News
Ad
Ad
Ad
Tag

RNA

Browsing
Da Pantelleria a Marte: in un lago siciliano si sperimenta l’origine della vita

Nell’isola siciliana, un team di ricercatori italiani ha identificato un ambiente naturale con analogie geologiche con Marte e che potrebbe simulare anche le condizioni della Terra primordiale. Lo studio, pubblicato sull’International Journal of Molecular Sciences, è frutto della collaborazione tra Consiglio nazionale delle ricerche (CNR), Istituto nazionale di astrofisica (INAF) e le Università della Tuscia e Sapienza di Roma, finanziato dall’Agenzia Spaziale Italiana (ASI).
In una lettera del 1871 al suo amico Joseph Dalton Hooker, Charles Darwin ipotizzava che la vita potesse essere nata in ‘un piccolo stagno caldo’. Oggi, a oltre 150 anni di distanza, quell’ipotesi trova maggiori conferme grazie allo studio che un team interdisciplinare di scienziati italiani ha effettuato sull’isola di Pantelleria, in particolare presso il piccolo lago termale chiamato ‘Bagno dell’Acqua’: Questo luogo si è rivelato un laboratorio naturale ideale per simulare ambienti simili a quelli che potrebbero essere esistiti miliardi di anni fa sia sulla Terra che su Marte, offrendo preziosi indizi sui meccanismi universali dell’origine della vita.
Immagine satellitare con esperimenti
Immagine satellitare con esperimenti

La ricerca, pubblicata sull’International Journal of Molecular Sciences, è stata condotta da ricercatori e ricercatrici del Consiglio nazionale delle ricerche (CNR), dell’Università della Tuscia, dell’Istituto nazionale di astrofisica (INAF), dell’Università Sapienza di Roma, con la collaborazione dell’Ente Parco nazionale Isola di Pantelleria e finanziata dall’Agenzia spaziale italiana (ASI)  con i progetti ‘ExoMars’ e ‘Migliora’.

“Il lago ‘Bagno dell’Acqua’ si distingue per la combinazione unica di alta alcalinità, attività idrotermale, diversità mineralogica e attività microbica. Utilizzando l’acqua del lago, ricca di minerali, siamo riusciti a sintetizzare molecole di RNA (una delle due molecole, assieme al DNA, fondamentali per la vita) a partire da alcuni suoi precursori: i nucleotidi contenenti la guanina, una delle quattro famose basi azotate”,
spiega Giovanna Costanzo, biologa molecolare dell’Istituto di biologia e patologia molecolari del CNR (CNR-IBPM).
“A Pantelleria, in un’ambiente esterno al laboratorio, dove solitamente si svolgono le nostre attività, abbiamo verificato la possibilità di condurre esperimenti di astrobiologia, sfruttando le proprietà chimiche e fisiche di un lago con caratteristiche simili sia a quelle ipotizzate per la Terra primitiva, ovvero il nostro pianeta circa 4,5 miliardi di anni fa, che a quelle rilevate in aree marziane di grande interesse astrobiologico, come il cratere Jezero e la regione di Oxia Planum, attualmente considerati prioritari per la ricerca di antiche forme di vita”.
I ricercatori sono riusciti a sintetizzare non solo l’RNA, ma anche tutte le basi azotate presenti sia nel DNA che nell’RNA.
“Inoltre, sono stati ottenuti anche componenti del PNA (Acido Peptidico Nucleico), un potenziale precursore degli attuali acidi nucleici, che potrebbe aver rappresentato un ponte tra genetica e metabolismo” spiega il chimico organico Raffaele Saladino dell’Università della Tuscia di Viterbo. “La vita, pertanto, avrebbe potuto avere una modalità di origine chimica comune sia nel lontano passato di Marte che sulla Terra primitiva”.
Il progetto Migliora (‘Modeling Chemical Complexity: all’Origine di questa e di altre Vite per una visione aggiornata delle missioni spaziali’) si inserisce all’interno di un programma nazionale di astrobiologia che Asi sta coordinando già dal 2020.
“I risultati di questo progetto costituiscono un tassello fondamentale nella conoscenza dell’origine della vita sulla Terra” sottolinea Claudia Pacelli, Responsabile Scientifico del progetto per Asi. “Riteniamo che queste ricerche contribuiranno inoltre a rafforzare il ruolo della comunità scientifica italiana nel contesto della ricerca astrobiologica internazionale”.
microbialite Pantelleria
microbialite Pantelleria
Riferimenti bibliografici:
Valentina Ubertini, Eleonora Mancin, Enrico Bruschini, Marco Ferrari, Agnese Piacentini, Stefano Fazi, Cristina Mazzoni, Bruno Mattia Bizzarri, Raffaele Saladino, Giovanna Costanzo, “The “Bagno dell’Acqua” Lake as a Novel Mars-like Analogue: Prebiotic Syntheses of PNA and RNA Building Blocks and Oligomers”, International Journal of Molecular Sciences, 2025, 26, 6952. https://doi.org/10.3390/ijms26146952
Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Con una nuova ricerca sul protoribosoma, scoperte le prime fasi dell’evoluzione del ribosoma all’origine della vita sulla Terra

Un team interdisciplinare di scienziati di cui fa parte l’Università degli Studi di Milano ha scoperto che l’interazione tra proteine e RNA nel ribosoma primordiale, un fossile molecolare ancora presente nella struttura cellulare attuale, ha prevenuto la degradazione dell’RNA stesso, permettendo l’emergere delle attuali e specifiche relazioni RNA-proteine, essenziali per l’integrità strutturale ribosomiale e quindi per la vita. La pubblicazione su Nucleic Acids Research

Con una nuova ricerca sul protoribosoma, scoperte le prime fasi dell’evoluzione del ribosoma all’origine della vita sulla Terra

Milano, 22 ottobre 2024 – La vita, come la conosciamo oggi, si basa sulla connessione tra gli acidi nucleici, che immagazzinano informazioni, le proteine, che svolgono innumerevoli compiti, e i lipidi che formano le membrane circostanti. Queste interazioni tra precursori molecolari iniziarono a verificarsi più di 4 miliardi di anni fa, prima che emergessero le prime forme di vita.

Ora un team interdisciplinare di scienziati dell’Università Statale di Milano, dell’Università Karlova di Praga, dell’Università di Chimica e Tecnologia di Praga e dell’Istituto di Scienze di Tokyo ha condotto una nuova ricerca sul protoribosoma, l’antenato dell’attuale ribosoma, ancora incorporato in esso. I risultati sono stati pubblicati su Nucleic Acids Research

Le cellule contengono i ribosomi, le macchine molecolari che producono le proteine. A causa della loro onnipresenza e dell’elevata conservazione in tutte le forme di vita sulla Terra, sono considerati dai biologi dell’evoluzione la migliore connessione con il nostro passato biologico” spiega Giuliano Zanchetta, docente di Fisica applicata del Dipartimento di Biotecnologie Mediche e Medicina Traslazionale dell’Università Statale di Milano e uno degli autori principali dello studio.

Il protoribosoma, una sorta di fossile molecolare, circonda il cosiddetto peptidyl transferase center (PTC), responsabile della formazione del legame peptidico, un processo essenziale nella sintesi proteica. Studi precedenti hanno dimostrato che l’RNA da solo potrebbe svolgere la funzione del PTC. Tuttavia, nella struttura ribosomiale, le “code” di diverse proteine ​​ribosomiali (rPeptidi) si trovano in prossimità del PTC e sono considerate residui delle più antiche specie peptidiche che probabilmente interagivano con il protoribosoma prima che il ribosoma si evolvesse nel complesso RNA-proteine come lo conosciamo oggi. Il ruolo di questi rPeptidi non era stato finora studiato.

Attraverso lo studio di due distinti stadi evolutivi dell’RNA protoribosomiale, i ricercatori hanno rivelato che gli rPeptidi hanno avuto una funzione fondamentale nel guidare la compartimentazione e quindi la stabilità del protoribosoma, proteggendo l’RNA dalla degradazione e permettendone lo sviluppo così come lo si conosce oggi.

I ricercatori hanno infatti studiato due costrutti tra i 100 e i 600 nucleotidi. Il costrutto piccolo è strutturalmente più flessibile: durante la sua interazione poco specifica con gli rPeptidi, si è notato che questi ultimi, in un ampio intervallo di concentrazioni, inducono coacervazione, un processo che porta alla formazione di goccioline liquide concentrate. È questo che protegge l’RNA dalla degradazione. Il costrutto grande, invece, è strutturalmente più definito, come dimostrano le simulazioni atomistiche al computer eseguite presso l’Università di Chimica e Tecnologia di Praga e la coacervazione è meno estesa rispetto al costrutto piccolo.

La formazione spontanea di gocce, che derivano dal processo di interazione dell’RNA con rPeptidi, dipende in modo sottile dalla sequenza e dalla struttura dell’RNA, il che implica che è piuttosto specifica per le particelle ribosomiali. Inoltre, la ricerca suggerisce che l’interazione tra RNA e proteine, ​​prima che emergessero le prime forme di vita, abbia offerto un significativo vantaggio biofisico, soprattutto fornendo compartimentalizzazione e prevenendo la degradazione dell’RNA. Queste prime interazioni RNA-proteine ​​possono essere considerate come precursori delle più complesse relazioni RNA-proteine ​​che sono oggi essenziali per l’integrità strutturale ribosomiale”, spiega Giuliano Zanchetta.

I nostri risultati evidenziano che i peptidi svolgono un ruolo vitale nel guidare la condensazione e nello stabilizzare il protoribosoma. Questo fa luce su come i processi vitali fondamentali potrebbero essere stati protetti e compartimentati in un mondo prebiotico” conclude Klára Hlouchová, dell’Università Karlova di Praga, una delle ricercatrici principali dello studio.

 

 

Testo dall’Ufficio Stampa Direzione Comunicazione ed Eventi istituzionali Università Statale di Milano.

L’RNA non codificante regola la trasmissione dei segnali nervosi, un nuovo studio chiarisce come – Una ricerca della Sapienza e dell’Istituto Italiano di Tecnologia ha descritto per la prima volta un meccanismo di controllo della morfologia dei neuroni e delle comunicazioni nervose che si basa sull’interazione tra un RNA non codificante e un RNA messaggero. Lo studio, pubblicato su Nucleic Acids Research, apre nuove interpretazioni sull’effettivo ruolo dei vari tipi di RNA nei processi biologici.

Le molecole di RNA che non producono proteine, dette non codificanti, sono state descritte nell’ultimo decennio di ricerche come fondamentali per la modulazione dell’espressione dell’informazione contenuta nei geni e dei processi che determinano lo sviluppo di tessuti e organi diversi, compreso il sistema nervoso. La loro peculiare caratteristica di agire sul singolo tessuto in maniera specifica e in momenti precisi dello sviluppo e del differenziamento cellulare rende questa classe di molecole estremamente interessante nell’ ambito della ricerca biomedica.

In un recente studio coordinato dalla Sapienza Università di Roma e dall’Istituto Italiano di Tecnologia (IIT), e finanziato da un progetto ERC-Synergy, è stata scoperta una nuova molecola di RNA non codificante lungo (lncRNA), denominata CyCoNP, ed è stato descritto il meccanismo attraverso il quale regola la ramificazione dei prolungamenti neurali (neuriti) artefici della trasmissione e ricezione degli impulsi nervosi. I risultati del lavoro, pubblicati sulla rivista Nucleic Acids Research, confermano il ruolo degli RNA non codificanti nel controllo dell’omeostasi neuronale, ampliando così la lista di possibili bersagli e approcci terapeutici per il trattamento delle patologie neurologiche.

I ricercatori, coordinati da Irene Bozzoni del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza e del centro CLN2S di IIT, hanno caratterizzato il meccanismo molecolare e biologico attraverso cui questo lncRNA agisce. Nello specifico, è stato scoperto che CyCoNP è molto abbondante nei motoneuroni umani, in particolare nella fase precoce di differenziamento dove sono abbondanti cellule allo stadio di progenitori neurali. In queste cellule, il lncRNA regola in maniera puntuale i livelli di espressione di NCAM1, una proteina fondamentale per la funzionalità neuronale e specialmente per la regolazione della ramificazione dei neuriti. I ricercatori sono riusciti a dissezionare nel dettaglio il meccanismo d’azione di CyCoNP, che coinvolge l’interazione fisica tra il lncRNA, l’RNA messaggero che permette la produzione di NCAM1 e un microRNA che è in grado di bersagliare entrambe le molecole.

Il lavoro, che descrive un meccanismo di azione finora non ancora caratterizzato per gli RNA non codificanti, contribuisce in maniera significativa ad espandere le conoscenze sul funzionamento di questa eterogenea classe di molecole e di quanto queste possano avere un ruolo chiave in processi vitali delle nostre cellule, come la regolazione della trasmissione dei segnali nervosi.

Mantenere alta l’attenzione sullo studio delle molteplici modalità d’azione degli RNA non codificanti è cruciale per chiarire nuovi meccanismi attraverso i quali l’RNA funziona in specifici processi biologici.

Riferimenti bibliografici:

CyCoNP lncRNA establishes cis and trans RNA-RNA interactions to supervise neuron physiology – Desideri F, Grazzi A, Lisi M et al., Nucleic Acids Research 2024, DOI:10.1093/nar/gkae590

microscopio cellule invecchiamento RNA lungo non codificante
Un meccanismo di controllo della morfologia dei neuroni e delle comunicazioni nervose che si basa sull’interazione tra un RNA non codificante e un RNA messaggero. Foto PublicDomainPictures

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Terapie a RNA: fotografata l’interazione tra RNA e serina idrossimetiltrasferasi, una proteina metabolica coinvolta nella crescita dei tumori

In uno studio internazionale, coordinato dal Dipartimento di Scienze biochimiche A. Rossi Fanelli della Sapienza Università di Roma, è stata utilizzata una tecnica all’avanguardia per cogliere i dettagli del meccanismo di inibizione di una proteina metabolica da parte dell’RNA. I risultati della ricerca sostenuta da Fondazione AIRC per la Ricerca sul Cancro sono stati pubblicati sulla rivista Molecular Cell. Se i dati saranno confermati in ulteriori studi, potranno offrire nuove speranze di applicazione delle terapie a RNA nella lotta contro il cancro.

Le cellule tumorali sono in grado di rielaborare le proprie funzioni in modo da crescere più velocemente e sopravvivere a condizioni avverse, aumentando per esempio la produzione di specifiche proteine. La ricerca potrebbe fornire strumenti per interferire con questi processi tramite terapie a base di RNA. Queste ultime infatti potrebbero a breve rivoluzionare la medicina, grazie alla loro capacità di influenzare direttamente l’espressione genica e di conseguenza la produzione di proteine all’interno delle cellule.

Il gruppo di ricerca guidato da Francesca Cutruzzolà della Sapienza Università di Roma ha chiarito i dettagli di un nuovo meccanismo per bloccare selettivamente l’attività della serina idrossimetiltrasferasi (SHMT), una proteina che ha un ruolo chiave nella crescita tumorale, utilizzando l’RNA come molecola inibitoria. La ricerca è avvenuta in collaborazione con il Dipartimento di Chimica e Tecnologie del farmaco della Sapienza, l’IBPM-CNR, le università di Milano e di Pavia e altre istituzioni nazionali e internazionali.

Grazie alla microscopia crioelettronica, una tecnica all’avanguardia che permette di osservare le molecole allo stato nativo con una risoluzione senza precedenti, i ricercatori hanno potuto osservare l’interazione tra SHMT1 e RNA a livello atomico. Ciò ha consentito di comprendere dettagliatamente il meccanismo di inibizione dell’enzima.

“Questa tecnica permette di scattare una fotografia di un oggetto oltre mille volte più piccolo di una singola cellula”, commentano Sharon Spizzichino e Federica Di Fonzo del gruppo di ricerca della Sapienza.

“La fotografia a livello atomico dell’interazione tra RNA e proteine metaboliche – spiega Francesca Cutruzzolà, coordinatrice dello studio – rappresenta un importante traguardo nella ricerca biomedica, aprendo la strada a nuove frontiere nel trattamento delle malattie attraverso terapie innovative basate sull’RNA”.

I risultati ottenuti aprono la strada a una comprensione più profonda dei meccanismi molecolari alla base delle terapie a RNA, fondamentale per lo sviluppo di trattamenti più efficaci e meno invasivi per numerose condizioni patologiche. La ricerca è stata sostenuta da AIRC, e da altri fondi quali quelli del Piano nazionale ripresa resilienza (PNRR) assegnati al progetto dal titolo “National Center for Gene Therapy and Drugs based on RNA Technology.

 

Riferimenti bibliografici:

Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1 – S. Spizzichino, F. Di Fonzo, C. Marabelli et al., Mol. Cell. – DOI:https://doi.org/10.1016/j.molcel.2024.06.016

 

microscopio cellule invecchiamento
Foto PublicDomainPictures

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

SLA: nuove prospettive terapeutiche da una molecola attualmente impiegata nella sperimentazione clinica contro la leucemia

Un nuovo studio coordinato dalla Sapienza e dall’Istituto Italiano di Tecnologia di Roma e pubblicato su Nature Communications ha individuato in un farmaco impiegato in terapie sperimentali contro il cancro un possibile approccio terapeutico per il trattamento della Sclerosi Laterale Amiotrofica (SLA).

La Sclerosi Laterale Amiotrofica (SLA) è una malattia neurodegenerativa causata dalla progressiva perdita di motoneuroni, le cellule predisposte al controllo dei movimenti volontari dei muscoli.  A oggi non esiste una cura efficace per questa rara patologia.

In un recente studio coordinato dalla Sapienza Università di Roma e dall’Istituto Italiano di Tecnologia (IIT) di Roma, pubblicato sulla rivista Nature Communications e finanziato da un progetto ERC-Synergy, è stato scoperto che un farmaco già impiegato in terapie sperimentali contro il cancro potrebbe avere effetti benefici anche sulla SLA, aprendo nuove importanti prospettive terapeutiche.

I ricercatori, coordinati da Irene Bozzoni del Dipartimento di Biologia e Biotecnologie Charles Darwin della Sapienza e del centro CLNS2 di IIT di Roma, sono partiti dallo studio di specifiche condizioni che determinano la formazione nelle cellule di strutture chiamate granuli da stress. La funzione di tali strutture è quella di proteggere temporaneamente le molecole di RNA e di proteine fino alla risoluzione dello stato di stress. Circa il 10% dei casi totali di SLA sono causati da mutazioni in proteine che in molti casi sono componenti dei granuli da stress. Queste alterazioni provocano la produzione di proteine aberranti che trasformano i granuli in aggregati tossici per i motoneuroni. In particolare nella SLA, così come in altre malattie neurodegenerative, ciò che risulta alterato sono il numero, la composizione e le dinamiche di formazione e dissociazione di questi granuli.

Il gruppo di ricercatori ha scoperto che una specifica modifica chimica dell’RNA, nota come N6-metiladenosina (m6A), ha un ruolo cruciale nell’alterazione delle dinamiche di formazione e dissociazione dei granuli in forme particolarmente aggressive di SLA: la malattia è caratterizzata da livelli di m6A aumentati e il loro ripristino a livelli fisiologici è in grado di ristabilire le normali proprietà dei granuli da stress.

“Siamo riusciti a diminuire i livelli di m6A utilizzando una molecola (STM2457) attualmente impiegata nella sperimentazione clinica per la cura di tumori leucemici – spiega Irene Bozzoni – Questa scoperta apre alla possibilità di utilizzarla anche come nuovo approccio terapeutico per il trattamento della SLA”.

I risultati dello studio rappresentano un prezioso contributo per la comprensione dei meccanismi cellulari alla base della patologia e, soprattutto, individuano nelle modifiche dell’RNA promettenti target terapeutici per contrastare la SLA.

Riferimenti bibliografici:

M6A reduction relieves FUS-associated ALS granules – Di Timoteo et al.

Nature Communications – DOI: 10.1038/s41467-024-49416-5

microscopio cellule invecchiamento
Sclerosi Laterale Amiotrofica – SLA: nuove prospettive terapeutiche da una molecola attualmente impiegata nella sperimentazione clinica contro la leucemia. Foto PublicDomainPictures

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Dall’RNA nuovi possibili trattamenti per i tumori: con la scoperta di una nuova correlazione tra le molecole di RNA circolari e il tumore pediatrico rabdomiosarcoma, saranno possibili nuovi innovativi approcci terapeutici; lo studio pubblicato su Nature Communications.

Scoperta una nuova correlazione tra le molecole di RNA circolari e il tumore pediatrico rabdomiosarcoma. I risultati di questa ricerca aprono una nuova strada nell’identificazione di innovativi approcci terapeutici contro questa forma di cancro.

ospedale RNA circolari e rabdomiosarcoma
Foto di djedj

Un gruppo di ricercatrici e ricercatori dell’Istituto Italiano di Tecnologia – IIT e della Sapienza Università di Roma guidato da Irene Bozzoni, coordinatrice del laboratorio Non coding RNAs in Physiology and Pathology, ha scoperto una nuova correlazione tra le molecole di RNA circolari e il tumore pediatrico rabdomiosarcoma. I risultati, pubblicati sulla rivista Nature Communications, rappresentano un importante contributo per lo sviluppo di innovativi approcci terapeutici.

L’RNA rappresenta, insieme al DNA e alle proteine, uno dei principali componenti di cui la cellula dispone per rispondere in maniera efficace ai continui stimoli a cui è sottoposta. L’RNA ha recentemente acquisito una popolarità anche nel pubblico di non addetti ai lavori in quanto ha rappresentato la tecnologia adottata per il vaccino per il Covid-19, strumento indispensabile nella prevenzione dei contagi dovuti all’ormai noto virus SARS-CoV-2.

Esistono classi di RNA diversi per struttura e funzione. Tra queste, c’è quella degli RNA circolari (circRNA), così chiamati in quanto presentano una struttura chiusa, ad anello, che fornisce alcuni vantaggi, primo fra tutti una elevata stabilità rispetto agli RNA lineari.

Questi rappresentano una classe da poco riscoperta in quanto, fino a circa dieci anni fa, il loro studio era fortemente limitato dall’assenza di tecniche appropriate per la loro identificazione in campioni biologici.

I circRNA svolgono molteplici funzioni all’interno della cellula e per questo sono coinvolti in processi fisiologici fondamentali ma anche nello sviluppo di diverse patologie, tra cui il cancro.

Il gruppo di ricercatori e ricercatrici della Sapienza e dell’Istituto Italiano di Tecnologia ha studiato il ruolo degli RNA circolari nel rabdomiosarcoma, un tumore pediatrico ad alta diffusione, classificato tra i cosiddetti sarcomi dei tessuti molli che origina da cellule staminali da cui derivano numerosi tessuti, tra cui il muscolo scheletrico. Per questo motivo, tale tumore può presentarsi in tutte le sedi in cui sono presenti i muscoli.

Gli autori dello studio pubblicato su Nature Communications hanno caratterizzato l’espressione degli RNA circolari in questo tumore, scoprendo che alcuni di questi mostrano livelli più alti rispetto al contesto sano.

Cercando i meccanismi alla base di questo effetto, gli autori hanno scoperto che il responsabile sarebbe un gruppo di proteine che operano la deposizione e la lettura dell’N6-metiladenosina (m6A) sull’RNA. Tali proteine presentano livelli decisamente alti sia in biopsie che in linee di rabdomiosarcoma. Inoltre, lo studio ha dimostrato che l’aumento di m6A promuove la proliferazione e l’attività metastatica delle cellule tumorali di rabdomiosarcoma. Questo effetto potrebbe essere in parte riconducibile alle molecole di RNA circolare direttamente regolate da tale modifica.

Nel processo sarebbe coinvolta anche l’elicasi DDX5, una proteina nota per i molteplici ruoli nel metabolismo dell’RNA. DDX5 è in grado di stimolare la produzione di un gruppo di circRNA e interagisce con YTHDC1, una proteina che lega gli RNA che contengono m6A e che è stata precedentemente descritta dallo stesso gruppo di Sapienza come promotore della produzione di una classe di RNA circolari.

I risultati di questo studio, finanziato dalla Fondazione AIRC, rappresentano un prezioso contributo per la comprensione dei meccanismi molecolari alla base di questo tumore e per lo sviluppo di nuovi approcci terapeutici laddove le strategie tradizionali hanno fallito.

Riferimenti:

The m6A reader YTHDC1 and the RNA helicase DDX5 control the production of rhabdomyosarcoma-enriched circRNAs – Dario Dattilo, Gaia Di Timoteo, Adriano Setti, Andrea Giuliani, Giovanna Peruzzi, Manuel Beltran Nebot, Alvaro Centrón-Broco, Davide Mariani, Chiara Mozzetta and Irene Bozzoni –

Nature Communications 2023. doi: 10.1038/s41467-023-37578-7

https://www.nature.com/articles/s41467-023-37578-7

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Charme: la molecola di lncRNA che controlla lo sviluppo del cuore
Charme è un lncRNA che controlla lo sviluppo cardiaco attraverso circuiti molecolari che si instaurano nel muscolo grazie alla sua interazione con la proteina Matrin3 

La molecola di RNA è in grado di costruire specifiche reti di interazione per un controllo temporale e spaziale dei processi di formazione del cuore.

È quanto dimostrato da un nuovo studio coordinato dal Dipartimento di Biologia e biotecnologie “Charles Darwin” della Sapienza e pubblicato sulla rivista eLife.

Charme: la molecola di lncRNA che controlla lo sviluppo del cuore 
Crediti per l’immagine: Taliani et al.

Per affrontare la complessità dei processi biologici, le cellule sfruttano molteplici sistemi di regolazione, spesso basati sull’attività di molecole di RNA, come nel caso dei lunghi RNA non codificanti (long non coding RNA, lncRNA) che non producono proteine. Queste molecole sono in grado di costruire specifiche reti di interazione per un controllo temporale e spaziale dei processi biologici.

È il caso di Charme, un lncRNA che controlla lo sviluppo cardiaco attraverso circuiti molecolari che si instaurano nel muscolo grazie alla sua interazione con la proteina Matrin3. Matrin3 è coinvolta in diverse miopatie e in malattie neurodegenerative, come la Sclerosi laterale amiotrofica (SLA).

Un nuovo studio italiano pubblicato sulla rivista internazionale eLife e coordinato dal Dipartimento di Biologia e biotecnologie “Charles Darwin” della Sapienza in collaborazione con l’Istituto italiano di tecnologia e l’European Molecular Biology Laboratory ha rivelato il ruolo chiave di Charme nell’accensione di geni necessari alla maturazione delle cellule del cuore. La presenza di Charme già durante le fasi embrionali dello sviluppo cardiaco, si è rivelata fondamentale per guidare Matrin3 sui giusti contesti genomici, promuovendo la funzionalità e lo sviluppo cardiaco.

“Tra i piani futuri del laboratorio – spiega Monica Ballarino della Sapienza – c’è l’ulteriore caratterizzazione funzionale di Charme che è abbondantemente espresso nel muscolo umano. Questo permetterà una migliore comprensione della fisiologia e dello sviluppo del cuore ed il disegno di nuove strategie diagnostiche e terapeutiche per le patologie cardiache.”

Riferimenti:

The long noncoding RNA Charme supervises cardiomyocyte maturation by controlling cell differentiation programs in the developing heart – Valeria Taliani, Giulia Buonaiuto, Fabio Desideri, Adriano Setti, Tiziana Santini, Silvia Galfrè, Leonardo Schirone, Davide Mariani, Giacomo Frati, Valentina Valenti, Sebastiano Sciarretta, Emerald Perlas, Carmine Nicoletti, Antonio Musarò, Monica Ballarino – eLife 2023 https://doi.org/10.7554/eLife.81360

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

RNA IN TRIPLA ELICA E INFORMAZIONI GENETICHE 

Per la prima volta è stato dimostrato l’effetto delle strutture a tripla elica sia sullo spegnimento che sull’accensione dei geni.

Pubblicata su «Nucleic Acids Research» la ricerca di un team internazionale guidato dal Dipartimento di Biomedicina Comparata e Alimentazione dell’Università di Padova

Le molecole che immagazzinano e trasmettono l’informazione genetica, gli acidi nucleici DNA e RNA, sono polimeri lineari che si trovano comunemente nelle cellule nella forma a singolo filamento o in duplex (doppio filamento ad elica). Nonostante tali polimeri possano assumere altre geometrie come il triplex (tre filamenti) o il quadruplex (quattro filamenti), le funzioni biologiche di queste architetture alternative rimangono tuttora poco note. In particolare i triplex “ibridi” sono strutture a tripla elica composte da un duplex di DNA o RNA e un singolo filamento di un altro acido nucleico e sembrano coinvolti in meccanismi regolatori.

Le strutture a tripla elica ibride sono oggetto di intensi studi che riguardano in particolare i “long non-coding RNA” (lncRNA), RNA a singolo filamento non codificanti proteine, e che sembrano essere coinvolti nella regolazione di geni specifici proprio con un meccanismo di inibizione o stimolo della trascrizione che coinvolge strutture a tripla elica.

Lo studio condotto da Alessandro Cecconello del team di ricerca internazionale italo-tedesco composto dall’Università di Padova e dall’Università di Monaco presenta per la prima volta un approccio generale all’analisi del meccanismo di regolazione della trascrizione genica, ovvero la conversione del DNA in RNA, mostrando come sia possibile determinarne l’inibizione o l’aumento mediante la formazione di triplex ibridi, avendo come effetto finale lo spegnimento o l’attivazione di quel gene.

La ricerca pubblicata sulla rivista «Nucleic Acids Research» dal titolo “Rational design of hybrid DNA–RNA triplex structures as modulators of transcriptional activity in vitro” descrive l’utilizzo di filamenti di RNA sintetico per il controllo dell’espressione di geni da unità trascrizionali prodotte in vitro (unità composte da una parte regolatoria e una parte trascritta) e progettate a partire da DNA batterico.

In particolare, lo studio descrive un approccio innovativo di biologia sintetica: attraverso la modifica di sequenze di regolazione genica batteriche fuse con sequenze in grado di formare complessi con sostanze fluorescenti (aptameri fluorogenici) si è monitorato l’effetto di strutture a tripla elica ibride (triplex di DNA e RNA) sulla velocità del processo di trascrizione genica. Questo nuovo metodo sperimentale ha permesso di stimare in modo preciso la velocità dell’enzima RNA polimerasi usando la misura della fluorescenza di aptameri che si accumulano in soluzione durante il processo di trascrizione.

«Lo studio, iniziato all’Università di Monaco e completato a Padova, è la sintesi di diversi anni di impegno di ricerca sull’ingegnerizzazione di sequenze genomiche, sul design e messa a punto di RNA funzionali, quali gli aptameri fluorescenti. È questo – dice Alessandro Cecconello del Dipartimento di Biomedicina Comparata e Alimentazione dell’Ateneo patavino e prima firma della pubblicazione – un nuovo filone di ricerca nell’ambito della Synthetic Biology e delle tecnologie a RNA. In particolare, per la prima volta è stato dimostrato l’effetto delle strutture a tripla elica sia sullo spegnimento che sull’accensione dei geni.I prossimi obiettivi coinvolgeranno lo studio del dettaglio molecolare del meccanismo d’azione dei DNA-RNA triplex, l’identificazione di agenti che possano influire sulla formazione di tali strutture ibride e, di conseguenza, il loro effetto sulla regolazione genica in vivo e, infine, il loro potenziale terapeutico».

Alessandro Cecconello
Alessandro Cecconello

La ricerca è stata finanziata dalla European Molecular Biology Organization (EMBO), Unione Europea (REACT-EU ed ERC-AEDNA), Dipartimento di Biomedicina Comparata e Alimentazione (BCA) dell’Università di Padova e MIUR (ECCE AQUA) ed è stata condotta da Alessandro Cecconello del gruppo di ricerca in nanobiotecnologie del Dipartimento BCA guidato dal Prof. Fabio Vianello, con il Dott. Massimiliano Magro e la collaborazione internazionale del Prof. Friedrich Simmel della Università Tecnica di Monaco (TUM).

Link alla ricerca: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkac1131/6947078

Titolo: “Rational design of hybrid DNA–RNA triplex structures as modulators of transcriptional activity in vitro” – «Nucleic Acids Research» – dicembre 2022

Autori: Alessandro Cecconello, Massimiliano Magro, Fabio Vianello, Friedrich C. Simmel

Gruppo di ricerca in nanobiotecnologie

Il gruppo di ricerca in nanobiotecnologie del Dipartimento di Biomedicina Comparata e Alimentazione dell’Università di Padova è guidato dal Professor Fabio Vianello e si occupa di sviluppare applicazioni biotecnologiche di nanomateriali ibridi nei settori della biomedicina, della sensoristica e valorizzazione del settore alimentare.

Alessandro Cecconello è ricercatore nel Dipartimento di Biomedicina Comparata e Alimentazione dell’Università di Padova da gennaio 2021 (REACT EU-PON “Ricerca e Innovazione 2014-2020” – DM 1062/2021). Ha conseguito la laurea magistrale in Biotecnologie Industriali all’Ateneo patavino e il Dottorato di ricerca in Chimica alla Hebrew University di Gerusalemme (Israele).

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Padova sul nuovo studio circa RNA in tripla elica e informazioni genetiche

Differenziamento dei motoneuroni: il ruolo degli RNA non codificanti

Un nuovo studio, frutto di una collaborazione tra il Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza, l’Istituto italiano di tecnologia e il Cnr, rivela la sinergia tra RNA codificanti e non codificanti nel regolare la formazione dei motoneuroni e apre la strada a nuovi approcci terapeutici per la cura delle malattie neurodegenerative. I risultati sono stati pubblicati sulla rivista The EMBO Journal.

Differenziamento dei motoneuroni: il ruolo degli RNA non codificanti
Foto di  Gerd Altmann

Il ruolo fondamentale degli RNA non codificanti – che non sono tradotti in proteine – nella regolazione dei programmi di sviluppo e funzionamento dei tessuti, in particolare del sistema nervoso, è emerso soprattutto negli ultimi anni.

Sebbene molte funzioni specifiche siano ancora poco conosciute, gli RNA non codificanti hanno un ruolo biologico cruciale, che li rende di notevole interesse soprattutto nell’ambito della ricerca biomedica.

Un nuovo studio, coordinato da Irene Bozzoni, del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza e del Clns dell’Istituto italiano di tecnologia, in collaborazione con Pietro Laneve del Cnr, ha permesso di caratterizzare l’attività di uno specifico gene (MN2) che dirige la produzione di molteplici RNA non codificanti strutturalmente diversi, sia lunghi (lncRNA) che corti (microRNA).

In particolare, tecniche avanzate di biologia molecolare e cellulare hanno permesso ai ricercatori di chiarire il meccanismo attraverso cui il dialogo tra lncRNA e microRNA controlla l’espressione di geni codificanti per proteine fondamentali nel differenziamento dei motoneuroni, ovvero di quei neuroni che veicolano i segnali nervosi dal sistema nervoso centrale ai muscoli.

La ricerca, nata dalla collaborazione tra la Sapienza, l’Istituto italiano di tecnologia e il Cnr, è stata finanziata da ERC-2019-SyG e pubblicata sulla prestigiosa rivista internazionale The EMBO Journal.

“Il lavoro – spiega Irene Bozzoni, coordinatrice del gruppo di ricerca – ci aiuta a capire meglio le funzioni attribuite al genoma non codificante. In particolare, abbiamo evidenziato per la prima volta come un meccanismo basato sul sequestro di microRNA da parte di un lncRNA – detto “spugna molecolare” – contribuisca alla generazione dei motoneuroni.”

 I motoneuroni, oltre a essere mediatori dei segnali nervosi responsabili della contrazione muscolare, sono anche bersagli di gravi patologie degenerative e di lesioni invalidanti.

 “L’auspicio – conclude Irene Bozzoni – è che la comprensione dei processi di formazione dei motoneuroni possa consentire lo sviluppo di nuovi approcci terapeutici in medicina neurodegenerativa”.

Riferimenti:
A multifunctional locus controls motor neuron differentiation through short and long non coding RNAs – Andrea Carvelli, Adriano Setti, Fabio Desideri, Silvia Galfrè, Silvia Biscarini, Tiziana Santini, Alessio Colantoni, Giovanna Peruzzi, Matteo J Marzi, Davide Capauto, Silvia Di Angelantonio, Monica Ballarino, Francesco Nicassio, Pietro Laneve, Irene Bozzoni- The EMBO Journal (2022) https://doi.org/10.15252/embj.2021108918

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Trattamento dei tumori infantili: nuove possibilità di cura grazie ai meccanismi di regolazione basati sull’RNA

Un gruppo di ricercatori della Sapienza Università di Roma, in collaborazione con l’Istituto italiano di tecnologia (IIT), ha scoperto come l’interazione tra due specifiche molecole di RNA favorisca in laboratorio la crescita di cellule di rabdomiosarcoma, uno dei tumori maligni più ricorrenti in età pediatrica. I risultati dello studio sostenuto da Fondazione AIRC sono stati pubblicati sulla rivista Molecular Cell e aprono nuove strade al trattamento di tumori maligni infantili.

tumori infantili RNA
Trattamento dei tumori infantili: nuove possibilità di cura grazie ai meccanismi di regolazione basati sull’RNA. Foto di RyanMcGuire

L’interesse della scienza per gli RNA circolari (circRNA) è in crescita per le caratteristiche peculiari di questa classe emergente di molecole e per il loro ruolo in diverse condizioni patologiche tra cui il cancro.

In uno studio del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza Università  di Roma e dell’Istituto italiano di tecnologia (IIT), i ricercatori hanno individuato un inedito meccanismo molecolare alla base della regolazione dell’espressione di diverse proteine. Si tratta dell’interazione tra molecole di RNA (in particolare tra un RNA circolare, circZNF609, e alcuni RNA messaggeri). In esperimenti di laboratorio i ricercatori hanno scoperto che, in un caso specifico, l’interazione con l’mRNA che contiene le istruzioni per la proteina CKAP5, a sua volta coinvolta nel controllo della duplicazione cellulare, regola la capacità proliferativa delle cellule di rabdomiosarcoma, un tumore maligno pediatrico.

I risultati dello studio sostenuto dalla Fondazione AIRC per la ricerca sul cancro sono stati pubblicati sulla rivista Molecular Cell e rappresentano un ulteriore progresso nella comprensione delle diverse funzioni che l’RNA svolge nelle cellule. In particolare, è stata così chiarita una nuova rilevante funzione delle molecole di RNA circolari.

Nello specifico, i ricercatori hanno dimostrato come questo meccanismo di regolazione genica sia capace di regolare la crescita delle cellule di rabdomiosarcoma, uno dei tumori maligni più ricorrenti in età pediatrica e che fa parte dei cosiddetti sarcomi dei tessuti molli, tumori che si sviluppano nei muscoli, nel grasso e nel tessuto connettivo.

Spiega Irene Bozzoni della Sapienza, coordinatrice dello studio: “Impedendo l’interazione tra le due molecole di RNA, siamo riusciti a rendere le cellule tumorali in coltura più sensibili a diversi trattamenti chemioterapici generalmente usati nella cura del rabdomiosarcoma, ma spesso inefficaci nei casi più gravi”.

Si è inoltre evidenziato che questo meccanismo è presente anche in altri tipi di tumore, come la leucemia mieloide cronica e il neuroblastoma, rendendo questo circuito molecolare un interessante candidato per nuove terapie mediche basate sull’RNA.

Tali risultati sottolineano l’importanza dello studio delle interazioni tra RNA non codificanti e mRNA per l’identificazione di nuovi meccanismi di regolazione di importanti processi cellulari.

Riferimenti:

Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity – Francesca Rossi, Manuel Beltran, Michela Damizia, Chiara Grelloni, Alessio Colantoni, Adriano Setti, Gaia Di Timoteo, Dario Dattilo, Alvaro Centrón-Broco, Carmine Nicoletti, Maurizio Fanciulli, Patrizia Lavia, Irene Bozzoni – Mol. Cell 2021 https://doi.org/10.1016/j.molcel.2021.11.032

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma