News
Ad
Ad
Ad
Tag

CERN

Browsing

Osservati per la prima volta neutrini prodotti da una collisione di particelle. Pubblicati i primi dati dell’esperimento SND@LHC che coinvolge 180 scienziati di 14 Paesi del mondo coordinati dal professore Giovanni De Lellis della Federico II.

Osservati per la prima volta neutrini muonici di alta energia, emessi a seguito di collisione tra protoni all’interno del Large Hadron Collider. Immagine dal CERN

Sfruttare il Large Hadron Collider del CERN come sorgente per lo studio di neutrini, particelle elementari elusive, caratterizzate da una scarsissima interazione con la materia, emessi a seguito delle collisioni tra protoni all’interno del super acceleratore. Questo l’obiettivo della collaborazione internazionale SND@LHC, che coinvolge 180 scienziati di 14 Paesi del mondo coordinati dal professore Giovanni De Lellis dell’Università degli Studi di Napoli Federico II. Dopo aver portato a termine la realizzazione del proprio apparato sperimentale nel marzo dello scorso anno, le ricercatrici e i ricercatori di SND@LHC, insieme ai colleghi della collaborazione FASER, altro esperimento al CERN che studia neutrini, hanno pubblicato sulla rivista Physical Review Letters, i primi risultati dell’analisi dei dati acquisiti nel corso del 2022, da cui emerge la prima osservazione di neutrini muonici di alta energia prodotti da LHC. Oltre ad aprire una nuova finestra utile a indagare le proprietà dei neutrini, la misura, la prima del suo genere, rappresenta un’importante successo tecnologico, confermando la capacità del sistema di rivelazione adottato da SND@LHC di individuare particelle tanto elusive. Il risultato è stato indicato come “Editors’s suggestions” da Physical Review Letters.

Approvato nel marzo del 2021, l’esperimento Scattering and Neutrino Detector (SND@LHC) è stato installato a 480 metri dall’esperimento ATLAS in un in un tunnel in disuso che collega LHC all’SPS e ha come scopo l’individuazione e lo studio dell’elevato numero di neutrini di tutti e tre i sapori (elettronico, muonico e tauonico) che un collisore come LHC è in grado di produrre, finora sfuggiti a un’osservazione diretta a causa della loro bassa probabilità di interazione e della loro traiettoria parallela all’asse di collisione, che rende questi neutrini “invisibili” agli altri esperimenti di LHC.

“Gli esperimenti a LHC hanno sinora associato la presenza di neutrini alla rivelazione di energia mancante nella ricostruzione dei prodotti delle interazioni”, spiega il responsabile Giovanni De LellisOrdinario di Fisica Sperimentale all’Ateneo federiciano . “SND@LHC è stato progettato con l’obiettivo di rivelare queste particelle, di grande interesse per la fisica in quanto caratterizzate da energie molto elevate e non ancora esplorate, estendendo il potenziale scientifico degli altri esperimenti di LHC”.

Il professor Giovanni De Lellis al CERN
Il professor Giovanni De Lellis al CERN

SND@LHC presenta dimensioni ridotte rispetto alle altre tipologie di esperimenti dedicati allo studio dei neutrini attualmente in corso. Esso è costituito da due regioni. In quella più a monte ci sono lastre di tungsteno, per un peso complessivo di circa 800 kg, intervallate da film di emulsioni nucleari, in grado rivelare con estrema precisione l’interazione dei neutrini, e da sistemi traccianti elettronici basati su fibre scintillanti per la misura dell’instante in cui avvengono gli eventi di interazione e della loro energia elettromagnetica. La regione più a valle dell’apparato è invece dotata di un calorimetro adronico e un sistema di riconoscimento dei muoni.

“Il motivo che ha consentito la realizzazione di un apparato sperimentale di dimensioni contenute è legato all’elevato numero di collisioni di LHC, che si traducono in un altrettanto elevato flusso di neutrini nella direzione in avanti. L’ingente numero di neutrini, insieme alle loro alte energie, alla cui crescita corrisponde una maggiore probabilità di interazione, rendono possibile la loro rivelazione anche con apparati più compatti di quelli oggi impiegati nell’indagine sui neutrini grazie anche alla relativa vicinanza dell’apparato alla sorgente”, prosegue il professor De Lellis.

Grazie alle sue caratteristiche, SND@LHC è stato in grado isolare gli eventi dovuti all’interazione tra l’apparato sperimentale e i neutrini prodotti dall’acceleratore nel vasto campione di dati acquisiti nel 2022, costituito da diversi miliardi di muoni che attraversano l’apparato. SND@LHC ha osservato 8 eventi candidati interazioni di neutrino muonico, con una significatività statistica superiore a quella necessaria in fisica per confermare un’osservazione.

“Con questi primi risultati dell’analisi dei dati raccolti nel 2022, l’esperimento SND@LHC ha aperto una nuova frontiera nello studio dei neutrini e nella ricerca di materia oscura”, aggiunge Giovanni De Lellis. “Abbiamo osservato neutrini dal collider con una significatività superiore alle 5 sigma. Alla luce del fatto che una buona parte dei neutrini è originata dai decadimenti di quark pesanti, essi costituiscono un modo unico per studiare la produzione di questi quark, inaccessibile ad altri esperimenti. Queste misure sono anche rilevanti per predire il flusso di neutrini di altissime energie prodotti nei raggi cosmici, sicché l’esperimento fa da ponte tra la fisica degli acceleratori e quella delle astro-particelle”.

L’Università Federico II svolge un ruolo centrale all’interno della collaborazione insieme all’Istituto di Fisica Nucleare.

“Questo è il primo risultato pubblicato: l’indagine proseguirà con lo studio di neutrini muonici a più alta statistica e con la rivelazione di neutrini elettronici e del tau, nonché con la ricerca di materia oscura, grazie alle caratteristiche uniche dell’apparato sperimentale. Il coinvolgimento di gruppi di ricerca multidisciplinari della Federico II è anche il frutto del lavoro della Task Force d’Ateneo SHiP-Fed in cui sono coinvolti dieci Dipartimenti. Questo risultato apre una nuova era, quella della fisica dei neutrini da collisore di particelle, un nuovo filone di ricerca a cui contribuiscono i saperi federiciani in modo trasversale”, conclude De Lellis.

 

Riferimenti bibliografici:

R. Albanese et al. (SND@LHC Collaboration), Phys. Rev. Lett. 131, 031802 (19 Luglio 2023)

 

Testo e foto dall’Ufficio Stampa Rettorato Università degli Studi di Napoli Federico II.

 

Come la vita e il nostro Pianeta sono evoluti insieme

Parte il progetto CoEvolve: indaga la coevoluzione della vita con la Terra

CoEvolve indaga la coevoluzione della vita con la Terra

CoEvolve, il progetto finanziato dal Consiglio Europeo delle Ricerche, guidato dal microbiologo della Federico II di Napoli, Donato Giovannelli, è ufficialmente decollato. Il progetto condurrà il team del Giovannelli-Lab dall’Artico ai deserti delle Ande cilene, e poi dal Costa Rica all’Islanda, alla ricerca di microrganismi che verranno raccolti negli ambienti estremi del nostro pianeta per capire come la Terra e la vita si sono mutualmente influenzati, in una sorta di coevoluzione tra la geosfera e la biosfera terrestre.

‘Quando guardiamo il nostro pianeta tendiamo a pensare che la geologia sia una forza inarrestabile che modella i continenti e gli oceani, e che la vita si adatti a questi cambiamenti ed evolva per tenere il passo. Questo è vero per la maggior parte del tempo, ma ci sono state diverse occasioni durante la storia della Terra in cui l’evoluzione di alcuni processi biologici hanno influenzato notevolmente la geologia, la mineralogia e quindi la traiettoria evolutiva della Terra’ – spiega il coordinator Donato Giovannelli. La realtà è che il nostro pianeta e la vita si sono coevoluti nel tempo, influenzandosi a vicenda per oltre 4 miliardi di anni. ‘È come una delicata danza in cui la vita e il pianeta Terra lavorano insieme per mantenere l’abitabilità del pianeta e sostenere la vita stessa’, dice Donato Giovannelli. Nonostante questo, l’estensione della coevoluzione e le sue forze motrici sono in gran parte sconosciute’.

Il progetto CoEvolve mira a capire come la vita, in particolare i microrganismi, e il pianeta si sono coevoluti nel tempo, concentrandosi sul ruolo dei metalli. Il progetto è finanziato con una sovvenzione di 2,1 milioni di euro dal Consiglio Europeo della Ricerca (ERC Starting Grant 2020).

I microrganismi sono fondamentali per il funzionamento del pianeta e sono stati la forza trainante nel ciclo dei nutrienti e degli elementi dall’origine della vita su questo pianeta. Per controllare il ciclo dei nutrienti e degli elementi, i microrganismi utilizzano un insieme di proteine che contengono metalli nel loro nucleo, utilizzati per controllare efficacemente le reazioni chimiche. A causa di questa relazione, il ruolo dei metalli è importante per la vita (basti pensare solo a cosa comporta un calo di ferro nel sangue).

‘Le conoscenze degli ultimi decenni sulla evoluzione della vita terrestre ci ha fatto comprendere che la disponibilità di metalli è cambiato drammaticamente nel tempo, in gran parte a causa del cambiamento delle concentrazioni di ossigeno nell’atmosfera – sottolinea Giovannelli -. In sintesi, metalli potrebbero aver controllato in una certa misura l’evoluzione della vita microbica stessa’.

Il progetto CoEvolve utilizza microrganismi raccolti in ambienti estremi, dai poli ai deserti, che sono una sorta di modello di antichi tempi geologici, per capire la relazione tra disponibilità di metallo e metabolismo microbico. Una selezione di ambienti diversi, da sorgenti termali negli altipiani del Cile all’Artico norvegese, saranno campionati nei prossimi 5 anni in una serie di missioni la cui delicata logistica richiede una lunga e attenta pianificazione.

CoEvolve coevoluzione
CoEvolve indaga la coevoluzione della vita con la Terra

Donato Giovannelli, dunque, sta raccogliendo nel Giovannelli-Lab un team di scienziati e scienziate con diversi background per affrontare la natura multidisciplinare del progetto CoEvolve, che richiede competenze in microbiologia, biologia molecolare, geochimica, geologia, astrobiologia e big data. La prima fase del progetto è attualmente in corso, con l’allestimento di un nuovo laboratorio geo-bio presso l’Università di Napoli Federico II, e a partire dal 20 febbraio 2022, il team comincia con la prima tappa delle missioni: presso la base artica Dirigibile Italia del CNR (Isole Svalbard, Norvegia) a Ny-Ålesund  (78°55′ N, 11°56′ E). La prima spedizione, i cui dati contribuiranno al CoEvolve, è finanziata con un Progetto di Ricerca in Artico del MUR.

“La mia speranza è che il progetto cambierà il modo in cui comprendiamo e interagiamo con il mondo microbico, aprendo nuove strade in diversi campi come la bioremediation, le biotecnologie e la ricerca sul microbioma umano e potrebbe anche cambiare il modo in cui cerchiamo la vita nell’Universo”, conclude Donato Giovannelli.

 

CoEvolve in breve:

–        Al via il progetto CoEvolve del Dipartimento di Biologia della Federico II di Napoli. Durerà 5 anni, beneficia di un finanziamento ERC europeo di 2.1 milioni di euro. Alla sua guida il microbiologo Donato Giovannelli.

–        Studierà organismi di ambienti estremi, raccolti in Cile, Islanda, Norvegia, Russia, Italia, Costa Rica, per comprendere come la geologia terrestre ha influenzato la vita, e come la vita, a modo suo, abbia a sua volta influenzato la geologia.

–        La prima tappa, in atto in questo momento, alle Isole Svalbard, in Norvegia, presso la base artica del CNR Dirigibile Italia. Il team di microbiologi raccoglierà microorganismi adattati ad un ambiente estremamente freddo.

 

Testo e foto dall’Ufficio Stampa Università Federico II di Napoli.

APRE IL MUSEO “GIOVANNI POLENI” DELL’UNIVERSITÀ DI PADOVA

LA STORIA DELLA FISICA TRA PADOVA E IL MONDO

 

È dedicato a Giovanni Poleni (1683 – 1761) il Museo della Fisica dell’Università di Padova. Poleni – stimato da Eulero, Newton, Leibniz e Cassini – fu membro delle principali accademie europee e i suoi contributi scientifici sono innumerevoli. All’Università di Padova gli vengono nel tempo affidate ben cinque cattedre nelle discipline dell’astronomia, della filosofia naturale, della matematica, della fisica e della nautica.

Giovanni Poleni Museo
Ritratto di Giovanni Poleni. Immagine McTutor History of Mathematics, in pubblico dominio

Il Museo “Giovanni Poleni” dell’Università di Padova propone un vero e proprio “viaggio nel tempo”, dal Gabinetto di Fisica avviato a Padova da Giovanni Poleni nel 1739, fino alle ultime ricerche nel campo della Fisica. Una presentazione raffinata, coinvolgente ed emozionante, volta a mettere in risalto non solo le mille storie collegate ai vari strumenti, ma anche la bellezza di molti oggetti, che vengono esposti quasi come opere d’arte. L’idea è di portare il visitatore nel cuore del Gabinetto di Fisica di Padova, dal ‘700 in poi, fino a presentare il lavoro dei fisici di oggi in una piccola sezione temporanea dove via via saranno esposti strumenti del XXI secolo. Per l’inaugurazione, sarà esposto un pezzo di CMS, uno dei rivelatori dell’LHC del CERN di Ginevra.

Gli oggetti sono i protagonisti assoluti del Museo “Giovanni Poleni”: ognuno di loro narra molteplici storie che il nuovo allestimento vuole portare alla luce. Tra i moltissimi in esposizione: lo strumento usato da Poleni nella verifica della statica e nel restauro della cupola di S. Pietro in Vaticano, i termometri firmati da Angelo Bellani, il modello di battipalo con cui fu ricostruito a metà del Settecento il palladiano ponte di Bassano, uno ottocentesco di macchina a vapore pensato per la manifattura di tabacchi di Venezia, una delle prime cellule fotovoltaiche inventata e realizzata da Augusto Righi nel 1888, una straordinaria raccolta di radiografie realizzate da Giuseppe Vicentini tra il 16-18 gennaio 1896 solo due settimane dopo l’invenzione dei Raggi X, strumenti  per studiare i raggi cosmici e tanti altri quali microscopi, galvanometri, strumenti per lo studio della rifrazione e delle leggi della Fisica.

Busto di Giovanni Poleni. Il busto fa parte del Panteon Veneto, conservato presso Palazzo Loredan di Campo Santo Stefano a Venezia. Autore Luigi Baldin, immagine Istituto Veneto di Scienze, Lettere ed Arti, CC BY 4.0

Testo dall’Ufficio Stampa dell’Università di Padova.

Futuro Remoto 2020 – XXXIV edizione – Pianeta, tra cambiamenti epocali e sfide globali

La ricerca scientifica e tecnologica rappresenta un punto cardine con cui preservare e migliorare il benessere dell’uomo, degli animali e dell’ambiente. Il suo ruolo indiscusso non è sempre in connessione con i cittadini, a discapito di un sapere scientifico che dovrebbe essere accessibile a tutti, soprattutto in un momento storico nel quale le informazioni scorrono in maniera disordinata e rapida, distorcendo spesso la realtà. Quest’anno più di qualsiasi altro ci ha dimostrato uno degli effetti dei cambiamenti che il Pianeta Terra sta subendo, ovvero la pandemia da Covid-19, un fenomeno altamente ripetibile in futuro.

Mostra Missione Antartide alla XXXIV edizione di Futuro Remoto

Futuro Remoto, giunto alla XXXIV edizione, ha come filo conduttore quello di creare una rete di conoscenze tra scienza e pubblico, con più di 300 eventi in programma, tra mostre, rubriche speciali ed incontri internazionali in streaming per discutere dei cambiamenti climatici, della salute del Pianeta e della pandemia da Covid-19. Il festival è promosso da Città della Scienza di Napoli, con il sostegno della Regione Campania, la co-organizzazione delle sette Università della Campania e la collaborazione dell’Istituto Nazionale di Astrofisica-Inaf, del Consiglio Nazionale delle Ricerche-CNR, del Programma Nazionale di Ricerca in Antartide, dell’Ambasciata italiana in Messico, del consolato Generale Usa di Napoli e dell’Unione Industriali di Napoli.

Futuro Remoto XXXIV edizione
La locandina della XXXIV edizione di Futuro Remoto

 

L’evento inaugurale tenutosi il 20 Novembre ha dato inizio, a pieno ritmo, al festival con una diretta tenuta da Riccardo Villari, Presidente Fondazione IDIS – Città della Scienza, che introduce il saluto del Ministro MIUR Gaetano Manfredi e di Valeria Fascione, assessore alla ricerca, innovazione e startup della Regione Campania, i quali ricordano lo spirito di Futuro Remoto come luogo dove far crescere la cultura nella collettività con l’incontro tra scienza e pubblico.

 

Città della Scienza propone da anni il festival come una realtà che possa trasferire il sapere e la conoscenza scientifica ai cittadini, creando una vetrina per la ricerca, affinché si abbia una maggiore consapevolezza sulla salute dell’uomo e, in questo caso, del Pianeta Terra.

È seguito il talk introdotto da Luigi Nicolais – Coordinatore CTS Fondazione IDIS – Città della Scienza – e moderato da Luca Carra – direttore di Scienzainrete – in cui sono intervenuti illustri studiosi. Da Piero Genovesi, zoologo, ecologo specializzato in biodiversità a Filippo Giorgi, fisico e climatologo parte del Gruppo intergovernativo sul cambiamento climatico (IPPC). Sono intervenuti poi Roberto Danovaro, ecologo e biologo marino presidente della Stazione zoologica Anton Dohrn, Patrizia Caraveo, astrofisica la quale mette in risalto il tema dell’inquinamento luminoso, e Paolo Vineis, medico epidemiologo e docente all’Imperial College di Londra in salute globale. Egli risponde al tema dell’emergenza ambientale come fattore influente sulla salute dell’uomo insieme alle diseguaglianze sociali.

Al termine dell’inaugurazione, sono intervenuti i rettori delle Università della Campania insieme a Marcella Marconi – Direttore Osservatorio Astronomico di Capodimonte, Luisa Franzese – Ufficio scolastico regionale per la Campania e Massimo Inguscio – Presidente CNR.

 

La settimana successiva è iniziata ancor più a pieno ritmo, con nomi noti al grande pubblico, come Ilaria Capua. La virologa di fama mondiale per gli studi sull’influenza aviaria e i dibattiti riguardo la scienza open-source, ha partecipato alla live moderata da Luca Carra, discutendo su approcci atti a migliorare le metodiche con cui affrontare eventi tra cui quelli pandemici. Durante il talk si sono proposti temi contenuti del suo libro “Salute circolare: una rivoluzione necessaria”, come l’importanza dell’interdisciplinarietà nella ricerca scientifica utile a creare equilibri nuovi e virtuosi rendendola più sostenibile e convergente. Il concetto di salute è da considerare come un punto di connessione tra uomo, animali ed ambiente e le conoscenze trasversali virando l’approccio verticale alla complessità dei problemi.

Nel pomeriggio di Lunedì 23 è seguito un talk di approfondimento a ricordi dei 40 anni dal terremoto dell’Irpinia-Lucania, uno dei più forti che si ricordino in Italia. Giorgio Della Via a moderare insieme a Maddalena De Lucia, addetta alla divulgazione presso l’Osservatorio vesuviano, hanno introdotto gli argomenti trattati ed i relatori, i quali si sono tutti trovati a vivere in prima persona il fenomeno sismico ed in un secondo momento a studiarlo. Mario Castellano, dirigente tecnologo dell’Osservatorio Vesuviano sezione Napoli dell’ INGV, Girolamo Milano, ricercatore geofisico dell’Osservatorio Vesuviano e Giuliana Alessio, ricercatore presso l’Istituto nazionale di Geofisica e Vulcanologia, hanno raccontato il tipo di sisma, come fu studiato, le cause e gli aspetti tecnici del terremoto dell’Irpinia. La rete sismica del Meridione era composta da una serie di stazioni il cui numero fu ampliato sul territorio per aumentare le informazioni da raccogliere ed analizzare meglio il fenomeno anche ai finiti studi successivi riguardo la dinamica sismica. Il terremoto del 1980 è stato un momenti di svolta per capire i meccanismi alla base e per confermare, il termini di prevenzione, l’aspetto edile come unica chiave per limitare i danni.

 

Nella mattina di Martedì 24 si è tenuta una live molto interessante, dal titolo “Istruzione, Ricerca e Medicina in Africa” durante la quale sono intervenuti Pasquale Maffia, professore associato in immunologia presso l’Università degli Studi di Napoli Federico II, Mayowa Ojo Owolabi, Preside della Facoltà di Medicina di Ibadan in Nigeria, Ntobeko Ntusi, Preside della Facoltà di Medicina presso l’Università di Cape Town e Wilson Mandala Oda, Professore alla Malawi University of Science and Technology e al College of Medicina dell’Università del Malawi. Si è discusso sul tema pandemia da Covid-19 in Africa, su come è stata affrontata e sul suo andamento in associazione ad un approccio più precario riguardo le campagna di vaccinazione, oltre all’importanza dell’istruzione e dell’università nella risoluzione di problematiche sanitarie, ricerca scientifica e medicina.

Per giovedì 26 gli appuntamenti sono stati tanti, tra cui alle ore 15:00 un talk dal titolo “+Innovation +Green +Future. Tecnologie digitali e processi Industriali Virtuosi di sostenibilità ambientale”. Luigi Nicolais introduce Riccardo Villari, Presidente della Fondazione IDIS, Valeria Fascione, assessore alla ricerca, innovazione e startup della Regione Campania e Maurizio Manfellotto, presidente Unioni Industriali Napoli, i quali hanno riflettuto sul tema della sostenibilità con un richiamo all’assetto politico e sociale che la gestisce.

Il primo intervento è stato di Reimung Neugebauer, Presidente del Fraunhofer – Gesellschaft, la più grande organizzazione di ricerca applicata in Europa. Illustrata la diffusione dei centri in Europa ed in Italia, tra cui con l’Università degli studi di Napoli Federico II, e l’aspetto strategico ed economico del “Fraunhofer model”. Si è sottolineato come sia fondamentale realizzare la sostenibilità e mirare a creare strategie innovative per raggiungere quest’obiettivo, coinvolgendo le industrie.

A seguire Pietro Palatino, Presidente di MediTech Competence Centre I4.0, che ha richiamato il concetto di economia circolare applicata all’industria. Sono intervenuti anche Marco Zigon, Presidente di GETRA, azienda che appartiene alla filiera di produzione e distribuzione dell’energia elettrica; Massimo Moschini, Presidente e Amministratore Delegato Laminazione Sottile e Maria Cristina Piovesana, Vicepresidente Confindustria per l’Ambiente, la Sostenibilità e la Cultura.

Nel pomeriggio di Giovedì 26, un altro appuntamento ha visto come protagonista Barbara Gallavotti, biologa ed autrice di programmi come SuperQuark e Ulisse. La giornalista scientifica ha discusso la paura che l’uomo ha di non poter controllare la scienza, insieme a Giulio Sandini, bioingegnere dell’IIT, a Claudio Franceschi, immunologo dell’Istituto di Scienze Neurologiche di Bologna, a Maurizio Mori, professore di bioetica presso l’Università di Torino e a Gennaro Carillo, filosofo dell’Università SuorOrsola Benincasa di Napoli.

Nella live del titolo “Da Frankenstein al futuro”, la Gallavotti ha raccontato di Mary Shelley e di Frankestein, un corpo che da vita alla paura che la scienza non sia sotto il controllo dell’uomo. Nel talk si è affrontato in maniera interdisciplinare come queste paure siano traslate alla nostra epoca ed al futuro, toccando punto come l’aspettativa di vita, la trasmissione della vita umana ed il non adattamento dell’uomo al mondo.

A cornice dei vari eventi, Venerdì 20, Domenica 22, Lunedì 23, Mercoledì 25 e Sabato 28 il pirata Barbascura X ha tenuto live con ospiti importanti, tutte visionabili sul suo canale Twitch o su YouTube.

Tanti altri eventi si sono articolati in rubriche speciali, mostre virtuali, laboratori virtuali e talk, disponibili sulla pagina Facebook o sul canale YouTube.

Lidar e rifugio, foto dalla mostra Missione Antartide alla XXXIV edizione di Futuro Remoto. Foto copyright B. Healey, ESA, IPEV, PNRA

 

Si ringrazia Futuro Remoto – Città della Scienza per le foto.

Tra i risultati presentati all’ultima conferenza ICHEP (40th ICHEP conference), spicca l’annuncio di due esperimenti del CERN, ATLASCMS di nuove misure che mostrano il decadimento del bosone di Higgs in due muoni. Il muone è una copia più  pesante dell’elettrone, una delle particelle elementari che costituiscono la materia dell’Universo. Gli elettroni sono classificati come particelle di prima generazione mentre i muoni appartengono alla seconda generazione.

decadimento bosone di Higgs CERN CMS ATLAS Roberto Carlin
Il decadimento del bosone di Higgs in due muoni, così come registrato dai due esperimenti CERN, CMS (a sinistra) e ATLAS (destra). Immagine: CERN

Il processo di decadimento del bosone di Higgs in muoni, secondo la teoria del Modello Standard, è molto raro (un bosone di Higgs su 5000 decade in muoni). Questi risultati sono molto importanti dal momento che indicano per la prima volta che il bosone di Higgs interagisce con particelle elementari della seconda generazione.

Abbiamo intervistato Roberto Carlin, ricercatore dell’INFN e professore dell’Università di Padova che attualmente è il portavoce dell’esperimento CMS (Compact Muon Solenoid) e gli abbiamo posto alcune domande su questo annuncio e sul prossimo futuro dell’esperimento CMS.

 

Un decadimento molto raro del bosone di Higgs al CERN

Recentemente la collaborazione CMS ha annunciato i rilevamenti di un decadimento molto raro del bosone di H –> mumu. Per quale motivo è così importante questa misura?

La materia di cui siamo fatti è formata da elettroni e quark di tipo “up” e “down”, i costituenti dei protoni e dei neutroni. Queste sono le particelle della cosiddetta “prima generazione”. Esistono particelle con massa più grande che compaiono nelle interazioni ad alte energie, e sono instabili, decadendo alla fine nelle particelle più leggere: il muone appunto, una specie di elettrone duecento volte più pesante, che con i quark “strange” e “charm” costituiscono la seconda generazione.

Ne esiste una terza, ancora più pesante, con il tau ed i due quark bottom e top. Sappiamo che è così ma non sappiamo perché. Non sappiamo perché ci siano tre famiglie e perché abbiano masse così diverse. Il quark top, la particella più pesante che conosciamo, ha una massa poco più di 170 volte quella di un atomo di idrogeno e circa 350 mila volte quella di un elettrone.

Però sappiamo che nel Modello Standard, l’attuale teoria che descrive le particelle elementari e le loro interazioni, la massa delle particelle è generata dalla loro interazione con il campo di Higgs. Quindi studiare l’accoppiamento delle particelle con il bosone di Higgs significa studiare il meccanismo che fornisce loro la massa, e potrebbe gettare luce sulle ragioni di tanta diversità.

Dalla terza generazione alla seconda

Finora, dopo la scoperta del bosone di Higgs che data al 2012, si sono studiati i suoi accoppiamenti con le particelle pesanti, di terza generazione: tau, top, bottom (oltre che quelli con i bosoni vettori più pesanti, W e Z, particelle che mediano la forza elettro-debole). E il motivo è chiaro, più pesante la particella, più grande è l’accoppiamento con il bosone di Higgs, e quindi più facile misurarlo. Con questa nuova misura per la prima volta abbiamo avuto indicazioni sull’accoppiamento con i muoni, particelle della seconda generazione, più leggere, ottenendo risultati in accordo, entro le incertezze sperimentali, con le previsioni del Modello Standard.

Una misura molto difficile, solo un bosone di Higgs su 5000 decade in una coppia di muoni, mentre più della metà delle volte decade in una coppia di quark bottom. Il risultato è molto importante e niente affatto scontato: a priori il meccanismo che fornisce massa alle particelle di diversa generazione potrebbe essere più complesso coinvolgendo, per esempio, diversi bosoni di Higgs.

Peter Ware Higgs, insignito del Nobel della Fisica nel 2013, predisse negli anni ’60 l’esistenza del bosone che oggi ne porta il nome. Oggi con l’esperimento CMS del CERN, si rileva un raro decadimento del bosone di Higgs in due muoni. Foto Flickr di Bengt Nyman, CC BY 2.0

Evidenza o Scoperta?

Nell’annuncio si sottolinea che la significatività è di “soli” 3 sigma. Ci potrebbe spiegare per quale motivo 3 sigma non sono sufficienti e quando si pensa di raggiungere la soglia dei 5 sigma?

Intanto direi “già” 3 sigma, non “soli”. Perché una misura di questa significatività non era attesa così presto, ci si aspettava di arrivarci utilizzando anche i dati del “Run 3”, previsto tra il 2022 ed il 2024. Invece la gran mole dei dati forniti negli anni passati da LHC, la grande efficienza e qualità della rivelazione e ricostruzione di muoni in CMS, e l’impiego di strumenti di deep learning, ovvero le tecniche sviluppate nel campo dell’intelligenza artificiale, hanno permesso questo eccellente risultato. Il problema di questa misura è che non solo il segnale è molto raro, abbiamo detto che solo un bosone di Higgs su 5000 decade in due muoni, ma anche che esistono processi diversi che possono imitare il segnale cercato (eventi di fondo), e questi sono migliaia di volte più frequenti del segnale.

Una significatività di 3 sigma viene chiamata “evidenza” e significa che, in assenza di segnale, fluttuazioni degli eventi di fondo potrebbero generare un contributo simile a quanto osservato (e quindi un falso segnale) una volta su 700. Una probabilità piccola ma non piccolissima. Lo standard che ci siamo dati per una “osservazione”, al di là di ogni ragionevole dubbio, è di 5 sigma, che rappresenta una probabilità di una volta su qualche milione.

Per arrivare ciò serviranno circa il triplo dei dati attualmente disponibili. Speriamo che il Run 3 ci darà tanto, contiamo almeno di raddoppiare i dati, anche se siamo abituati a risultati migliori dell’atteso. In ogni caso una combinazione dei risultati di ATLAS e CMS alla fine Run 3 dovrebbe permetterci di arrivare a questa nuova soglia.

Una conferma del Modello Standard

Ci sono stati casi di misure a 3 sigma che poi, con l’aumentare del campione di indagine, si sono rivelate semplici fluttuazioni statistiche?

Certamente. Abbiamo detto che con 3 sigma si parla di probabilità pari una volta su 700. Poiché in questi esperimenti facciamo molte misure diverse (CMS ha recentemente celebrato i 1000 articoli scientifici), simili fluttuazioni accadono. Nel caso una fluttuazione di 3 sigma punti a un fenomeno nuovo, inaspettato, siamo perciò molto cauti. Qui si tratta di una misura, molto importante, che conferma entro le incertezze sperimentali quanto previsto dal Modello standard, il risultato inaspettato sarebbe stato la mancanza del segnale, non la sua presenza.

Muon Collider

Se questa scoperta venisse confermata, avremmo una conferma sperimentale dell’accoppiamento del bosone H con leptoni della seconda famiglia. Questa potrebbe avere influenza per lo sviluppo di un acceleratore basato sullo scontro di muoni invece che elettroni?

Queste prime misure indicano che l’accoppiamento del bosone di Higgs con i muoni è compatibile con quello atteso. In questo caso, assumendo valido il Modello Standard, la probabilità di produrre direttamente (in modo risonante) bosoni di Higgs in un collisore di muoni sarebbe circa 40 mila volte maggiore di quella, troppo piccola, che si avrebbe in un collisore di elettroni, e questo renderebbe possibile misurare alcune quantità, come la massa del bosone di Higgs, con altissima precisione.

Aggiornamento del rivelatore CMS

L’acceleratore LHC (Large Hadron Collider) dovrebbe ripartire tra qualche mese, dopo un anno di riposo. Che miglioramenti sono stati apportati al rivelatore CMS in questo periodo?

Il numero di miglioramenti è molto grande. Tra questi, l’elettronica del rivelatore di vertice, il più preciso e vicino al punto di interazione, sta ricevendo vari aggiornamenti approfittando della necessità programmata di rimpiazzarne lo strato interno, il più soggetto a danneggiamenti da radiazioni. Anche l’elettronica del calorimetro per adroni è stata completamente sostituita, aumentandone significativamente le prestazioni.

Inoltre, abbiamo cominciato a installare rivelatori che sono previsti nel piano di aggiornamento per il futuro “High-Luminosity LHC”. In particolare due dischi di rivelatori di muoni basati sulla nuova tecnologia GEM (Gas Electron Multiplier). Avremo quindi un rivelatore ancora migliore, adatto a gestire in maniera ottimale l’alta intensità di collisioni tra protoni che LHC si prepara a fornire (anche lo stesso LHC ha significativi aggiornamenti in questo periodo).

L’impatto del COVID-19

L’emergenza COVID-19 ha costretto università ed enti di ricerca a nuove forme di lavoro a distanza. Vi sono state conseguenze, come ritardi nella programmazione della ripartenza di LHC o negli aggiornamenti al rivelatore?

CMS è una grande collaborazione internazionale, con istituti da 55 paesi di tutto il mondo, e siamo quindi già abituati a lavorare in rete. Praticamente tutti i nostri meeting sono da anni in videoconferenza per facilitare l’accesso remoto. Quindi la transizione a una modalità di telelavoro per alcune  attività, in particolare l’analisi dei dati, è stata forse più facile che in altri contesti. Anche se con difficoltà innegabili, per esempio per persone che hanno dovuto gestire figli a casa. Naturalmente altre attività di aggiornamento dei rivelatori, previste in questo periodo, hanno subito dei ritardi a causa della chiusura del CERN.

Alla fine del lockdown il management degli esperimenti, degli acceleratori e del CERN si è riunito e abbiamo deciso un nuovo programma, che vede la ripresa di LHC ad inizio 2022 invece che a metà 2021. Siamo tuttavia riusciti a ottimizzare i periodi seguenti cosicché la quantità di dati prevista nel prossimo periodo prima della nuova chiusura nel 2025, prevista per installare il grande aggiornamento di “high lumi LHC”, non ne risentirà e ci consentirà di continuare il nostro vastissimo programma di studi, ottenendo sicuramente nuovi importanti risultati.

 

Articolo a cura di Silvia Giomi e Piero Paduano

L’Universo in cui viviamo ci è in gran parte ignoto. La materia di cui siamo fatti noi, i pianeti, le stelle e tutti gli oggetti che osserviamo – e quindi conosciamo – ne costituisce meno del 5%. La restante parte dell’Universo è energia oscura (70%) e materia oscura (25%). Quest’ultima è detta “oscura” poiché, non emettendo radiazione elettromagnetica, rimane invisibile ai nostri strumenti, ma la sua presenza si rivela per via degli effetti gravitazionali osservati.

La ricerca delle particelle di materia oscura è una sfida che coinvolge da anni la comunità scientifica che si cimenta in esperimenti di osservazione diretta (in laboratori sotterranei come CERN, LNGS) e indiretta (nello spazio).

Tra i metodi indiretti vi è quello che sfrutta il fenomeno della superradianza dei buchi neri, esplorato approfonditamente nell’articolo Black hole superradiant instability from ultralight spin-2 fields, pubblicato sulla rivista Physical Review Letters.

Tale metodo è estremamente interessante anche perché si inserisce nel contesto della LGQ (Loop Quantum Gravity), teoria che cerca di unificare la meccanica quantistica e la relatività generale.

Abbiamo il piacere e l’onore di parlarne con il professor Paolo Pani, associato in Fisica Teorica presso il Dipartimento di Fisica della Sapienza Università di Roma, tra i protagonisti dello studio.

instabilità per superradianza Paolo Pani buchi neri materia oscura
Il buco nero supermassiccio nel nucleo della galassia ellittica Messier 87 nella costellazione della Vergine. Si tratta della prima foto diretta di un buco nero, realizzata dal progetto internazionale Event Horizon Telescope. Foto modificata Event Horizon TelescopeCC BY 4.0

 

In cosa consiste l’instabilità per superradianza, e in che modo la sfruttate per la vostra indagine?

La superradianza è un fenomeno che avviene in molti sistemi fisici quando un’onda riflessa da un oggetto viene amplificata a scapito dell’energia dell’oggetto stesso. Questo avviene anche per un buco nero, che può amplificare le onde elettromagnetiche o gravitazionali che “sbattono” su di esso. L’energia in eccesso viene presa dalla velocità di rotazione dell’oggetto, che diminuisce.

L’instabilità per superradianza è un fenomeno collegato: se le particelle del campo elettromagnetico (fotoni) o del campo gravitazionale (gravitoni) avessero una seppur minuscola massa, la radiazione amplificata per superradianza rimarrebbe intrappolata vicino al buco nero, generando un effetto a cascata che rallenta il buco nero fino quasi a fermare completamente la sua rotazione.

In questo caso l’energia in eccesso viene emessa in onde gravitazionali la cui frequenza è direttamente collegata all’ipotetica massa del campo. Se queste particelle ultraleggere esistessero, quindi, non dovremmo osservare buchi neri rotanti e ciascun buco nero si comporterebbe come un “faro” di onde gravitazionali.

 

Il fenomeno della superradianza ha qualche connessione con la radiazione di Hawking?

Sì, si può dire che la superradianza è la controparte “classica” della radiazione di Hawking, che è invece un effetto “quantistico”. La superradianza richiede che il buco nero ruoti, mentre nel caso della radiazione di Hawking il buco nero può rimanere statico. In questo caso la radiazione viene emessa spontaneamente, a scapito della massa del buco nero.

 

Può spiegarci quali sono i vantaggi di aver esteso il fenomeno al caso di campo tensoriale rispetto allo scalare e al vettoriale?

Il caso di campo tensoriale è strettamente collegato ad alcune teorie che prevedono una massa minuscola per il gravitone, una proprietà che potrebbe risolvere il problema della costante cosmologica e dell’energia oscura responsabile dell’espansione accelerata dell’universo.

Inoltre, campi tensoriali ultraleggeri sono ottimi candidati per spiegare la materia oscura che sembra permeare il cosmo ma che finora non si è riusciti a misurare in laboratorio. Il nostro studio mostra che i segnali di onde gravitazionali presenti e futuri permettono di ricercare queste particelle anche quando la loro massa è troppo piccola per essere vista in esperimenti terrestri, come negli acceleratori di particelle.

 

I vostri risultati sono condizionati dalla scelta della metrica di Kerr?

Nella teoria della gravitazione di Einstein, la relatività generale, la metrica di Kerr è l’unica possibile per descrivere un buco nero astrofisico. Nelle teorie che menzionavo sopra, tuttavia, possono esistere altre soluzioni che descrivono buchi neri differenti.

Nel nostro studio abbiamo fatto l’ipotesi standard che i buchi neri siano descritti dalla metrica di Kerr. Scelte differenti renderebbero i calcoli più laboriosi ma ci aspettiamo che non modifichino sostanzialmente il risultato: in presenza di campi ultraleggeri tutti i buchi neri rotanti sono instabili per superradianza ed emettono onde gravitazionali.

 

Quali porte si stanno aprendo e/o quali si stanno chiudendo sulla ricerca della materia oscura?

Il problema della materia oscura è che sappiamo davvero poco su di essa, e quindi svariate speculazioni teoriche sono possibili. Nel corso dei decessi alcuni modelli teorici sono divenuti più popolari di altri, ma l’ultima parola ce l’ha sempre l’esperimento: finché non scopriremo tracce di materia oscura oltre quelle ben note, non sarà possibile distinguere diversi modelli.

Gli esperimenti attuali atti a ricercare uno dei candidati più promettenti (le cosidette WIMPS, weakly interacting massive particles) hanno raggiunto precisioni tali che possono quasi escludere questa ipotesi. Un altro candidato molto promettente sono gli assioni, che sono appunto particelle ultraleggere che producono l’instabilita’ di superradianza dei buchi neri.

Penso che la risposta al problema della materia oscura arriverà da esperimenti innovativi, o magari proprio dai buchi neri, tramite segnali inaspettati di onde gravitazionali.

 

 

Riferimenti allo studio su instabilità per superradianza, buchi neri, materia oscura:

Black Hole Superradiant Instability from Ultralight Spin-2 Fields – Richard Brito, Sara Grillo, and Paolo Pani – Phys. Rev. Lett. 124, 211101 – Published 27 May 2020 DOI:https://doi.org/10.1103/PhysRevLett.124.211101

L’esperimento NA62, installato nei laboratori del CERN di Ginevra, ha annunciato un importante risultato ottenuto dalla analisi dei dati raccolti fra il 2016 e il 2018, il ruolo degli scienziati perugini 

 

 

esperimento NA62
L’esperimento NA62 installato presso il CERN (immagine proveniente dalla pagina web: https://na62.web.cern.ch/Home/Home.html)

Nel tardo pomeriggio del 28 luglio 2020, in occasione della quarantesima edizione della International Conference on High Energy Physics (ICHEP), l’esperimento NA62, installato presso i laboratori del CERN di Ginevra, ha annunciato un importante risultato ottenuto dalla analisi dei dati raccolti fra il 2016 e il 2018. 

 L’esperimento NA62 è stato costruito con lo scopo di osservare il decadimento ultra-raro di un kaone carico in un pione carico e una coppia neutrino-antineutrino (K+ → p+ nn), e di misurare la probabilità che esso avvenga dato un generico decadimento del kaone carico. 

La teoria che descrive le interazioni fra particelle elementari, il cosiddetto Modello Standard, prevede che questo decadimento avvenga circa una volta ogni dieci miliardi di decadimenti del kaone carico. La misura della probabilità di decadimento da parte di NA62 può quindi fornire un test di precisione per il Modello Standard, con la possibilità di evidenziare effetti di Nuova Fisica, qualora il risultato della misura sia significativamente diverso dalla predizione teorica. 

L’esperimento NA62 ha annunciato di aver osservato, nei dati raccolti nel 2018, diciassette eventi compatibili con il decadimento cercato, che si aggiungono ai due eventi osservati nei dati 2017 e ad un evento osservato nei dati 2016. Ciò rappresenta la più alta statistica mai raccolta per l’osservazione di questo decadimento, che ha consentito all’esperimento NA62 di poter effettuare la misura più precisa mai realizzata per questa probabilità di decadimento, che risulta essere compatibile con quanto predetto dalla teoria, entro le incertezze sperimentali. 

L’esperimento continuerà a raccogliere dati a partire dal 2021, al fine di migliorare ulteriormente la precisione della misura. 

Alla Collaborazione NA62, che conta circa duecento ricercatori da tutto il mondo, partecipa anche un gruppo di ricercatori del Dipartimento di Fisica e Geologia dell’Università degli Studi di Perugia (referente: Prof.ssa Giuseppina Anzivino) e della sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare (referente: Dott.ssa Monica Pepe). 

Il gruppo ha contribuito in maniera fondamentale a tale risultato, attraverso la partecipazione alla costruzione e al mantenimento di uno dei rivelatori chiave dell’esperimento, il RICH, e rivestendo un ruolo da protagonista nell’analisi dei dati che ha portato all’osservazione degli eventi, con due tesi di dottorato sul tema.

 

Testo e foto dall’Ufficio Stampa Università degli Studi di Perugia

Record mondiale di luminosità all’acceleratore di particelle SuperKEKB in Giappone, il ruolo degli scienziati perugini

Luminosità istantanea fornita dall’acceleratore SuperKEKB al rilevatore Belle II in funzione del tempo

Alle 13.34 del 15 Giugno 2020 ora italiana, l’acceleratore SuperKEKB, nel laboratorio KEK a Tsukuba in Giappone, ha stabilito un nuovo record mondiale, raggiungendo la luminosità istantanea di 2.22×1034 cm-2 s -1 . Il precedente record di luminosità era detenuto dal Large Hadron Collider (LHC) del CERN di Ginevra con 2.14×1034 cm-2 s -1 .

La luminosità di un acceleratore esprime la capacità dell’apparato di produrre collisioni tra particelle e pertanto rappresenta uno dei principali elementi per ottenere nuove scoperte nel campo della fisica. In SuperKEKB avvengono collisioni tra elettroni e positroni ad un’energia prossima alla massa della risonanza Y(4S) (10.58 GeV) dove è copiosa la produzione di mesoni B, D e di leptoni t.

L’esperimento Belle II ha come obbiettivo principale la ricerca di effetti di nuova fisica, al di là del Modello Standard, nella produzione e nel decadimento di tale particelle.

Belle II è il risultato di una collaborazione internazionale di circa 1.000 fisici e ingegneri provenienti da 115 università e laboratori di 26 Paesi. L’Italia partecipa attraverso l’Istituto Nazionale di Fisica Nucleare (INFN) e le Università collegate, tra cui la Sezione di Perugia INFN e l’Ateneo perugino.

Claudia Cecchi, Maurizio Biasini, Elisa Manoni

Il gruppo perugino dell’esperimento Belle II, guidato dalla Professoressa Claudia Cecchi del Dipartimento di Fisica e Geologia dell’Università degli Studi di Perugia, contribuisce attivamente alla presa dati dell’esperimento, al mantenimento di una parte del rivelatore in particolare del Calorimetro Elettromagnetico (ECL) per la misura dell’energia di fotoni ed elettroni e ricopre ruoli di responsabilità nell’analisi dei dati per la ricerca di decadimenti rari che potrebbero dare informazioni fondamentali sulla ricerca di Nuova Fisica oltre il modello Standard. Il gruppo si avvale inoltre della collaborazione del Professor Maurizio Biasini, docente dello stesso Dipartimento, e della Dottoressa Elisa Manoni, ricercatrice della Sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare.

Sebbene il Modello Standard descriva correttamente il comportamento delle particelle sub-atomiche note, numerose teorie predicono nuove particelle e ci sono osservazioni di natura astrofisica che suggeriscono l’esistenza di materia ed energia oscure. Inoltre è tutt’ora aperta la questione di quale sia l’origine dell’asimmetria materia-antimateria dell’universo. Nuove particelle, con massa molto grande, possono essere prodotte direttamente se si dispone di energia sufficiente, oppure possono essere osservate indirettamente attraverso gli effetti quantistici con cui modificano i processi di produzione e decadimento delle particelle già note e questo secondo approccio è quello seguito dal collisore SuperKEKB e dall’esperimento Belle II. Questi effetti quantistici sono tanto più rari quanto è maggiore la massa della nuova particella che li genera ed è quindi necessaria una grande quantità di dati per osservarli, per cui la luminosità fornita dal collisore è un fattore cruciale in questa ricerca. L’esperimento Belle II, in circa 10 anni di presa dati, accumulerà una luminosità integrata 50 volte maggiore (corrispondente alla produzione di 50 miliardi di coppie di mesoni B) rispetto ai suoi predecessori Belle e Babar. I dati raccolti fino ad ora hanno già permesso di porre un limite interessante nell’ambito della ricerca della materia oscura e sono stati pubblicati.

Per raggiungere l’alta luminosità necessaria, SuperKEKB adotta l’innovativo schema a nano-beam secondo il quale si fanno collidere fasci di elettroni e positroni organizzati in pacchetti lunghi ed estremamente sottili che si scontrano con un angolo d’incrocio relativamente grande. Questo record di luminosità è stato ottenuto integrando lo schema a nano-beam con il crab-waist, una tecnica quest’ultima che consente di contenere la distribuzione nello spazio delle fasi delle particelle nei fasci interagenti e di stabilizzare le collisioni.

È doveroso ricordare che lo schema a nano-beam ed il crab-waist sono stati concepiti e realizzati grazie ad un lavoro pioneristico del gruppo di fisica degli acceleratori dei Laboratori Nazionali di Frascati guidati dal fisico italiano Pantaleo Raimondi, anche nel contesto del progetto, poi non realizzato, dell’acceleratore SuperB.

 

Perugia, 26 giugno 2020

 

 

 

Testo e foto dall’Ufficio Stampa Università degli Studi di Perugia

WFIRST (Wide Field InfraRed Survey Telescope) – da poco ribattezzato Roman Telescope in onore dell’astronoma statunitense Nancy Grace Roman, affettuosamente chiamata “la mamma di Hubble” – è un progetto NASA designato ad indagare su alcuni grandi misteri dell’Universo come la materia e l’energia oscura e per cercare nuovi mondi in orbita attorno ad altre stelle della nostra galassia.

ScientifiCult ha l’onore di poter intervistare il dott. Valerio Bozza, ricercatore presso l’Università degli Studi di Salerno e attualmente impegnato a collaborare con la NASA per la realizzazione del Telescopio Roman.

Valerio Bozza
Il dott. Valerio Bozza

Può raccontarci i momenti della Sua carriera professionale che ricorda con più piacere?

In vent’anni di ricerca ho avuto la fortuna di vivere tante soddisfazioni e di lavorare con le persone che hanno scritto i libri su cui ho studiato. Certamente, partecipare alle discussioni nello studio di Gabriele Veneziano al CERN con i cosmologi più importanti del mondo e poter assistere alla nascita di idee geniali su quella lavagna è stata un’esperienza formativa fondamentale. Quando ho avuto il mio primo invito a relazionare ad un workshop all’American Institute of Mathematics sul gravitational lensing di buchi neri e ho ricevuto i complimenti di Ezra T. Newman, ho capito che potevo davvero dire la mia anche io.

Ricordo ancora le notti di osservazioni allo European Southern Observatory a La Silla in Cile, sotto il cielo più bello del pianeta. Ricordo l’invito al Collège de France a Parigi da parte di Antoine Layberie per un seminario, che poi ho scoperto di dover tenere in francese! Poi non ci dimentichiamo la notizia della vittoria al concorso da ricercatore, che mi ha raggiunto mentre ero in Brasile per un altro workshop sulle perturbazioni cosmologiche. Infine, ricordo con una certa malinconia le notti e i giorni di lavoro all’Osservatorio Astronomico UNISA per mettere su un programma di ricerca competitivo. Tutto è finito con la copertina di Nature sulla scoperta del pianeta KELT-9b, il più caldo mai visto, e la distruzione dell’Osservatorio nel febbraio 2019, una ferita ancora aperta.

Adesso, però, è ora di concentrarsi sullo sviluppo del nuovo telescopio spaziale WFIRST della NASA, che il 20 maggio scorso è stato rinominato Nancy Grace Roman Space Telescope (o semplicemente “Roman”, in breve), in onore della astronoma che ha contribuito alla nascita dei primi telescopi spaziali della NASA.

Infine, ricordo con una certa malinconia le notti e i giorni di lavoro all’Osservatorio Astronomico UNISA con il Prof. Gaetano Scarpetta, per mettere su un programma di ricerca competitivo.

Ci sono degli aggiornamenti sulla data del lancio di Roman?

Il lancio del telescopio Roman era programmato per il 2025, ma diverse vicende hanno giocato contro in questi ultimi anni: il ritardo nel lancio del JWST, lo shutdown del governo americano ad inizio 2019 e soprattutto l’epidemia di COVID-19, che sta provocando ritardi su tutte le scadenze nella tabella di marcia. A questo punto, direi che uno slittamento all’anno successivo possa essere plausibile. Tuttavia, l’interesse verso questa missione sta continuando a crescere sia dentro che fuori l’ambito accademico, mettendola al riparo da eventuali tagli di budget.


Roman viene spesso paragonato al telescopio spaziale Hubble. Quali sono le differenze e le somiglianze? E con il JWST?

Si tratta di tre telescopi spaziali che spesso vengono citati insieme, ma sono tutti e tre profondamente diversi: Hubble opera nella banda del visibile e nell’ultravioletto, mentre non è molto sensibile all’infrarosso. Al contrario, sia JWST che Roman opereranno nel vicino infrarosso. JWST avrà un campo di vista molto più piccolo anche di Hubble, perché il suo scopo è fornirci immagini con dettagli mai visti prima di sistemi stellari e planetari in formazione. Roman, invece, avrà un campo di vista cento volte più grande di Hubble, perché il suo scopo è quello di scandagliare aree di cielo molto grandi alla ricerca di galassie o fenomeni transienti. La grande novità è che Roman condurrà queste survey a grande campo con una risoluzione di 0.1 secondi d’arco, simile a quella di Hubble! Quindi, avremo la possibilità di condurre la scienza di Hubble su enormi aree di cielo contemporaneamente. JWST, invece, condurrà osservazioni con un dettaglio molto migliore di Hubble e di Roman, ma su un singolo oggetto in un’area molto limitata.

Roman telescope Valerio Bozza
Immagine 3D del veicolo spaziale Roman (luglio 2018). Immagine NASA (WFIRST Project and Dominic Benford), adattata, in pubblico dominio


Quali sono i target scientifici della missione e come vengono raggiunti?

A differenza di Hubble e JWST, Roman avrà poco spazio per richieste estemporanee di osservazioni. Sarà un telescopio essenzialmente dedicato a due programmi principali: una survey delle galassie lontane e una survey del centro della nostra Galassia. La prima survey effettuerà delle immagini di tutto il cielo alla ricerca di galassie deboli e lontane. Queste immagini consentiranno di capire meglio la distribuzione della materia nel nostro Universo, fissare le tappe dell’espansione cosmologica e chiarire i meccanismi alla base dell’espansione accelerata, scoperta venti anni fa attraverso lo studio delle supernovae Ia. I cosmologi si aspettano che Roman possa fornirci risposte fondamentali sulla natura della cosiddetta Dark Energy, che è stata ipotizzata per spiegare l’accelerazione del nostro Universo, ma la cui natura è del tutto sconosciuta.

Il secondo programma osservativo è una survey delle affollatissime regioni centrali della nostra galassia. Monitorando miliardi di stelle, ci aspettiamo che, almeno per una frazione di queste, la loro luce verrà amplificata da effetti temporanei di microlensing dovuti a stelle che attraversano la linea di vista. Il microlensing è un’amplificazione dovuta al ben noto effetto “lente gravitazionale” previsto dalla relatività generale di Einstein. Se la stella che fa da lente è anche accompagnata da un pianeta, l’amplificazione riporterà delle “anomalie” che potranno essere utilizzate per studiare e censire i sistemi planetari nella nostra galassia. Roman sarà così sensibile da rivelare anche pianeti piccoli come Marte o Mercurio!

microlensing
Il fenomeno del microlensing: la sorgente (in alto) appare più brillante quando una stella lente passa lungo la linea di vista. Se la lente è accompagnata da un pianeta, la luminosità mostra anche una breve anomalia. Credits: © ESA


Quali differenze tra le caratteristiche dei pianeti extrasolari che andrà a scoprire
Roman e quelle dei pianeti che ha osservato Kepler e che osserva TESS?

Il metodo del microlensing, utilizzato da Roman, è in grado di scoprire pianeti in orbite medio-larghe intorno alle rispettive stelle. Al contrario, sia Kepler che TESS, utilizzano il metodo dei transiti, in cui si misura l’eclisse parziale prodotta dal pianeta che oscura parte della sua stella. Questi due satelliti, quindi, hanno scoperto tipicamente pianeti molto vicini alle rispettive stelle.

Ipotizzando di osservare una copia del Sistema Solare, Kepler e TESS potrebbero vedere Mercurio o Venere, nel caso di un buon allineamento. Roman, invece, avrebbe ottime probabilità di rivelare tutti i pianeti da Marte a Nettuno.

Un’altra differenza è che Roman scoprirà pianeti distribuiti lungo tutta la linea di vista fino al centro della Galassia, consentendo un’indagine molto più ampia della distribuzione dei pianeti di quanto si possa fare con altri metodi, tipicamente limitati al vicinato del Sole. Purtroppo, però, i pianeti scoperti col microlensing non si prestano ad indagini approfondite, poiché, una volta terminato l’effetto di amplificazione, i pianeti tornano ad essere inosservabili e sono perduti per sempre.

In definitiva, la conoscenza dei pianeti nella nostra Galassia passa per il confronto tra diversi metodi di indagine complementari. Ognuno ci aiuta a comprendere una parte di un puzzle che si rivela sempre più complesso, mano mano che scopriamo mondi sempre più sorprendenti.

 

Nancy Grace Roman, in una foto NASA del 2015, in pubblico dominio