News
Ad
Ad
Ad
Tag

raggi X

Browsing

LUCE SUI TITANI DELL’ALBA COSMICA: I PRIMI QUASAR SFIDANO I LIMITI DELLA FISICA PER CRESCERE
Scoperte nuove evidenze che spiegano come si siano formati i buchi neri supermassicci nel primo miliardo di anni di vita dell’Universo. Lo studio, condotto dai ricercatori dell’INAF, analizza 21 quasar distanti e rivela che questi oggetti si trovano in una fase di accrescimento super veloce, offrendo preziose informazioni sulla loro formazione ed evoluzione, in parallelo con quella delle galassie ospitanti.

In un articolo pubblicato oggi sulla rivista Astronomy & Astrophysics emergono nuove indicazioni che suggeriscono come i buchi neri supermassicci, con masse pari ad alcuni miliardi di volte quella del nostro Sole, si siano formati così rapidamente in meno di un miliardo di anni dopo il Big Bang. Lo studio, guidato dai ricercatori dell’Istituto Nazionale di Astrofisica (INAF), analizza un campione di 21 quasar, tra i più distanti scoperti finora, osservati nei raggi X dai telescopi spaziali XMM-Newton e Chandra. I risultati suggeriscono che i buchi neri supermassicci al centro di questi titanici quasar, i primi a essersi formati durante l’alba cosmica, potrebbero aver raggiunto le loro straordinarie masse grazie a un accrescimento molto rapido e intenso, fornendo così una spiegazione plausibile alla loro esistenza nelle prime fasi dell’Universo.

I quasar sono galassie attive, alimentate da buchi neri supermassicci al loro centro (chiamati nuclei galattici attivi), che emettono enormi quantità di energia mentre attraggono materia. Sono estremamente luminosi e lontani da noi. Nello specifico, i quasar esaminati in questo studio sono tra gli oggetti più distanti mai osservati e risalgono a un’epoca in cui l’Universo aveva meno di un miliardo di anni.

In questo lavoro, l’analisi delle emissioni nei raggi X di tali oggetti ha rivelato un comportamento completamente inaspettato dei buchi neri supermassicci al loro centro: è emerso un legame tra la forma dell’emissione in banda X e la velocità dei venti di materia lanciati dai quasar. Questa relazione associa la velocità dei venti, che può raggiungere migliaia di chilometri al secondo, alla temperatura del gas nella corona, la zona che emette raggi X più prossima al buco nero, legata a sua volta ai potenti meccanismi di accrescimento del buco nero stesso. I quasar con emissione X a bassa energia, quindi con una minore temperatura del gas nella corona, mostrano venti più veloci. Ciò è indice di una fase di crescita estremamente rapida che valica un limite fisico di accrescimento di materia denominato limite di Eddington, per questo motivo tale fase viene chiamata ‘super Eddington’. Viceversa, i quasar con emissioni più energetiche nei raggi X tendono a presentare venti più lenti.

“Il nostro lavoro suggerisce che i buchi neri supermassicci al centro dei primi quasar che si sono formati nel primo miliardo di anni di vita dell’Universo possano effettivamente aver aumentato la loro massa molto velocemente, sfidando i limiti della fisica”, afferma Alessia Tortosa, prima autrice del lavoro e ricercatrice presso l’INAF di Roma. “La scoperta di questo legame tra emissione X e venti è cruciale per comprendere come buchi neri così grandi si siano formati in così poco tempo, offrendo in tal modo un’indicazione concreta per risolvere uno dei più grandi misteri dell’astrofisica moderna”.

Il risultato è stato raggiunto soprattutto grazie all’analisi di dati raccolti con il telescopio spaziale XMM-Newton dell’Agenzia Spaziale Europea (ESA) che ha permesso di osservare i quasar per circa 700 ore, fornendo dati senza precedenti sulla loro natura energetica. La maggior parte dei dati, raccolti tra il 2021 e 2023 nell’ambito del Multi-Year XMM-Newton Heritage Programme, sotto la direzione di Luca Zappacosta, ricercatore dell’INAF di Roma, fa parte del progetto HYPERION, che si propone di studiare i quasar iperluminosi all’alba cosmica dell’Universo. L’estesa campagna di osservazioni è stata guidata da un team di scienziati italiani e ha ricevuto il sostegno cruciale dell’INAF, che ha finanziato il programma, sostenendo così una ricerca di avanguardia sulle dinamiche evolutive delle prime strutture dell’Universo.

“Per il programma HYPERION abbiamo puntato su due fattori chiave: da una parte l’accurata scelta dei quasar da osservare, selezionando i titani, cioè quelli che avevano accumulato la maggior massa possibile, e dall’altra lo studio approfondito delle loro proprietà nei raggi X, mai tentato finora su così tanti oggetti all’alba cosmica”, sostiene Zappacosta. “Direi proprio che abbiamo fatto bingo! I risultati che stiamo ottenendo sono davvero inaspettati e puntano tutti su un meccanismo di crescita dei buchi neri di tipo super Eddington”.

Questo studio fornisce indicazioni importanti per le future missioni in banda X, come ATHENA (ESA), AXIS e Lynx (NASA), il cui lancio è previsto tra il 2030 e il 2040. Infatti, i risultati ottenuti saranno utili per il perfezionamento degli strumenti di osservazione di nuova generazione e per la definizione di migliori strategie di indagine dei buchi neri e dei nuclei galattici nei raggi X a epoche cosmiche più remote, elementi essenziali per comprendere la formazione delle prime strutture galattiche nell’Universo primordiale.

Rappresentazione artistica generata tramite intelligenza artificiale, basata su un’immagine NASA (https://photojournal.jpl.nasa.gov/catalog/PIA16695), che mostra un buco nero supermassiccio in accrescimento, circondato da gas che spiraleggiano verso l'orizzonte degli eventi e emettono potenti venti di materia. Crediti: Emanuela Tortosa
Rappresentazione artistica generata tramite intelligenza artificiale, basata su un’immagine NASA (https://photojournal.jpl.nasa.gov/catalog/PIA16695), che mostra un buco nero supermassiccio in accrescimento, circondato da gas che spiraleggiano verso l’orizzonte degli eventi e emettono potenti venti di materia. Crediti: Emanuela Tortosa

Riferimenti bibliografici:

L’articolo “HYPERION. Shedding light on the first luminous quasars: A correlation between UV disc winds and X-ray continuum”, di Tortosa A. et al. 2024, è stato pubblicato online sulla rivista Astronomy & Astrophysics.

 

Testo e immagini dall’Ufficio Stampa dell’Istituto Nazionale di Astrofisica – INAF

Scoperta una possibile causa del comportamento “strano” dei cuprati: un passo in avanti verso applicazioni dei superconduttori più sostenibili

Pubblicato su Nature Communications lo studio del Politecnico di Milano, della Chalmers University of Technology e della Sapienza Università di Roma.

Compiuto un significativo passo in avanti nella ricerca sulla superconduttività, la scoperta potrebbe aprire la strada a tecnologie sostenibili e contribuire a un futuro più rispettoso dell’ambiente.

Lo studio appena pubblicato su Nature Communications da ricercatori del Politecnico di Milano, della Chalmers University of Technology di Göteborg e della Sapienza Università di Roma chiarisce uno dei tanti misteri dei superconduttori ad alta temperatura critica, i cuprati: anche a temperature superiori a quella critica sono speciali, si comportano come metalli “strani”. Cioè la loro resistenza elettrica cambia con la temperatura in modo diverso da quella dei metalli normali.

La ricerca indica l’esistenza di un punto critico quantistico collegato alla fase denominata “metallo strano”.

Un punto critico quantistico individua le condizioni specifiche in cui un materiale subisce un improvviso cambiamento nelle sue proprietà a causa di soli effetti quantistici. Così come il ghiaccio fonde e diventa liquido a zero gradi centigradi a causa degli effetti microscopici della temperatura, i cuprati diventano un metallo “strano” a causa delle fluttuazioni quantistiche di carica

afferma Riccardo Arpaia, autore principale dello studio e ricercatore presso il Dipartimento di Microtecnologie e Nanoscienze di Chalmers.

Il punto critico quantistico (QCP) nel diagramma di fase dei cuprati è riconoscibile perché l’energia delle fluttuazioni di carica si avvicina a zero. I risultati sperimentali sono nel diagramma in secondo piano, l’andamento ideale è disegnato in primo piano
Il punto critico quantistico (QCP) nel diagramma di fase dei cuprati è riconoscibile perché l’energia delle fluttuazioni di carica si avvicina a zero. I risultati sperimentali sono nel diagramma in secondo piano, l’andamento ideale è disegnato in primo piano

La ricerca si è basata su esperimenti di diffusione di raggi X condotti presso il Sincrotrone Europeo ESRF e il sincrotrone britannico Diamond Light Source, che hanno evidenziato l’esistenza di fluttuazioni della densità di carica capaci di influenzare la resistenza elettrica dei cuprati in modo tale da renderli “strani”. La misurazione sistematica di come varia l’energia di queste fluttuazioni ha permesso di identificare il valore esatto della densità di portatori di carica in corrispondenza della quale essa è minima: il punto critico quantistico.

Lo strumento ERIXS del Sincrotrone Europeo ESRF che ha permesso di misurare l’energia delle fluttuazioni di carica nei cuprati. Questo spettrometro è stato sviluppato in collaborazione con il POLIMI e ha il record del mondo di risoluzione
Lo strumento ERIXS del Sincrotrone Europeo ESRF che ha permesso di misurare l’energia delle fluttuazioni di carica nei cuprati. Questo spettrometro è stato sviluppato in collaborazione con il POLIMI e ha il record del mondo di risoluzione

Questo è il risultato di più di cinque anni di lavoro. Abbiamo usato una tecnica, chiamata RIXS, in gran parte sviluppata da noi del Politecnico di Milano. Grazie a numerose campagne di misura e a nuovi metodi di analisi dei dati abbiamo potuto dimostrare l’esistenza del punto critico quantistico. Capire bene i cuprati ci permetterà di progettare materiali ancora migliori, con temperature critiche più alte, e quindi più facili da sfruttare nelle tecnologie di domani” 

aggiunge Giacomo Ghiringhelli, Professore del dipartimento di Fisica del Politecnico di Milano e coordinatore della ricerca.

Questa scoperta rappresenta un progresso importante per la comprensione non solo delle proprietà anomale dello stato metallico dei cuprati, ma anche dei meccanismi ancora oscuri alla base della superconduttività ad alta temperatura

afferma Sergio Caprara, Professore presso il Dipartimento di Fisica della Sapienza, che ha elaborato insieme ai colleghi del gruppo teorico di Roma la teoria che assegna alle fluttuazioni di carica un ruolo fondamentale nei cuprati.

Riferimenti:

Signature of quantum criticality in cuprates by charge density fluctuations – Riccardo Arpaia, Leonardo Martinelli, Marco Moretti Sala, Sergio Caprara, Abhishek Nag, Nicholas B. Brookes, Pietro Camisa, Qizhi Li, Qiang Gao, Xingjiang Zhou, Mirian Garcia-Fernandez, Ke-Jin Zhou, Enrico Schierle, Thilo Bauch, Ying Ying Peng, Carlo Di Castro, Marco Grilli, Floriana Lombardi, Lucio Braicovich & Giacomo Ghiringhelli – Nature Communications (2023). https://doi.org/10.1038/s41467-023-42961-5

 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

VETRO ESPOSTO AI RAGGI X: Non si comporta più come un solido, ma come un liquido

Osservato per la prima volta il comportamento di questo materiale quando raggiunge il punto di cedimento tramite irraggiamento con raggi X: non si comporta più come un solido, ma come un liquido.

Rappresentazione dell'assorbimento di raggi X in un vetro
Rappresentazione dell’assorbimento di raggi X in un vetro

Un vetro è, essenzialmente, un liquido che può fluire e scorrere, ma con tempi estremamente lunghi. Quando la sua temperatura è sufficientemente bassa rispetto alla quella di fusione (nota come temperatura di transizione vetrosa), il tempo necessario perché il vetro fluisca è praticamente infinito e siamo di fronte a un solido propriamente detto. Un vetro a temperatura sufficientemente bassa è dunque un solido che, a livello microscopico, conserva la struttura disordinata tipica di un liquido o – come a volte si dice – è un “liquido congelato’”.

I vetri, quindi, si comportano come tutti gli altri solidi: se sottoposti a una piccola trazione esterna si deformano elasticamente come delle molle, sostengono questi sforzi esterni per poi ritornare alla loro forma iniziale una volta eliminata la sollecitazione. Se la trazione porta a una deformazione che supera un valore limite (che dipende dal materiale), i vetri cominciano a presentare una risposta “plastica”: se si smette di tirare il materiale, esso non ritorna più alla forma iniziale ma resta parzialmente deformato in modo permanente. La deformazione plastica corrisponde a una successione di eventi microscopici in ciascuno dei quali un gruppo di una decina di atomi, vicini tra loro, si sposta in maniera coordinata. Sono spostamenti non reversibili e le nuove posizioni atomiche restano tali anche quando la trazione esterna viene eliminata.

L’accumularsi nei vetri di questi eventi plastici può dar luogo a fenomeni spettacolari: se un vetro è tirato sufficientemente si arriva a un punto di cedimento in cui le zone plastiche diventano così numerose da cambiare le proprietà del sistema stesso. La maggior parte dei vetri a cui siamo abituati (vetri silicati) sono fragili e, al punto di cedimento, si frantumano catastroficamente. Altri vetri, come alcune plastiche, sono invece duttili e, al punto di cedimento, cominciano a fluire come farebbe un vero e proprio liquido. Questi processi sono stati studiati in dettaglio con misure macroscopiche andando ad osservare, per esempio, la risposta del sistema a sollecitazioni meccaniche. Molte domande rimangono però ancora aperte, in particolare riguardo al moto degli atomi fino al cedimento. Studiare il punto di cedimento in vetri ossidi è molto difficile sperimentalmente perché il vetro, in trazione, di solito si frantuma. Tuttavia irraggiandolo con i raggi X è possibile studiare con risoluzione atomica quello che non si può fare con le classiche tecniche di laboratorio.

Lo studio del team di ricercatori dell’Università di Padova, Università di Trento, Centro DESY di Amburgo e Università di Bruxelles guidato dal Professor Giulio Monaco del Dipartimento di Fisica e Astronomia “Galileo Galilei” dell’Ateneo patavino recentemente pubblicato su «Physical Review X» con il titolo “Reaching the Yield Point of a Glass During X-Ray Irradiation” apre nuove prospettive sulle proprietà elasto-plastiche in vetri fragili come, ad esempio, quelli delle finestre delle nostre case.

Grazie all’uso di luce di sincrotrone prodotta in grandi acceleratori di elettroni, come quello di DESY ad Amburgo, si sono generati fasci di raggi X con dosi di radiazione assorbita miliardi di volte maggiori di quelle utilizzate per uso medico. Quando questi fasci sono stati indirizzati su vetri gli atomi vengono spostati dalla loro posizione iniziale e cominciano a muoversi.

«Il fenomeno è stato studiato dal nostro gruppo – dice Giulio Monaco team leader della ricerca – e abbiamo visto che questi atomi non seguono le leggi della semplice diffusione, ma piuttosto processi più complessi come l’iper-trasporto. Abbiamo visto come tali meccanismi, originati dall’assorbimento di raggi X, possono essere utilizzati sia per portare il vetro fino al punto di cedimento che per studiare come cambiano le proprietà meccaniche alla scala atomica man mano che il vetro si avvicina a tale punto».

«Siamo riusciti a seguire come cambia la natura del vetro man mano che procede l’irraggiamento – continua Alessandro Martinelli –. Quando i raggi X vengono assorbiti dal vetro lasciano dei “difetti”, ovvero atomi spostati rispetto alla propria configurazione di equilibrio. Questo però è un effetto non localizzato, cioè “tutti” gli atomi attorno al difetto vengono perturbati, e ciò si ripercuote a tutto il materiale. Come per un sasso gettato in un punto dello stagno, la posizione in cui la radiazione viene assorbita, le onde generate si propagano sulla superficie con un effetto minore quanto più lontani si è dal punto di impatto».

«Possiamo immaginare i difetti generati dai raggi X come minuscole molle compresse che esercitano una piccola forza sugli atomi vicini. Aggiungendo sempre più molle, cioè aumentando l’assorbimento dei raggi X, siamo stati in grado di monitorare le proprietà meccaniche del vetro all’aumentare del numero di difetti generati – spiega Francesco Dallari –. Il processo è simile a quello che accade quando un materiale viene compresso o tirato, ma qui il tutto avviene alla scala del decimilionesimo di millimetro».

«Quando si comincia a irraggiare un vetro quest’ultimo risponde come una molla, ovvero elasticamente. Gli atomi si spostano come biglie, con movimenti a velocità (media) costante. Tuttavia aumentando l’irraggiamento, e quindi il numero di difetti, gli spostamenti diventano sempre più lunghi e intermittenti, con accelerazioni improvvise. Ad un certo punto, però, il vetro mostra delle proprietà completamente inaspettate: se il numero di difetti è abbastanza elevato il sistema non si comporta più come un solido, ma come un liquido – conclude Giulio Monaco –. Questo comportamento, che caratterizza il punto di cedimento, non era mai stato osservato attraverso l’irraggiamento con raggi X. Questo studio è il primo caso di raggiungimento del punto di cedimento tramite irraggiamento con raggi X, dove si osserva la transizione di un solido elastico a un solido plastico. Questo studio apre dunque nuove prospettive per lo studio delle proprietà meccaniche nei vetri, con un approccio locale e una risoluzione atomica, ma mostra allo stesso tempo come trasformare un vetro inizialmente fragile in un vetro duttile, con possibile interesse anche a livello di applicazioni».

Giulio Monaco
Giulio Monaco

Link alla ricerca: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.041031

Titolo: “Reaching the Yield Point of a Glass During X-Ray Irradiation” – «Physical Review X» 2023

Autori: Alessandro Martinelli, Federico Caporaletti, Francesco Dallari, Michael Sprung, Fabian Westermeier, Giacomo Baldi e Giulio Monaco.

 

Testo e immagini dall’Ufficio Stampa dell’Università di Padova.

Una magnetar appena formata e rapidamente rotante può spiegare in modo dettagliato le diverse fasi dell’emissione dei lampi di raggi gamma

Un team italiano di ricercatori dell’Istituto Nazionale di Fisica Nucleare (INFN), dell’Istituto Nazionale di Astrofisica (INAF) e della Stony Brook University (USA) ha dimostrato per la prima volta che una magnetar appena formata e rapidamente rotante, cioè una stella di neutroni con un campo magnetico elevatissimo che ruota su se stessa molte centinaia di volte al secondo, può spiegare in modo dettagliato le diverse fasi dell’emissione dei lampi di raggi gamma, dalla loro violenta accensione fino allo spegnimento definitivo. Questo risultato è stato ottenuto confrontando le previsioni teoriche con un ricco insieme di dati nella banda dei raggi X e gamma. Lo studio è stato pubblicato sulla rivista The Astrophysical Journal Letters.

magnetar stella di neutroni lampi di raggi gamma
Resa artistica di una magnetar. Immagine di Robert S. Mallozzi, Università dell’Alabama, Huntsville, e NASA Marshall Space Flight Center”, in pubblico dominio

I lampi di raggi gamma (in inglese Gamma-Ray Burst, o GRB) sono brevi eventi esplosivi tra i più violenti dell’universo, a distanza di miliardi di anni luce da noi. La loro energia viene trasferita in potentissimi getti collimati che emettono la radiazione che osserviamo. Si ritiene che i GRB siano originati nel processo di formazione di un buco nero di massa stellare, in seguito al collasso gravitazionale di una stella alla fine del suo ciclo evolutivo, o alla collisione e fusione di due stelle di neutroni. Negli ultimi anni è stata sviluppata un’altra ipotesi: i GRB, o almeno una frazione rilevante di essi, potrebbero essere prodotti dalla formazione di una magnetar che ruota su sé stessa molte centinaia di volte al secondo. Le magnetar, come le altre stelle di neutroni, hanno una massa simile a quelle del Sole concentrata in un volume dalle dimensioni comparabili con quelle di una grande città, ma posseggono campi magnetici elevatissimi. Scoperte nella nostra Galassia negli anni ‘90 del secolo scorso, sono caratterizzate da un’intensa emissione di origine magnetica in raggi X e gamma, punteggiata da ricorrenti episodi parossistici di breve durata ed enorme luminosità. La loro origine è ad oggi un mistero tra i più studiati nell’astrofisica degli oggetti compatti.

Il nuovo lavoro combina conoscenze acquisite nello studio delle magnetar e delle stelle di neutroni che catturano materia con le principali caratteristiche dei GRB, dimostrando come una magnetar appena formata e rapidamente rotante possa spiegare le proprietà di alcuni tra i GRB più studiati meglio di un buco nero.

Simone Dall’Osso, ricercatore presso l’INFN, associato INAF e primo autore dell’articolo, commenta: “Il nostro studio spiega in modo quantitativo le diverse fasi dell’emissione di un lampo gamma e del suo graduale spegnimento. I processi fisici coinvolti sono gli stessi che operano in altri sistemi contenenti stelle magnetiche in rotazione quali nane bianche, stelle di neutroni ordinarie (non magnetar) ed anche stelle ordinarie in fase di formazione. Applicati ad una magnetar appena formata e rapidamente rotante questi stessi processi portano al rilascio di enormi quantità di energia in tempi brevissimi, con segni distintivi identificabili”.

Giulia Stratta, ricercatrice INAF, associata INFN e membro del cluster di ricerca ELEMENTS presso la Goethe University di Francoforte, aggiunge “Per poter fornire una spiegazione organica delle diverse fasi dei lampi gamma, è stato necessario basarsi sui GRB per i quali abbiamo le informazioni più complete da osservazioni in banda ottica, X e gamma. Si tratta di una dozzina di casi in tutto, frutto di un lungo lavoro di ricerca tra molte centinaia”.

Lo scenario teorizzato nel lavoro del team italiano suggeriscew che, in una prima fase, la magnetar cattura parte della materia che ancora sta cadendo a seguito del collasso gravitazionale o della collisione tra stelle di neutroni. Questo genera la parte iniziale e più brillante del GRB, liberando un’enorme quantità di energia gravitazionale in poche decine di secondi. Quando l’afflusso di materia diminuisce, la rotazione del campo magnetico della magnetar inizia a respingere la materia stessa fiondandola via – un po’ come un’elica che gira – e una quantità via via più piccola di energia gravitazionale viene rilasciata, causando un graduale calo della luminosità. Infine, quando non vi è più materia che cade, la magnetar si comporta come una stella di neutroni isolata e dissipa progressivamente la sua energia rotazionale.

Secondo Rosalba Perna, professore ordinario presso la Stony Brook University e co-autore dello studio, “questo risultato getta una nuova luce su due misteri cosmici, suggerendo un probabile legame tra di essi: ‘che cos’è che produce un lampo gamma?’ e ‘dove si formano le magnetar e in quali speciali condizioni, tali da differenziarle dalle altre stelle di neutroni?’“.

Luigi Stella, dirigente di ricerca presso l’INAF di Roma e autore anch’egli dello studio, sottolinea che: “appena formate le magnetar, come anche i buchi neri di massa stellare, possono essere motori astrofisici di eccezionale potenza, capaci di alimentare l’emissione dei lampi gamma, ma anche di generare forti onde gravitazionali, come abbiamo dimostrato in alcuni studi precedenti”.

“Nel prossimo futuro” conclude Dall’Osso “un’ulteriore e definitiva conferma della formazione di una magnetar potrà venire proprio  dalla rivelazione di un segnale in onde gravitazionali”.


 

Per ulteriori informazioni:

L’articolo “Magnetar central engines in gamma-ray bursts follow the universal relation of accreting magnetic stars”, di Simone Dall’Osso, Giulia Stratta, Rosalba Perna, Giovanni De Cesare e Luigi Stella, è stato pubblicato su pubblicato sulla rivista The Astrophysical Journal Letters.

Testo dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF).

I cuprati: metalli strani e promettenti per la tecnologia del futuro

Un team internazionale di ricerca, che ha visto la partecipazione del Dipartimento di Fisica di Sapienza, ha pubblicato su Science una ricerca che aggiunge un importante tassello al complicato puzzle dei cuprati, famiglia di composti che diventano superconduttori ad alta temperatura critica.

cuprati
Il cuprato di ittrio e bario, il cristallo nella foto è stato sviluppato presso la University of British Columbia, Vancouver. Foto di  Shreyas Patankar (SPat), CC BY-SA 3.0

I superconduttori sono materiali che rappresentano una delle sfide ancora aperte della ricerca scientifica. Diverse, infatti, sono le loro possibili applicazioni per la proprietà di cui sono dotati di sostenere il passaggio di corrente elettrica senza scaldarsi e dissipare energia: questa caratteristica può essere sfruttata, per esempio, per ridurre gli sprechi nel trasporto di energia elettrica dalle centrali alle case, per la diagnostica avanzata della risonanza magnetica nucleare.

Tuttavia, affinché un materiale manifesti tale proprietà e diventi effettivamente superconduttivo, bisogna scendere a temperature bassissime. Al momento, l’uso dei superconduttori su larga scala è antieconomico per gli alti costi di gestione, principalmente rispetto al raffreddamento. Temperatura, dunque, è la parola chiave e, a livello globale, la soluzione è nei nuovi materiali che si comportino da superconduttori anche a temperature più elevate

In questa cornice si studiano con crescente attenzione i cuprati, composti a base di rame e ossigeno che, se opportunamente drogati” (ovvero con l’aggiunta di piccole quantità di impurità), diventano superconduttori ad alta temperatura, aprendo la prospettiva di promettenti applicazioni future.

In particolare i cuprati sono caratterizzati da un complesso diagramma di fase nel piano temperatura-drogaggio, in cui diverse fasi appaiono in competizione tra loro. Alcune di queste fasi competitive sono elusive ed è fondamentale osservarle e caratterizzarle. È il caso della fase dell’onda di densità di carica (fase nella quale gli elettroni, al di sotto di una temperatura caratteristica del materiale considerato, si dispongono a formare una struttura ordinata nello spazio), che era stata predetta dal gruppo teorico di Roma fin dal 1995 ed è stata osservata solo recentemente in tutti i materiali della famiglia dei cuprati, grazie allo sviluppo di tecniche di diffusione anelastica risonante di raggi X.

Un’altra importante caratteristica dei cuprati è costituita dalle anomalie delle proprietà della fase metallica: in particolare, nella cosiddetta fase del “metallo strano”, la resistività elettrica aumenta linearmente con la temperatura in un intervallo sorprendentemente ampio, che può estendersi dalle temperature più alte osservate fino alla temperatura di transizione alla fase superconduttiva, e anche a temperature più basse, se la superconduttività viene soppressa da un campo magnetico. Tale comportamento non è mai osservato nei metalli ordinari. Nei cuprati, il comportamento anomalo scompare nella fase dell’onda di densità di carica.

In un nuovo studio pubblicato su Science, che ha visto la partecipazione del Dipartimento di Fisica di Sapienza in un team di ricerca internazionale insieme alle Università di Chalmers e Cottbus, al Politecnico di Milano e allo European Synchrotron Radiation Facility di Grenoble, è stata osservata nel cuprato di ittrio e bario, ovvero un materiale ceramico che in condizioni normali (cioè, quando non è “drogato”) è un isolante, una profonda connessione tra la comparsa dell’onda di densità di carica e la deviazione da questo comportamento anomalo della fase metallica a bassa temperatura.

“Incrociando le misure di resistività e di diffusione anelastica risonante di raggi X su film sottili di questo superconduttore, comunemente chiamato YBCO – spiega Sergio Caprara del Dipartimento di Fisica della Sapienza – abbiamo dimostrato che, al diminuire dello spessore del film, nella regione del diagramma di fase in cui sono presenti onde di densità di carica, a una loro progressiva soppressione si associa un recupero della dipendenza lineare della resistività dalla temperatura, caratteristica di questi metalli strani”.

Il risultato suggerisce, tra l’altro, la possibilità di manipolare lo stato fondamentale di materiali quantistici utilizzando come parametro di controllo lo sforzo elastico, che nell’esperimento è introdotto dalla crescita dei film sottili su un substrato.

Questo studio apre dunque a una ulteriore conoscenza dei cuprati, materiali sempre più promettenti per future applicazioni tecnologiche.

Riferimenti:

Restored strange metal phase through suppression of charge density waves in underdoped YBa2Cu3O7-δ – Eric Wahlberg, Riccardo Arpaia, Götz Seibold, Matteo Rossi, Roberto Fumagalli, Edoardo Trabaldo, Nicholas B. Brookes, Lucio Braicovich, Sergio Caprara, Ulf Gran, Giacomo Ghiringhelli, Thilo Bauch, Floriana Lombardi – Science, 2021. DOI: https://doi.org/10.1126/science.abc8372

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Onde elettromagnetiche senza limiti: dall’esplorazione dei fondali marini alla diagnostica d’avanguardia 

Un gruppo di ricercatori della Sapienza ha verificato in pratica per la prima volta il fenomeno della penetrazione profonda delle onde elettromagnetiche ottenuto mediante dispositivi facilmente realizzabili che ne massimizzano la propagazione. I risultati dello studio, pubblicati su Scientific Reports, aprono a nuove prospettive per lo sviluppo tecnologico di numerose applicazioni nell’imaging e nella spettroscopia, così come nei sistemi radar e nei trattamenti medici.

Onde elettromagnetiche senza limiti materiali dissipativi penetrazione profonda
Onde elettromagnetiche senza limiti. Immagine di DECHAMMAKL, CC BY-SA 4.0

Le onde elettromagnetiche, tra cui luce, raggi X, microonde e onde radio, sono molto presenti nella vita quotidiana e si prestano a numerose applicazioni, grazie alla loro flessibilità e potenza: dalla trasmissione di informazioni e di energia ai radar, fino agli impieghi in medicina diagnostica e terapeutica. Tuttavia, le onde elettromagnetiche perdono di efficacia all’interno di alcuni materiali detti dissipativi che intralciano la loro propagazione determinandone la trasformazione in altre forme di energia.

Un gruppo di ricerca della Sapienza, coordinato dal Dipartimento di Ingegneria dell’informazione, elettronica e telecomunicazioni (Diet), in collaborazione con altre università italiane, ha verificato per la prima volta il fenomeno fisico di penetrazione profonda di campi elettromagnetici in materiali dissipativi, ricorrendo ad apparecchi che consentono alle onde di “viaggiare” anche attraverso, per esempio, il terreno o i tessuti biologici.

La ricerca, pubblicata sulla rivista Scientific Reports, conferma nella pratica quanto dimostrato solo a livello teorico in un precedente studio del 2018.

Il risultato è stato ottenuto attraverso un’antenna a microonde (detta antenna a onda leaky), che emette onde che presentano un’amplificazione del campo in certe regioni di spazio, oppure, con un approccio assolutamente innovativo, mediante un particolare prisma che può operare anche a frequenze ottiche.

Le applicazioni di questi dispositivi potrebbero riguardare non soltanto l’individuazione di oggetti sepolti o immersi e l’interazione in profondità con tessuti biologici, ma anche la trasmissione di informazioni in mezzi con perdite, l’analisi di materiali e la microscopia.

“Questo lavoro – commenta Fabrizio Frezza della Sapienza, coordinatore del lavoro – apre la strada a promettenti applicazioni nell’imaging e nella spettroscopia, così come nei sistemi radar e nei trattamenti medici”.

Lo studio, sebbene verifichi l’effetto di penetrazione profonda per un valore specifico della frequenza e della conduttività (essendo le strutture coinvolte tipicamente a banda stretta) offre un importante contributo allo sviluppo tecnologico di numerose applicazioni anche in campi in cui, finora, potevano essere utilizzate solo le onde acustiche, come nell’ecografia e nel sonar.

Riferimenti:

Verification of the electromagnetic deeppenetration effect in the real world – Paolo Baccarelli, Alessandro Calcaterra, Fabrizio Frezza, Fabio Mangini, Nicholas Ricciardella, Patrizio Simeoni, Nicola Tedeschi – Scientific Reports 2021. DOI: 10.1038/s41598-021-95080-w

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

APRE IL MUSEO “GIOVANNI POLENI” DELL’UNIVERSITÀ DI PADOVA

LA STORIA DELLA FISICA TRA PADOVA E IL MONDO

 

È dedicato a Giovanni Poleni (1683 – 1761) il Museo della Fisica dell’Università di Padova. Poleni – stimato da Eulero, Newton, Leibniz e Cassini – fu membro delle principali accademie europee e i suoi contributi scientifici sono innumerevoli. All’Università di Padova gli vengono nel tempo affidate ben cinque cattedre nelle discipline dell’astronomia, della filosofia naturale, della matematica, della fisica e della nautica.

Giovanni Poleni Museo
Ritratto di Giovanni Poleni. Immagine McTutor History of Mathematics, in pubblico dominio

Il Museo “Giovanni Poleni” dell’Università di Padova propone un vero e proprio “viaggio nel tempo”, dal Gabinetto di Fisica avviato a Padova da Giovanni Poleni nel 1739, fino alle ultime ricerche nel campo della Fisica. Una presentazione raffinata, coinvolgente ed emozionante, volta a mettere in risalto non solo le mille storie collegate ai vari strumenti, ma anche la bellezza di molti oggetti, che vengono esposti quasi come opere d’arte. L’idea è di portare il visitatore nel cuore del Gabinetto di Fisica di Padova, dal ‘700 in poi, fino a presentare il lavoro dei fisici di oggi in una piccola sezione temporanea dove via via saranno esposti strumenti del XXI secolo. Per l’inaugurazione, sarà esposto un pezzo di CMS, uno dei rivelatori dell’LHC del CERN di Ginevra.

Gli oggetti sono i protagonisti assoluti del Museo “Giovanni Poleni”: ognuno di loro narra molteplici storie che il nuovo allestimento vuole portare alla luce. Tra i moltissimi in esposizione: lo strumento usato da Poleni nella verifica della statica e nel restauro della cupola di S. Pietro in Vaticano, i termometri firmati da Angelo Bellani, il modello di battipalo con cui fu ricostruito a metà del Settecento il palladiano ponte di Bassano, uno ottocentesco di macchina a vapore pensato per la manifattura di tabacchi di Venezia, una delle prime cellule fotovoltaiche inventata e realizzata da Augusto Righi nel 1888, una straordinaria raccolta di radiografie realizzate da Giuseppe Vicentini tra il 16-18 gennaio 1896 solo due settimane dopo l’invenzione dei Raggi X, strumenti  per studiare i raggi cosmici e tanti altri quali microscopi, galvanometri, strumenti per lo studio della rifrazione e delle leggi della Fisica.

Busto di Giovanni Poleni. Il busto fa parte del Panteon Veneto, conservato presso Palazzo Loredan di Campo Santo Stefano a Venezia. Autore Luigi Baldin, immagine Istituto Veneto di Scienze, Lettere ed Arti, CC BY 4.0

Testo dall’Ufficio Stampa dell’Università di Padova.