori, alpinisti e persino lavoratori in ambienti industriali difficili.

Questo è stato argomento di studio del gruppo di ricerca dell’Università di Padova all’interno del programma EMMPOL (Euro Moon Mars POLand analog mission) che offre una piattaforma sperimentale di simulazione di missioni spaziali in ambienti che ne mimano i possibili habitat e che offrono una prospettiva unica su come lo stress, l’isolamento e l’esposizione a condizioni difficili possano influenzare il corpo umano studiando gli effetti di tali condizioni su stress ossidativo, infiammazione e invecchiamento biologico.

Le missioni EMMPOL, coordinate da Sofia Pavanello del Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica dell’Università di Padova, e responsabile del BioAgingLab – che ha l’obiettivo di esplorare il tema dell’invecchiamento biologico –, hanno prodotto preziosi dati scientifici che avvicinano non solo alla comprensione delle sfide legate ai voli spaziali, ma offrono anche soluzioni per migliorare la salute in condizioni estreme sulla Terra.

Durante una di queste missioni simulate Tommaso Antonio Giacon, medico specializzando dell’Università di Padova, insieme ad altri quattro studenti di diverse nazionalità e università, ha trascorso una settimana di missione come astronauta analogo in isolamento nel Centro di Addestramento per Astronauti Analoghi (AATC) in Polonia. All’interno di un habitat che riproduce le condizioni di un insediamento lunare, gli studenti hanno affrontato sfide complesse come l’alterazione dei ritmi circadiani, l’isolamento, gli alti carichi di lavoro e lo stress psicofisico, esplorando i limiti del corpo e della mente umana.

I risultati di questa missione, pubblicati nello studio dal titolo “Environmental study and stress-related biomarkers modifications in a crew during analog astronaut mission EMMPOL 6” sulla rivista scientifica «European Journal of Applied Physiology», rivelano un aumento significativo dello stress ossidativo e dei livelli di cortisolo, segno che anche brevi periodi di isolamento e stress psicofisico possono alterare parametri biologici chiave. La ricerca vede come primo autore Tommaso Antonio Giacon, medico specializzando dell’Università di Padova, e come coordinatrice Sofia Pavanello, docente del Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica dell’Università di Padova con la partecipazione di Gerardo Bosco, docente del dipartimento di Scienze biomediche dell’Ateneo patavino e di Simona Mrakic-Sposta del CNR di Milano, entrambi coautori.

La riduzione delle ore di sonno e la compromissione della qualità del riposo hanno ulteriormente evidenziato l’impatto profondo che queste condizioni hanno sul benessere psicofisico.

«La simulazione di una missione spaziale ci permette di comprendere come il corpo umano si adatti a condizioni estreme. Questi risultati non si limitano ai futuri astronauti, ma offrono preziose informazioni per migliorare la salute e la sicurezza di chi vive o lavora in ambienti estremi, come alpinisti, subacquei e lavoratori in contesti industriali complessi» spiega Sofia Pavanello, coordinatrice dello studio.

Sofia Pavanello
Sofia Pavanello

Le missioni EMMPOL rappresentano un esempio brillante di ricerca multidisciplinare: la collaborazione tra diversi settori – dalla biomedicina, alla fisiologia, fino all’ingegneria e architettura spaziale – ha permesso di raccogliere dati che arricchiscono la conoscenza scientifica e hanno ricadute pratiche per molteplici ambiti della vita quotidiana.

La partecipazione degli studenti dell’Università di Padova a queste missioni analoghe va oltre il semplice traguardo accademico: queste esperienze, presentate anche durante il festival Science4All dell’Università di Padova e supportate dal Rotary Club Padova, evidenziano il ruolo centrale dell’ateneo nel formare i ricercatori del futuro e dimostrano come la ricerca spaziale non sia confinata al cosmo, ma abbia un impatto concreto e diretto sulla nostra vita quotidiana. Attraverso l’esplorazione dei confini della scienza, i giovani ricercatori aprono nuove prospettive per un futuro più sicuro e sostenibile, gettando le basi per migliorare il benessere umano anche in condizioni ambientali estreme.

Link alla ricerca: https://pubmed.ncbi.nlm.nih.gov/39320485/

Titolo: Environmental study and stress-related biomarkers modifications in a crew during analog astronaut mission EMMPOL 6 – «European Journal of Applied Physiology» – 2024

Autori: T. A. Giacon, S. Mrakic-Sposta, G. Bosco, A. Vezzoli, C. Dellanoce, M. Campisi, M. Narici, M. Paganini, B. Foing, A. Kołodziejczyk, M. Martinelli & S. Pavanello

 

Testo e immagini dall’Ufficio Stampa dell’Università di Padova

METIS OSSERVA COME SI PROPAGA LA TURBOLENZA NEL VENTO SOLARE

Grazie alle riprese del coronografo Metis a bordo della missione europea Solar Orbiter, un gruppo internazionale coordinato da ricercatori INAF è riuscito ad osservare la propagazione dei moti turbolenti del vento solare dalle zone più interne della corona del Sole fino allo spazio. La conoscenza dei meccanismi che guidano l’evoluzione e la propagazione di questi fenomeni nel vento solare aiuterà a migliorare le previsioni sul potenziale impatto che esso può avere nel nostro Sistema planetario e soprattutto sulla Terra. Lo studio a cui hanno collaborato anche ricercatori e ricercatrici di ASI, CNR e delle Università di Firenze, Padova, Urbino, Genova, Catania, Palermo e della Calabria, è stato pubblicato oggi sulla rivista The Astrophysical Journal Letters.

Il vento solare è un flusso incessante di particelle cariche provenienti dal Sole, il cui andamento è tutt’altro che costante. Nel loro moto nello spazio, le particelle del vento solare interagiscono con il campo magnetico variabile del Sole, seguendo traiettorie caotiche e fluttuanti, un fenomeno che prende il nome di turbolenza.

Le riprese ottenute dalla missione Solar Orbiter dell’Agenzia Spaziale Europea grazie al coronografo Metis progettato da Istituto Nazionale di Astrofisica (INAF), Università di Firenze, Università di Padova, CNR-Ifn, e realizzato dall’Agenzia Spaziale Italiana con la collaborazione dell’industria italiana, confermano qualcosa che si sospettava da tempo: il moto turbolento del vento solare inizia molto vicino al Sole, all’interno della porzione di atmosfera solare nota come corona. Piccoli disturbi che influenzano il vento solare nella corona vengono trasportati verso l’esterno e si espandono, generando un flusso turbolento più lontano nello spazio.

“Questo risultato ha aperto una nuova finestra sulla fisica del vento solare grazie a Metis, il coronografo di nuova concezione – tutta italiana – a bordo del Solar Orbiter, che ha permesso acquisizioni ad alta cadenza di immagini coronali con un contrasto senza precedenti tra segnale coronale e background”

commenta Silvano Fineschi dell’INAF e Responsabile Scientifico del contributo italiano alla missione. Bloccando la luce diretta proveniente dal Sole, il coronografo Metis è in grado di catturare la luce visibile e ultravioletta più debole proveniente dalla corona solare. Le sue immagini ad alta risoluzione e ad alta cadenza mostrano la struttura dettagliata e il movimento all’interno della corona, rivelando come il movimento del vento solare diventi già turbolento alle sue radici. Le riprese utilizzate dal team di ricerca per osservare in dettaglio la propagazione della turbolenza sono state ottenute il 12 ottobre 2022 e messe in sequenza per realizzare una animazione video. In particolare, l’anello color rosso nel video mostra le osservazioni di Metis. A quella data, la sonda si trovava a soli 43,4 milioni di km dal Sole, meno di un terzo della distanza Sole-Terra. L’immagine del Sole al centro del video è stata scattata dall’Extreme Ultraviolet Imager (EUI) di Solar Orbiter, lo stesso giorno delle osservazioni di Metis.

“L’elevata risoluzione spaziale e temporale di Metis sta gettando nuova luce sui meccanismi fisici che regolano il vento solare e la sua propagazione, consentendo una migliore comprensione dei processi attraverso i quali il Sole determina le condizioni fisiche dello spazio interplanetario con effetti anche a Terra” dice Marco Stangalini, ricercatore e Responsabile di Programma ASI della missione Solar Orbiter. “Questo significativo risultato è solo l’ultimo di una lunga serie di successi e offre grandi speranze per il futuro. Nei prossimi anni, infatti, Solar Orbiter inclinerà la sua orbita, permettendoci di osservare il Sole da una prospettiva completamente nuova per la prima volta”.

La turbolenza influenza il modo in cui il vento solare viene riscaldato, il modo in cui si muove attraverso il Sistema solare e il modo in cui interagisce con i campi magnetici dei pianeti e delle lune che attraversa. Comprendere la turbolenza del vento solare è fondamentale per prevedere la meteorologia spaziale e i suoi effetti sulla Terra.

L’articolo “Metis observation of the onset of fully developed turbulence in the solar corona” di Daniele Telloni, Luca Sorriso-Valvo, Gary P. Zank, Marco Velli , Vincenzo Andretta, Denise Perrone, Raffaele Marino, Francesco Carbone, Antonio Vecchio, Laxman Adhikari, Lingling Zhao, Sabrina Guastavino, Fabiana Camattari, Chen Shi, Nikos Sioulas, Zesen Huang, Marco Romoli, Ester Antonucci, Vania Da Deppo, Silvano Fineschi, Catia Grimani, Petr Heinzel, John D. Moses, Giampiero Naletto, Gianalfredo Nicolini, Daniele Spadaro, Marco Stangalini, Luca Teriaca, Michela Uslenghi, Lucia Abbo, Frederic Auchere, Regina Aznar Cuadrado, Arkadiusz Berlicki, Roberto Bruno, Aleksandr Burtovoi, Gerardo Capobianco, Chiara Casini, Marta Casti,  Paolo Chioetto, Alain J. Corso, Raffaella D’Amicis, Yara De Leo, Michele Fabi, Federica Frassati, Fabio Frassetto, Silvio Giordano, Salvo L. Guglielmino, Giovanna Jerse, Federico Landini, Alessandro Liberatore, Enrico Magli, Giuseppe Massone, Giuseppe Nisticò, Maurizio Pancrazzi, Maria G. Pelizzo, Hardi Peter, Christina Plainaki, Luca Poletto, Fabio Reale, Paolo Romano, Giuliana Russano, Clementina Sasso, Udo Schuhle, Sami K. Solanki, Leonard Strachan, Thomas Straus, Roberto Susino, Rita Ventura, Cosimo A. Volpicelli, Joachim Woch, Luca Zangrilli, Gaetano Zimbardo e Paola Zuppella è stato pubblicato oggi sulla rivista The Astrophysical Journal Letters.

Immagine satellitare dal Solar Dynamics Observatory - SDO della NASA. Foto di Amy Moran
questa immagine satellitare dal Solar Dynamics Observatory – SDO della NASA mostra la luce ultravioletta in marrone chiaro. Foto NASA di Amy Moran, in pubblico dominio

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF).

GRANDE GENOMA, PICCOLI SPERMATOZOI: Un gruppo di ricercatori dell’Università di Padova ha analizzato la dimensione degli spermatozoi in 1.400 specie di tetrapodi

Nonostante le differenze di dimensioni corporee – da frazioni di grammo a molte tonnellate – che si osserva nei tetrapodi, vertebrati con quattro arti che comprendono anfibi, rettili, uccelli e mammiferi, la dimensione delle cellule che li compongono varia generalmente molto meno. Con un’eccezione: quella degli spermatozoi che, sebbene svolgano tutti la medesima funzione di trasporto del genoma paterno all’interno dell’uovo, possono misurare da pochi micron a oltre 3 mm.

L’interesse nel comprendere queste differenze da un punto di vista evolutivo è aumentato negli ultimi due decenni circa, ma le metodologie statistiche applicate non permettevano di investigarlo ad una scala tassonomica ed evolutiva ampia; questo è stato poi possibile solo grazie all’abbondante disponibilità di dati riguardanti determinate specie e allo sviluppo di nuove metodologie soprattutto per il controllo filogenetico.

Relazione tra lunghezza degli spermatozoi e massa corporea nei tetrapodi

Utilizzando un approccio innovativo per questo tipo di studi – la multi-ottimizzazione di Pareto –, un gruppo di ricercatori del dipartimento di Fisica dell’Università di Padova diretto da Amos Maritan e composto da Flavio Seno e Loren Koçillari, esperti di fisica statistica, e un gruppo di biologi evoluzionisti del dipartimento di Biologia composto da Maria Berica Rasotto, Silvia Cattelan e Andrea Pilastrosono riusciti per la prima volta a esplorare come si è evoluta la dimensione degli spermatozoi in relazione alla massa corporea nei tetrapodi basandosi sull’analisi di quasi 1.400 specie tra cui rane, piccoli uccelli come il luí, piccoli mammiferi come il toporagno e alcuni pipistrelli, ma anche il capodoglio, l’elefante, la giraffa, l’orso e l’uomo stesso.

Lo studio dal titolo “Tetrapod sperm length evolution in relation to body mass is shaped by multiple trade-offs” e pubblicato sulla rivista Nature Communications dimostra che l’evoluzione della lunghezza degli spermatozoi (o spermi) nei tetrapodi, negli ultimi 350 milioni di anni, è stata influenzata dagli stessi vincoli in gruppi di animali molto diversi per fisiologia (omeotermi, come uccelli e mammiferi, ed eterotermi, come rettili e anfibi), biologia riproduttiva (fecondazione interna o esterna), e relazioni filogenetiche, suggerendo che per tutti valgano le medesime costrizioni evolutive.

I ricercatori hanno inoltre dimostrato che i fattori associati all’evoluzione di spermatozoi “giganti” nei tetrapodi sono in parte legati, come prevedibile, alle strategie riproduttive – ad esempio il grado di competizione spermatica (quando una femmina si accoppia con molti maschi e gli spermi rivali entrano in competizione per fecondare le uova disponibili) e il numero di uova da fecondare –, ma anche, sorprendentemente, alle dimensioni del genoma, un aspetto finora quasi inesplorato.

Se l’aspettativa iniziale era, infatti, trovare una proporzione diretta tra la dimensione del genoma e quella degli spermatozoi, lo studio dimostra esattamente il contrario: le specie con spermi lunghi hanno un genoma più piccolo rispetto alle specie con spermi più corti.

«I tratti riproduttivi sono spesso difficili da studiare in quanto influenzati da tantissimi fattori diversi»,

spiega Silvia Cattelan, corresponding author dello studio e, al tempo della ricerca, postdoc al dipartimento di Biologia dell’Università di Padova.

«Il concetto di ottimalità di Pareto e il metodo statistico che abbiamo usato in questo studio ci hanno aiutato a sbrogliare questa matassa, permettendoci di dimostrare come la lunghezza degli spermatozoi sia associata in maniera complessa e non lineare alla massa corporea delle specie e quali siano stati i fattori che hanno principalmente influenzato l’evoluzione della lunghezza degli spermatozoi nei tetrapodi. Con questo risultato speriamo di stimolare ricerche future al fine di indagare, per esempio, se l’evoluzione di un genoma grande possa essere stato limitato in specie ad alta competizione spermatica».

Silvia Cattelan
Silvia Cattelan

«Questo studio apre nuove prospettive nella comprensione di uno dei fenomeni più affascinanti ed enigmatici della biodiversità animale, ossia quello dell’enorme variabilità interspecifica della dimensione dei gameti maschili in questo importante gruppo di vertebrati» concludono Maria Berica Rasotto e Andrea Pilastro, biologi evoluzionisti dell’Ateneo e membri, col collega Maritan, del National Biodiversity Future Center.

Link alla ricerca: https://www.nature.com/articles/s41467-024-50391-0

Titolo: Tetrapod sperm length evolution in relation to body mass is shaped by multiple trade-offs Nature Communications – 2024

Autori: Loren Koçillari, Silvia Cattelan, Maria Berica Rasotto, Flavio Seno, Amos Maritan e Andrea Pilastro

 

Testo e immagini dall’Ufficio Stampa dell’Università di Padova

DALLA FISICA STATISTICA DELLE RETI COMPLESSE, UN AIUTO PER COMPRENDERE I FENOMENI EMERGENTI

Dal cambiamento climatico alla polarizzazione sociale, ricercatori dell’Università di Padova svelano la “geometria nascosta” di questi fenomeni

Dalle relazioni sociali alle arterie principali del traffico urbano, dai circuiti neuronali alle reazioni metaboliche nelle cellule, i fenomeni che influenzano la nostra vita derivano da interazioni complesse tra molteplici elementi. Questi sistemi, definiti appunto “complessi”, generano fenomeni emergenti che spesso non possono essere compresi analizzando l’attività delle loro singole componenti.

Un esempio tipico sono le “comunità funzionali”, gruppi di componenti altamente correlati e interagenti, con funzioni simili. Queste comunità possono includere, ad esempio, persone con interessi comuni, geni o proteine che collaborano per funzioni cellulari specifiche o nicchie di organismi che cooperano per mantenere l’equilibrio ecologico del loro habitat.

Nello studio dal titolo “Unraveling the mesoscale organization induced by network-driven processes” pubblicato sulla rivista PNAS, che vede come primo autore Giacomo Barzon del dipartimento di Fisica e Astronomia dell’Ateneo patavino e del Padova Neuroscience Centerper comprendere come le singole unità di un sistema comunicano tra di loro gli autori hanno investigato come piccole perturbazioni applicate a ciascuna unità si propagano nel tempo all’interno delle reti complesse di cui fanno parte. Questo ha permesso di ricostruire la “geometria nascosta” di questi fenomeni, basata su una misura di distanza effettiva tra le componenti. Una breve distanza indica una comunicazione efficace tra le componenti, mentre una distanza elevata suggerisce che questi sono, probabilmente, funzionalmente scollegati.

Questo framework ha significative implicazioni pratiche e offre una base per diverse applicazioni future. Per esempio, può aiutare a comprendere come il cambiamento climatico potrebbe influenzare le dinamiche delle comunità sociali o ecologiche, consentendo di prevedere e mitigare i suoi effetti sull’ambiente con interventi mirati. O, ancora, nel contesto dei social network può fornire insight su come gruppi sempre più polarizzati emergano e interagiscano online, suggerendo strategie per promuovere un dialogo più costruttivo e mitigare la polarizzazione sociale.

«Comprendere a fondo i meccanismi e le condizioni che generano questi fenomeni è essenziale per capire il funzionamento dei sistemi complessi e sviluppare strategie mirate per ripristinarli quando necessario – commenta Giacomo Barzon, primo autore della ricerca –. Negli ultimi trent’anni, la scienza delle reti si è concentrata sull’analisi delle connessioni strutturali tra le componenti, ma questo approccio non basta per spiegare l’emergere delle comunità funzionali. È infatti cruciale considerare anche i fenomeni fisici specifici che si verificano all’interno delle reti e le condizioni ambientali che influenzano la velocità e l’efficienza di questi processi. Nei neuroni, ad esempio, la temperatura e l’equilibrio chimico possono modulare la velocità dei segnali elettrici, mentre nelle epidemie fattori come clima, densità di popolazione e comportamenti sociali possono influenzare la diffusione dei virus. Tuttavia, l’approccio specialistico delle diverse discipline ha limitato la comprensione completa dell’emergere di questi pattern funzionali».

Giacomo Barzon
Giacomo Barzon

«I nostri metodi sono basati sulla fisica statistica delle reti complesse, una disciplina abbastanza recente ma ben rappresentata dai gruppi di ricerca del nostro ateneo, e in particolare del Dipartimento di Fisica e Astronomia – continua Manlio De Domenico, docente di fisica delle reti complesse dell’Ateneo patavino che ha guidato il team internazionale –. Il nostro studio nel laboratorio di ricerca computazionale, il CoMuNe Lab, in collaborazione con il LIPh Lab e l’Università di Barcellona, ha dimostrato che molti processi fisici, chimici, biologici e sociali possono essere meglio compresi in termini di moduli funzionali, che rispondono all’ambiente e si organizzano in maniera inattesa rispetto a quanto si potrebbe dedurre dalla sola conoscenza della scala microscopica delle loro componenti. L’universalità di questi fenomeni è uno degli aspetti più studiati, e ancora meno compresi, della fisica dei sistemi complessi».

Manlio De Domenico
Manlio De Domenico

Link alla ricerca: https://www.pnas.org/doi/10.1073/pnas.2317608121

Titolo: Unraveling the mesoscale organization induced by network-driven processesPNAS – 2024

Autori: Giacomo Barzon, Oriol Artime, Samir Suweis, Manlio De Domenico

Dalla fisica statistica delle reti complesse, un aiuto per comprendere i fenomeni emergenti; lo studio pubblicato su PNAS. Immagine di Elisa

 

Testo e foto dall’Ufficio Stampa dell’Università di Padova

PIANTE IN MOVIMENTO: Progetto ROOMors – At the roots of motor intentions

Inaugurato oggi il laboratorio dove si studiano le piante e come sono in grado di pianificare intenzionalmente un’azione

L’intenzione è “nascosta” nelle caratteristiche specifiche del movimento stesso. Eseguire un’azione non prevede solo una componente biomeccanica, ma anche una componente intenzionale che tiene conto del perché un’azione viene eseguita. Per esempio, è possibile afferrare un bicchiere d’acqua per portarlo alla bocca e bere, oppure si può eseguire la stessa azione per porgere il bicchiere d’acqua ad un’altra persona. Nel caso esposto il modo in cui viene afferrato il bicchiere sarà diverso a seconda della ragione ultima che ha guidato l’azione.

ROOMors – At the roots of motor intentions – sotto la supervisione del Prof. Umberto Castiello in qualità di Responsabile scientifico del progetto di ricerca, apre nuovi scenari nella comprensione di questi processi considerando organismi privi di un sistema nervoso centrale quali appunto le piante.

«Le nostre ricerche più recenti suggeriscono che anche le piante sono in grado di pianificare un’azione e che tali azioni potrebbero essere guidate da una componente intenzionale. Questo progetto affronta lo studio di processi che sino a pochi anni fa sarebbe stato impensabile ascrivere alle piante: la capacità di pianificare un movimento in base all’intenzione che lo determina, di comunicare attraverso una forma di linguaggio chimico e di prendere decisioni importanti per risolvere i problemi dettati da un ambiente in continua mutazione», dice Umberto CastielloResponsabile scientifico di ROOMors che avrà durata quinquennale ed è finanziato con 4 milioni di euro. E lo fanno senza neuroni e cervello in una maniera più efficace di tanti animali inclusi gli esseri umani. Con un’analisi di tipo fisio-molecolare si ambisce a codificare i geni che sottostanno alla capacità delle piante di agire in maniera intenzionale. Queste conoscenze – continua Castiello – potrebbero portare ad esplorare parallelismi con le specie animali per comprendere le origini comuni di tali processi. Noi esseri umani condividiamo con le piante tra il 30 ed il 50% dei geni».

Attraverso appunto l’utilizzo di tecniche sofisticate sia per l’analisi del movimento, che per la rilevazione delle molecole chimiche utilizzate dalle piante per comunicare e per la caratterizzazione genetica, ROOMors andrà alla ‘radice’ dell’”intenzionalità”.

Il progetto si inserisce all’interno dell’area di ricerca denominata “Psicologia Comparata” che studia, attraverso un metodo comparativo il comportamento delle diverse specie animali, incluso l’uomo e le piante. Viene studiata la capacità delle piante di pianificare un movimento e di comunicare attraverso un linguaggio chimico e motorio che per certi aspetti le accomuna alle modalità utilizzate dalle specie animali. Tutto questo senza voler trasformare le piante in animali o antropomorfizzarle. Lo scopo è di trovare analogie che permettano di arrivare alle radici evolutive di tali processi.

«Il progetto nasce da una serie di studi in cui abbiamo dimostrato per la prima volta, attraverso l’utilizzo di sofisticate tecniche di analisi del movimento, che le piante sono in grado di pianificare una risposta in base alle caratteristiche degli stimoli ambientali e al contesto in cui si sviluppano. Inoltre, le nostre ricerche indicano che le piante sono in grado di riconoscere l’attitudine sociale espressa da altre piante e agire di conseguenza – sottolinea Umberto Castiello –. Piuttosto che studiare le piante per scopi legati alla produttività e allo sfruttamento cerchiamo di capire come le piante vivono la loro vita e applicano soluzioni “intelligenti”. L’idea è di arrivare a decodificare il loro linguaggio chimico e comportamentale per farci dire da loro come salvaguardare l’ambiente e la nostra specie. Il modello sperimentale utilizzato è la pianta di pisello: abbiamo scelto questa pianta perché il suo movimento verso un potenziale supporto è indice di una azione orientata verso un oggetto. Un perfetto esempio di percepire per agire. Le piante – conclude Castiello – vengono studiate in un ambiente all’interno del quale viene controllata l’illuminazione, l’irrigazione, la temperatura e l’umidità. Durante il loro sviluppo siamo in grado di effettuare in tempo reale l’analisi tridimensionale del movimento, l’analisi delle molecole volatili utilizzate per comunicare e l’analisi dei potenziali elettrici utilizzati per scandagliare l’ambiente circostante. L’acquisizione simultanea di tutti questi segnali e la possibilità di poterli correlare rende il nostro laboratorio unico al mondo. Ricercatrici e ricercatori con competenze diverse quali la bioinformatica, la bioingegneria, la chimica analitica, la filosofia, la fisiologia vegetale e la psicologia fisiologica e comparata studiano il comportamento delle piante con le tecnologie più sofisticate».

«Tre sono i livelli in cui questo progetto si innesta nelle ricerche del dipartimento. Il primo è teorico: lo studio della cognizione affrontato anche dalla prospettiva vegetale fornisce una visione più integrata dell’evoluzione dei processi cognitivi. Il secondo è di opportunità perché offre a giovani psicologi e psicologhe la possibilità di confrontarsi con nuove tecnologie arricchendo così il bagaglio metodologico ad alta tecnologia tipico della formazione psicologica che già include tecniche quali la risonanza magnetica funzionale, l’elettroencefalografia e altre applicazioni nell’ambito delle neuroscienze”, ­ afferma Francesca Pazzaglia, Direttrice del Dipartimento di Psicologia Generale dell’Università di Padova. Il terzo, infine, è applicativo: questo filone di ricerche potrà contribuire a comprendere se i meccanismi che permettono alle piante di percepire, agire e comunicare sono influenzati dai cambiamenti climatici in atto. Un’agricoltura di precisione che mira alla salvaguardia delle risorse oltre alla ottimizzazione di input chimici, meccanici e biologici non può prescindere da una valutazione “psicologica” della capacità delle piante di fronteggiare i cambiamenti in atto.”

Umberto Castiello è Professore Ordinario di Neuroscienze Cognitive al Dipartimento di Psicologia Generale dell’Università di Padova. Ha lavorato in università straniere quali l’Università di Lione, l’Università dell’Arizona, l’Università di Melbourne e l’Università di Londra. È diventato Professore Ordinario all’Ateneo patavino nel 2004 con chiamata per chiara fama. Membro di diverse società scientifiche tra cui il “Centro Beniamino Segre” all’Accademia dei Lincei. La sua attività di ricerca è centrata sull’utilizzo delle tecniche di analisi tridimensionale del movimento e di spettrometria di massa per studiare il comportamento e la comunicazione negli esseri umani e nelle piante. I suoi studi più recenti sono per lo più basati sullo sviluppo di nuovi e sofisticati esperimenti che impiegano l’analisi del movimento e altre metodologie per studiare il comportamento e la comunicazione nelle piante. I suoi risultati più importanti includono la dimostrazione che le piante, anche in assenza di un cervello, sono in grado di percepire e valutare le caratteristiche fisiche degli elementi esterni al fine di poter “pianificare” un movimento funzionale al raggiungimento di un obiettivo. Aprendo così una nuova visione per lo studio delle capacità cognitive, affrontato sia dalla prospettiva animale sia vegetale (neurale e non neurale) che offre una visione più integrata dell’evoluzione dei processi cognitivi e delle interazioni ecologiche che contribuiscono a modellarli. La sua ricerca è stata finanziata da vari programmi e fondazioni internazionali e nazionali. Per ultimo il prestigioso ERC Advanced Grants per studiare l’intenzionalità nelle piante. Ha pubblicato oltre 300 lavori su riviste internazionali.

Testo, video e immagini dall’Ufficio Stampa dell’Università di Padova

DIMOSTRATO PER LA PRIMA VOLTA UN LEGAME DIRETTO TRA MICROBIOTA INTESTINALE E SISTEMA NERVOSO PERIFERICO

Lo studio apre nuove prospettive terapeutiche per le lesioni dei nervi ed è il risultato di una collaborazione internazionale tra le ricercatrici di NICO – Università di Torino, Università di Padova e Università di Hannover.

Il microbiota intestinale, costituito da un insieme di microorganismi tra cui batteri, virus e funghi, colonizza il tratto gastrointestinale umano e influisce in modo decisivo sulla salute. Negli ultimi decenni sono stati dimostrati gli effetti del microbiota su altri organi e le alterazioni di questo complesso ecosistema – note come disbiosi – sono state collegate all’insorgenza di diverse patologie.

Ora, per la prima volta, c’è la conferma di un legame diretto tra microbiota intestinale e sistema nervoso periferico. In particolare, lo studio pubblicato di recente sulla rivista scientifica Gut Microbes dimostra come la totale o parziale assenza del microbiota intestinale interferisca negativamente sullo sviluppo dei nervi periferici e del loro bersaglio, il muscolo scheletrico.

La ricerca è frutto di una collaborazione internazionale tra l’Università di Torino – con le professoresse Giulia Ronchi, Giovanna Gambarotta e Stefania Raimondo del NICO – Neuroscience Institute Cavalieri Ottolenghi e del Dipartimento di Scienze Cliniche e Biologiche, insieme al prof. Salvatore Oliviero del Dipartimento di Scienze della Vita e Biologia dei Sistemi UniTo ­- unitamente alla prof.ssa Matilde Cescon del Dipartimento di Medicina Molecolare dell’Università di Padova e nella persona della prof.ssa Kirsten Haastert-Talini per l’Università di Hannover in Germania.

Stefania Raimondo - Giulia Ronchi - Giovanna Gambarotta (NICO-UNITO)
Stefania Raimondo – Giulia Ronchi – Giovanna Gambarotta (NICO-UNITO)

Lesioni dei nervi periferici: cause, incidenza e strategie terapeutiche

Incidenti stradali, sportivi, domestici o sul lavoro e (non ultimi) anche interventi chirurgici. Sono queste le cause più frequenti delle lesioni dei nervi periferici che in Italia raggiungono un’incidenza di 400.000 casi all’anno.

legame tra microbiota intestinale e sistema nervoso periferico Immagini acquisite al microscopio elettronico che mostrano due fibre mieliniche a confronto. A parità di diametro dell’assone (A), i nervi che si sono sviluppati in totale assenza di microbiota mostrano una guaina mielinica più spessa (M) rispetto ai nervi che si sono sviluppati in presenza di un normale microbiota
Immagini acquisite al microscopio elettronico che mostrano due fibre mieliniche a confronto. A parità di diametro dell’assone (A), i nervi che si sono sviluppati in totale assenza di microbiota mostrano una guaina mielinica più spessa (M) rispetto ai nervi che si sono sviluppati in presenza di un normale microbiota

«Malgrado i notevoli progressi della ricerca e della microchirurgia ricostruttiva – che oggi puntano su ingegneria tissutale e nuovi biomateriali – il recupero delle funzioni nervose e muscolari dopo una lesione è spesso solo parziale, influendo negativamente sulla qualità della vita dei pazienti. È quindi necessario – sottolineano Matilde Cescon dell’Università di Padova e Giulia Ronchi del NICO – Università di Torino – approfondire la conoscenza dei complessi meccanismi neurobiologici che regolano la rigenerazione dei nervi. Indagare il ruolo del microbiota intestinale in condizioni patologiche o di lesioni va proprio in questa direzione: aprire strade inesplorate che offrano nuove prospettive terapeutiche, con importanti ricadute cliniche».

Questo studio, che dimostra per la prima volta l’esistenza di un asse intestino – sistema nervoso periferico, è il punto di partenza per il progetto Gut-NeuroMuscle, finanziato dal programma PRIN – Progetti di Rilevante Interesse Nazionale con cui il Ministero della Ricerca sostiene la ricerca di base, che ha l’obiettivo di esplorare l’interazione tra microbiota e rigenerazione nervosa.

legame tra microbiota intestinale e sistema nervoso periferico Grafico “a vulcano” ottenuto in seguito a sequenziamento dell’RNA messaggero, nel quale ogni puntino rappresenta un gene la cui espressione è deregolata nei neuroni sensitivi che si sono sviluppati in totale assenza di microbiota (in rosso quelli espressi di più, in blu quelli espressi di meno)
Grafico “a vulcano” ottenuto in seguito a sequenziamento dell’RNA messaggero, nel quale ogni puntino rappresenta un gene la cui espressione è deregolata nei neuroni sensitivi che si sono sviluppati in totale assenza di microbiota (in rosso quelli espressi di più, in blu quelli espressi di meno)

Gut-NeuroMuscle (Intestino e sistema neuromuscolare: studio dell’impatto del microbiota sulla rigenerazione nervosa e reinnervazione muscolare dopo lesione del nervo periferico) vede coinvolti due gruppi di ricerca composti dalle prof.sse Giulia Ronchi e Giovanna Gambarotta (NICO – Università di Torino) e dalla prof.ssa Matilde Cescon (Università di Padova) e la dott.ssa Sonia Calabrò (Università di Padova).

Giulia Ronchi - Giovanna Gambarotta - Stefania Raimondo (NICO-UNITO)
Giulia Ronchi – Giovanna Gambarotta – Stefania Raimondo (NICO-UNITO)

Link alla ricerca: www.tandfonline.com/doi/full/10.1080/19490976.2024.2363015

Titolo: “Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation – «Gut Microbes»- 2024

Autori: Matilde Cescon, Giovanna Gambarotta, Sonia Calabrò, Chiara Cicconetti, Francesca Anselmi, Svenja Kankowski, Luisa Lang, Marijana Basic, Andre Bleich, Silvia Bolsega, Matthias Steglich, Salvatore Oliviero, Stefania Raimondo, Dario Bizzotto, Kirsten Haastert-Talini & Giulia Ronchi

 

Testo e foto dall’Ufficio Stampa Area Relazioni Esterne e con i Media Università degli Studi di Torino