News
Ad
Ad
Ad
Tag

NASA

Browsing

INDIVIDUATE NUOVE TRACCE DI SOSTANZE ORGANICHE NEI SOLFATI SU MARTE

Tracce di composti organici associati a solfati sono state individuate sulla superficie di Marte. A riportare la scoperta è un articolo pubblicato oggi sulla rivista Nature Astronomy, basato su dati raccolti dallo spettrometro Sherloc a bordo del rover Perseverance della NASA, in campioni prelevati nel cratere marziano Jezero. Non è possibile escludere che queste molecole organiche siano residui derivanti dalla degradazione di materia microbica antica, sebbene l’origine più probabile sia considerata abiotica, più specificamente attraverso reazioni di gas magmatici con ossidi di ferro presenti nelle rocce vulcaniche. A guidare il team è Teresa Fornaro, dell’Istituto Nazionale di Astrofisica (INAF).

Vista 3D del target Pilot Mountain, situato sulla sommità del ventaglio deltizio di Jezero crater, dove lo strumento Sherloc del rover Perseverance della NASA ha rilevato firme spettrali compatibili con idrocarburi policiclici aromatici all’interno di grani di solfato, suggerendo la preservazione di molecole organiche complesse in matrici minerali evaporitiche. Crediti: Teresa Fornaro, Andrew Alberini, Giovanni Poggiali, con modello 3D del target Pilot Mountain da: "M2020 WATSON -- Pilot Mountain, sol 874" (https://skfb.ly/oJWWx) by Mastcam-Z is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/)
Vista 3D del target Pilot Mountain, situato sulla sommità del ventaglio deltizio di Jezero crater, dove lo strumento Sherloc del rover Perseverance della NASA ha rilevato firme spettrali compatibili con idrocarburi policiclici aromatici all’interno di grani di solfato, suggerendo la preservazione di molecole organiche complesse in matrici minerali evaporitiche. Crediti: Teresa Fornaro, Andrew Alberini, Giovanni Poggiali, con modello 3D del target Pilot Mountain da: “M2020 WATSON — Pilot Mountain, sol 874” (https://skfb.ly/oJWWx) by Mastcam-Z is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/)

La ricerca di molecole organiche su Marte è centrale per capire se il pianeta abbia mai offerto condizioni favorevoli alla vita. Alcuni composti organici possono infatti rappresentare nutrienti, mentre altri, più complessi, potrebbero costituire vere e proprie biofirme. Nonostante in passato siano già state individuate molecole organiche, la loro origine e conservazione restano ancora poco chiare.

Proprio per questo il cratere Jezero, antica area deltizia che un tempo ospitava un lago e che potrebbe aver avuto un alto potenziale di abitabilità, è oggi uno dei luoghi più interessanti da studiare. Qui, lo strumento Sherloc (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) a bordo del rover Perseverance ha rilevato segnali Raman forti e complessi associati a solfati, in particolare nelle aree denominate Quartier e Pilot Mountain, rispettivamente sul fondo del cratere e sul ventaglio deltizio.

“Quando Sherloc ha rivelato forti segnali Raman nella regione spettrale degli organici nel target Quartier, ci siamo entusiasmati. Questi segnali erano associati spazialmente a solfati di magnesio e calcio, che sulla Terra mostrano grandi capacità di preservazione della materia organica”, sottolinea Teresa Fornaro. “L’associazione con i solfati era davvero un enigma affascinante e mi ha spinta a esaminare uno per uno gli 839 spettri acquisiti da Sherloc in cui sono stati rilevati solfati sul fondo del cratere e sul ventaglio deltizio di Jezero, alla ricerca di segnali potenzialmente indicativi di composti organici. In questo modo, ho scoperto che il target Pilot Mountain, situato sulla sommità del ventaglio, mostra segnali Raman simili a quelli osservati in Quartier”.

Per verificare l’ipotesi che i segnali osservati sono effettivamente dovuti a molecole organiche, il team ha condotto esperimenti nel Laboratorio di Astrobiologia dell’INAF a Firenze. Sono stati utilizzati materiali analoghi marziani e strumenti simili a Sherloc, riproducendo processi naturali in condizioni controllate. Il confronto con i dati acquisiti in situ ha permesso di consolidare l’interpretazione organica.

“Il Laboratorio di Astrobiologia di Arcetri, grazie al supporto dell’INAF e dell’Agenzia Spaziale Italiana, ha acquisito nel corso degli anni strumentazioni all’avanguardia che ci hanno permesso di ritagliarci un ruolo di rilievo nel contesto internazionale per quanto riguarda i temi dell’astrobiologia” spiega John Brucato dell’INAF, responsabile del laboratorio e coautore dello studio. “Siamo in grado di caratterizzare i composti organici presenti nei materiali che ci giungono dallo spazio, come le meteoriti o i campioni riportati a terra dalle missioni, e di simulare le condizioni e i processi chimico-fisici che possono verificarsi sulla superficie di Marte. Grazie alla partecipazione alle missioni marziane con i rover Perseverance della NASA e Rosalind Franklin dell’ESA, il nostro ambizioso obiettivo è riuscire a trovare le biofirme di una vita extraterrestre”.

“Nello specifico, abbiamo mescolato minerali solfati con molecole organiche aromatiche facilmente rilevabili da Sherloc, utilizzando metodi che imitano processi naturali potenzialmente avvenuti in passato in un ambiente acquoso a Jezero, seguiti da essiccazione. Successivamente, abbiamo analizzato i campioni preparati con strumenti analoghi a Sherloc”, spiega ancora Fornaro. “Questo metodo ci ha permesso di acquisire un set di dati di riferimento da confrontare direttamente con le osservazioni in situ, essenziali per interpretare correttamente i complessi segnali provenienti da Marte. Sulla base di queste indagini, abbiamo potuto attribuire questi segnali a idrocarburi policiclici aromatici preservati all’interno dei solfati”.

Il Cratere Jezero su Marte ripreso dalla sonda Mars Express dell'Agenzia Spaziale Europea (ESA). Crediti: ESA/DLR/FU Berlin
Il Cratere Jezero su Marte ripreso dalla sonda Mars Express dell’Agenzia Spaziale Europea (ESA). Crediti: ESA/DLR/FU Berlin

Il rilevamento in rocce vulcaniche suggerisce che gli idrocarburi policiclici aromatici possano essersi formati attraverso processi magmatici e, in seguito, essere stati mobilizzati dall’acqua e intrappolati nei solfati. I fluidi circolanti, comprese possibili acque idrotermali, avrebbero favorito il loro accumulo selettivo e la conservazione nelle rocce del cratere Jezero. Questi risultati si aggiungono a precedenti evidenze da meteoriti e dal cratere Gale, rafforzando il ruolo dei solfati nella conservazione della materia organica marziana.

“Sebbene non siano state trovate prove che questa materia organica sia di origine biologica, non è possibile escludere completamente che le sostanze organiche rilevate in queste rocce possano derivare dall’alterazione chimica di antichi composti biotici” conclude Fornaro“In attesa di un possibile futuro ritorno di questi campioni marziani per analisi più dettagliate sulla Terra, stiamo continuando a indagare sulla natura delle altre componenti di questi segnali complessi, la cui origine è ancora da chiarire del tutto”.

Riferimenti bibliografici:
L’articolo Evidence for polycyclic aromatic hydrocarbons detected in sulfates at Jezero crater by the Perseverance rover, di Teresa Fornaro, Sunanda Sharma, Ryan S. Jakubek, Giovanni Poggiali, John Robert Brucato, Rohit Bhartia, Andrew Steele, Ashley E. Murphy, Mike Tice, Mitchell D. Schulte, Kevin P. Hand, Marc D. Fries, William J. Abbey, Andrew Alberini, Daniela Alvarado-Jiménez, Kathleen C. Benison, Eve L. Berger, Sole Biancalani, Adrian J. Brown, Adrian Broz, Wayne P. Buckley, Denise K. Buckner, Aaron S. Burton, Sergei V. Bykov, Emily L. Cardarelli, Edward Cloutis, Stephanie A. Connell, Cristina Garcia-Florentino, Felipe Gómez, Nikole C. Haney, Carina Lee, Valeria Lino, Paola Manini, Francis M. McCubbin, Michelle Minitti, Richard V. Morris, Yu Yu Phua, Nicolas Randazzo, Joseph Razzell Hollis, Francesco Renzi, Sandra Siljeström, Justin I. Simon, Anushree Srivastava, Nicola Tasinato, Kyle Uckert, Roger C. Wiens, Amy J. Williams, è stato pubblicato su Nature Astronomy.

 

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

PSR J1023+0038, TRA GLI ALTI E BASSI DI UNA PULSAR: IL SEGRETO È NELLA SUA POLARIZZAZIONE

Un team internazionale guidato dall’Istituto Nazionale di Astrofisica ha misurato per la prima volta la polarizzazione della luce emessa da una pulsar al millisecondo transizionale in tre diverse bande dello spettro elettromagnetico. Lo studio, pubblicato su The Astrophysical Journal Letters, indica che l’emissione è dominata dal vento di particelle prodotto della pulsar e non dalla materia che la pulsar stessa sta risucchiando alla sua stella compagna.

Rappresentazione artistica delle regioni centrali del sistema PSR J1023+0038, che mostra la pulsar, il disco di accrescimento interno e il vento della pulsar. Crediti: Marco Maria Messa (Università di Milano e INAF) e Maria Cristina Baglio (INAF)
Rappresentazione artistica delle regioni centrali del sistema PSR J1023+0038, che mostra la pulsar, il disco di accrescimento interno e il vento della pulsar. Crediti: Marco Maria Messa (Università di Milano e INAF) e Maria Cristina Baglio (INAF)

Un team internazionale, guidato dall’Istituto Nazionale di Astrofisica (INAF), ha individuato nuove prove su come le pulsar al millisecondo transizionali, una particolare classe di resti stellari, interagiscono con la materia circostante. Il risultato, pubblicato su The Astrophysical Journal Letters, è stato ottenuto grazie a osservazioni effettuate con l’Imaging X-ray Polarimetry Explorer (IXPE) della NASA, il Very Large Telescope (VLT) dell’European Southern Observatory (ESO) in Cile e il Karl G. Jansky Very Large Array (VLA) nel New Mexico: si tratta di una delle prime campagne osservative di polarimetria multi-banda mai realizzate su una sorgente binaria a raggi X, coprendo simultaneamente le bande X, ottica e radio.

La missione spaziale IXPE in preparazione prima del lancio. Crediti: NASA
La missione spaziale IXPE in preparazione prima del lancio. Crediti: NASA

La sorgente analizzata è PSR J1023+0038, una cosiddetta pulsar al millisecondo transizionale. Questi oggetti sono particolarmente interessanti perché alternano fasi in cui si comportano come pulsar “canoniche” – ovvero stelle di neutroni isolate che ruotano su sé stesse centinaia di volte in un secondo, emettendo fasci di luce pulsata – a fasi in cui attraggono e accumulano materia da una stella compagna vicina, formando un disco di accrescimento visibile nei raggi X.

“Le pulsar al millisecondo transizionali sono laboratori cosmici che ci aiutano a capire come le stelle di neutroni evolvono nei sistemi binari”, spiega Maria Cristina Baglio, ricercatrice INAF e prima autrice dello studio. “J1023 è una sorgente particolarmente preziosa di dati perché transita chiaramente tra il suo stato attivo, in cui si nutre della stella compagna, e uno stato più dormiente, in cui si comporta come una pulsar standard emettendo onde radio rilevabili. Durante le osservazioni, la pulsar era in una fase attiva a bassa luminosità, caratterizzata da rapidi cambiamenti tra diversi livelli di luminosità in raggi X”.

Maria Cristina Baglio
Maria Cristina Baglio

In questo studio, per la prima volta, si è misurata simultaneamente la polarizzazione della luce emessa da questa sorgente in tre bande dello spettro elettromagnetico: raggi X (con IXPE), luce visibile (con il VLT) e onde radio (con il VLA). In particolare, IXPE ha rilevato un livello di polarizzazione nei raggi X di circa il 12%, il più elevato mai osservato finora in un sistema binario come quello di J1023. Nella banda ottica, la sorgente mostra una polarizzazione più bassa (circa 1%), ma con un angolo perfettamente allineato a quello della radiazione X, suggerendo una comune origine fisica. Nelle onde radio, invece, è stato fissato un limite massimo di polarizzazione di circa il 2%.

“Questa osservazione, data la bassa intensità del flusso X, è stata estremamente impegnativa, ma la sensibilità di IXPE ci ha permesso di rilevare e misurare con sicurezza questo notevole allineamento tra la polarizzazione ottica e quella nei raggi X”, afferma Alessandro Di Marco, ricercatore INAF e co-autore del lavoro. “Questo studio rappresenta un modo ingegnoso per testare scenari teorici grazie a osservazioni polarimetriche su più lunghezze d’onda”.

I risultati confermano una previsione teorica pubblicata nel 2023 da Maria Cristina Baglio e Francesco Coti Zelati, ricercatore presso l’Istituto di scienze spaziali di Barcellona, Spagna e co-autore dello studio, secondo cui l’emissione polarizzata osservata sarebbe generata dall’interazione tra il vento della pulsar e la materia del disco di accrescimento. La forte polarizzazione nei raggi X prevista, tra il 10 e il 15%, è stata effettivamente rilevata, confermando il modello teorico. Si tratta di un’indicazione chiara che le pulsar al millisecondo transizionali sono alimentate principalmente dalla rotazione e dal vento relativistico della pulsar, piuttosto che dal solo accrescimento di materia dalla stella compagna.

Capire cosa alimenta davvero queste stelle ultra-compatte, che alternano due nature profondamente diverse, rappresenta un passo fondamentale per decifrare il comportamento della materia e dell’energia in condizioni estreme. Questo studio porta la comunità scientifica un passo più vicino a comprendere meccanismi universali che regolano fenomeni come i getti dei buchi neri e le nebulose da vento di pulsar.

Riferimenti bibliografici:

L’articolo “Polarized multiwavelength emission from pulsar wind – accretion disk interaction in a transitional millisecond pulsar”, di M. C. Baglio, F. C. Zelati, A. Di Marco, F. La Monaca, A. Papitto, A. K. Hughes, S. Campana, D. M. Russell, D. F. Torres, F. Carotenuto, S. Covino, D. De Martino, S. Giarratana, S. E. Motta, K. Alabarta, P. D’Avanzo, G. Illiano, M. M. Messa, A. M. Zanon e N. Rea, è stato pubblicato online sulla rivista Astrophysical Journal Letters.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF.

IXPE SVELA LA POLARIZZAZIONE DEI RAGGI X DI UNA MAGNETAR ATTIVA, 1E 1841-045

IXPE ha osservato per la prima volta la magnetar 1E 1841-045 durante una fase di attivazione, rilevando l’emissione di raggi X polarizzati. Questa scoperta fornisce nuovi indizi sul campo magnetico della stella e sui meccanismi di produzione di radiazione ad alta energia nelle pulsar altamente magnetizzate.

Osservata per la prima volta la polarizzazione di una magnetar dopo una fase di attivazione, chiamata outburst, grazie all’Imaging X-ray Polarimetry Explorer (IXPE), missione spaziale nata dalla collaborazione tra la NASA e l’Agenzia Spaziale Italiana (ASI). I due lavori che riportano l’osservazione, uno guidato da ricercatrici e ricercatori italiani dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università degli Studi di Padova, e l’altro da ricercatrici e ricercatori che lavorano negli Stati Uniti, sono stati pubblicati oggi sulla rivista The Astrophysical Journal Letters.

La magnetar 1E 1841-045, una stella di neutroni situata nei resti della supernova Kes 73 a circa 28.000 anni luce dalla Terra, ha sorpreso la comunità scientifica riattivandosi il 20 agosto 2024. È stata osservata da tutti i telescopi sensibili alle alte energie, compreso IXPE che per la prima volta in assoluto è riuscito a osservare la radiazione X polarizzata di una magnetar in uno stato di attività. La luce polarizzata è la luce in cui le onde elettromagnetiche oscillano su un piano preferenziale, e non in modo disordinato come succede con la luce “normale”. Misurare come e quanto la luce è polarizzata offre indizi cruciali sulla sua origine e sull’ambiente che ha attraversato per giungere fino a noi.

Una stella di neutroni è il residuo di una stella massiccia che, giunta alla fine del suo ciclo evolutivo, collassa su se stessa, lasciando un nucleo estremamente denso, con una massa simile a quella del Sole, ma compresso in una sfera dal diametro paragonabile all’estensione di una città come Roma. Poiché le stelle di neutroni esaltano le proprietà delle loro stelle progenitrici, come la velocità di rotazione e l’intensità del campo magnetico, danno luogo ad alcuni dei fenomeni fisici più estremi dell’universo osservabile, offrendo opportunità uniche per studiare condizioni che sarebbero impossibili da replicare in un laboratorio sulla Terra.

Le magnetar, stelle di neutroni con campi magnetici estremamente intensi, sono tra gli oggetti più affascinanti ed enigmatici dell’universo. Quando una di queste stelle si attiva, può rilasciare fino a mille volte l’energia che emetterebbe normalmente, dando luogo a fenomeni fisici ancora più estremi. Tuttavia, i meccanismi alla base di queste fluttuazioni energetiche non sono ancora del tutto compresi. In questo contesto, la misurazione della luce polarizzata gioca un ruolo cruciale: i dati raccolti mostrano che l’emissione di raggi X da 1E 1841-045 diventa sempre più polarizzata a livelli di energia più elevati, pur mantenendo lo stesso angolo di polarizzazione. Questo significa che le diverse componenti di emissione sono legate tra loro e che quella più ad alta energia, finora la più elusiva, è fortemente influenzata dal campo magnetico.

“È la prima volta che riusciamo a osservare la polarizzazione di una magnetar in stato di attività e questo ci ha permesso di vincolare i meccanismi e la geometria di emissione che si celano dietro a questi stati attivi”, dice Michela Rigoselli, ricercatrice dell’INAF di Milano e prima autrice dell’articolo. “Ora sarà interessante osservare 1E 1841-045 una volta tornata allo stato di quiescenza per monitorare l’evoluzione delle sue proprietà polarimetriche”.

Questa osservazione evidenzia chiaramente le potenzialità della scienza delle magnetar, che può ancora essere approfondita attraverso la polarimetria ad alta energia.

Rappresentazione artistica di una magnetar, una stella di neutroni che possiede un forte campo magnetico.Crediti: ESA
IXPE svela la polarizzazione dei raggi X della magnetar 1E 1841-045, stella di neutroni situata nei resti della supernova Kes 73. Rappresentazione artistica di una magnetar, una stella di neutroni che possiede un forte campo magnetico.
Crediti: ESA


 

Per ulteriori informazioni:

Lanciata il 9 dicembre 2021 dal Kennedy Space Center della NASA su un razzo Falcon 9, la missione IXPE fa parte della serie Small Explorer della NASA. IXPE, frutto di una collaborazione tra NASA e Agenzia Spaziale Italiana (ASI), è una missione interamente dedicata allo studio dell’universo attraverso la misura della polarizzazione dei raggi X. Utilizza tre telescopi installati a bordo con rivelatori finanziati dall’ASI e sviluppati da un team di scienziati dell’Istituto Nazionale di Fisica Nucleare (INFN) e dell’Istituto Nazionale di Astrofisica (INAF), con il supporto industriale di Ohb-Italia.

L’articolo “IXPE detection of highly polarized X-rays from the magnetar 1E 1841-045”, di Rigoselli M., Taverna R., Mereghetti S., Turolla R., Israel G.L., Zane S., Marra L., Muleri F., Borghese A., Coti Zelati F., De Grandis D., Imbrogno M., Kelly R. M. E., Esposito P., Rea N., è stato pubblicato online sulla rivista The Astrophysical Journal Letters.

L’articolo “X-ray polarization of the magnetar 1E 1841-045”, di Stewart R., Younes G., Harding A.K., Wadiasingh Z., Baring M.G., Negro M., Strohmayer T.E., Ho W.C.G., Ng M., Arzoumanian, Z., Dinh Thi H., Di Lalla N., Enoto T., Gendreau K., Hu C., van Kooten A., Kouveliotou C., McEwen A., è stato pubblicato online sulla rivista The Astrophysical Journal Letters.

 

Testo, video e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

LA VIOLENTISSIMA TEMPESTA COSMICA NEL CUORE DEL QUASAR PDS 456, PRODOTTA DA UN BUCO NERO SUPERMASSICCIO

Roma, 14 maggio 2025 – Immaginate una tempesta colossale che si scatena appena al di fuori di un buco nero supermassiccio: è proprio ciò che ha rivelato Resolve, il nuovo spettrometro ad altissima risoluzione nei raggi X a bordo del satellite XRISM, nel contesto di una missione spaziale guidata dall’agenzia spaziale JAXA (Giappone), con la partecipazione di NASA (Stati Uniti) ed ESA (Europa).

Grazie ai dati ad altissima precisione di XRISM, è stato possibile – per la prima volta – identificare cinque componenti distinte di questo vento nel cuore del quasar PDS 456, ognuna espulsa dal buco nero centrale a velocità relativistiche, comprese tra il 20% e il 30% della velocità della luce.  Per fare un confronto, basti pensare che le tempeste più violente sulla Terra – come un uragano di categoria 5 – raggiungono al massimo 300 km/h. Questa “tempesta cosmica” è milioni di volte più veloce.

Lo studio nato da questa collaborazione internazionale (JAXA, NASA, ESA) nell’ambito della missione XRISM, a cui partecipano anche ricercatrici e ricercatori dell’Università di Roma Tor Vergata e dell’Istituto Nazionale di Astrofisica (INAF), è pubblicato oggi sulla rivista internazionale Nature, con un articolo dal titolo “Structured ionized winds shooting out from a quasar at relativistic speeds”, che evidenzia la scoperta di cinque distinti flussi di plasma che fuoriescono dal disco di accrescimento del buco nero centrale a velocità estreme, pari al 20–30% di quella della luce.

“Il nostro gruppo ha giocato un ruolo chiave nell’interpretazione di questi dati, grazie a tecniche spettroscopiche avanzate nei raggi X e a modelli teorici innovativi per la fisica dei venti prodotti dai buchi neri.  Questi risultati aprono una nuova finestra sullo studio dell’universo estremo, e gettano le basi per comprendere meglio come i buchi neri influenzano l’evoluzione delle galassie”.  Commenta così Francesco Tombesi, professore associato di Astrofisica presso il dipartimento di Fisica dell’università di Roma Tor Vergata e associato INAF. In qualità di XRISM Guest Scientist selezionato dall’ESA (uno dei soli due in Italia insieme a James Reeves, associato INAF), Tombesi ha partecipato alla pianificazione e all’analisi dell’osservazione del quasar PDS 456, il più luminoso dell’universo locale, utilizzando il nuovo spettrometro ad alta risoluzione Resolve.

“Roma Tor Vergata ha avuto un ruolo di primo piano – prosegue Tombesi – anche grazie al contributo di due giovani ricercatori cresciuti all’interno del nostro Ateneo: Pierpaolo Condò, dottorando al secondo anno del PhD in Astronomy, Astrophysics and Space Science (AASS), e Alfredo Luminari, ricercatore post-doc presso INAF ed ex dottorando AASS”.

Un’energia così enorme e una struttura così complessa rivoluzionano la nostra comprensione dell’ambiente estremo intorno ai buchi neri supermassicci e mettono in seria discussione i modelli attuali di feedback tra buco nero e galassia. “Le teorie finora accettate – conclude Tombesi – non riescono a spiegare una simile combinazione di forza e frammentazione: è chiaro che serviranno nuovi modelli per descrivere questi mostri cosmici”.

“PDS456 è un laboratorio prezioso per studiare nell’universo locale i potentissimi venti prodotti dai buchi neri supermassivi. Questa  nuova osservazione ci ha permesso di misurare la geometria e distribuzione in velocità del vento con un livello di dettagli impensabile prima dell’avvento di XRISM”, aggiunge Valentina Braito, ricercatrice INAF a Milano.

Un ruolo vincente all’interno della campagna osservativa di PDS456 lo ha avuto ancora una volta l’osservatorio spaziale Neil Gehrels Swift, satellite NASA con una importante partecipazione dell’INAF con l’Agenzia Spaziale Italiana (ASI). È stato infatti grazie a un programma osservativo Swift – ottenuto da Valentina Braito – che il team è riuscito a costruire i modelli specifici per PDS456 utilizzati nell’analisi dei dati XRISM.

 

Riferimenti bibliografici:

XRISM collaboration, Structured ionized winds shooting out from a quasar at relativistic speeds, Nature (2025), DOI: https://doi.org/10.1038/s41586-025-08968-2

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

KEPLER-10c: UN PIANETA DI ACQUA SVELATO DAI CIELI DELLE CANARIE

Un team guidato dall’INAF ha misurato con grande precisione la massa del pianeta Kepler-10c, definendolo come un possibile mondo in gran parte composto da ghiaccio di acqua. Lo studio, pubblicato oggi sulla rivista Astronomy & Astrophysics e realizzato grazie ai dati raccolti dallo spettrografo HARPS-N installato al Telescopio Nazionale Galileo, ha permesso anche di confermare la presenza di un altro pianeta nel sistema di Kepler-10, fornendo nuove informazioni per comprendere la formazione dei pianeti e le origini del nostro Sistema solare.

Un team internazionale guidato da ricercatori dell’Istituto Nazionale di Astrofisica (INAF) ha determinato la massa e la densità del pianeta Kepler-10c con precisione e accuratezza senza precedenti. Grazie a circa 300 misure di velocità radiale raccolte con lo spettrografo High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) installato al Telescopio Nazionale Galileo (TNG) che scruta il cielo dalle Isole Canarie, è stato possibile stimarne la sua composizione – in gran parte di acqua allo stato solido ma forse anche liquido – e capire come si possa essere formato. Lo studio è stato pubblicato oggi sulla rivista Astronomy & Astrophysics.

Kepler-10 è un sistema esoplanetario storico: ospita Kepler-10b, la prima super-Terra rocciosa scoperta dalla missione spaziale Kepler della NASA con un periodo orbitale inferiore al giorno terrestre, e Kepler-10c, un pianeta con un periodo orbitale di 45 giorni, classificato come sub-Nettuno, ovvero un pianeta con raggio e massa inferiori a quelli di Nettuno. Per anni, la massa di Kepler-10c è stata oggetto di grande incertezza: stime discordanti avevano reso difficile capire di cosa fosse fatto.

I dati acquisiti con HARPS-N sono stati elaborati con un nuovo metodo che corregge per effetti strumentali e variazioni dell’attività magnetica della stella madre, anche se di bassa intensità, e sono stati analizzati indipendentemente da tre gruppi dentro il team, raggiungendo gli stessi risultati. Questo lavoro ha permesso di capire che probabilmente Kepler-10c è un water world, ovvero un pianeta con gran parte della sua massa in acqua allo stato solido (ghiaccio) e forse, in piccola percentuale, anche liquido. I ricercatori ritengono che il pianeta si sia formato oltre la cosiddetta linea di condensazione dell’acqua a circa due o tre unità astronomiche dalla sua stella, e che poi si sia progressivamente avvicinato fino alla sua attuale orbita.

Ma non è tutto: il team ha anche confermato l’esistenza di un terzo pianeta, non visibile nei transiti ma rivelato per una piccola anomalia che esso induce sull’orbita di Kepler-10c, riscontrabile nelle  variazioni dei tempi di transito proprio del pianeta Kepler-10c, in modo analogo alla scoperta di Nettuno grazie alle anomalie osservate nell’orbita di Urano. Questo pianeta “fantasma” era stato ipotizzato in precedenza, ma solo ora è stato possibile determinarne in modo accurato il periodo orbitale di 151 giorni e la massa minima, grazie all’eccezionale qualità delle misure di velocità radiale HARPS-N.

“L’analisi delle velocità radiali e delle variazioni dei tempi di transito, dapprima singolarmente e poi in combinazione tra loro, ha dato dei risultati in ottimo accordo sui parametri del terzo pianeta; abbiamo così corretto precedenti stime inaccurate delle sue proprietà”, commenta Luca Borsato dell’INAF di Padova, secondo autore dell’articolo.

Aldo Bonomo dell’INAF di Torino, primo autore dell’articolo, aggiunge: “L’esistenza dei water world è stata prevista teoricamente dai modelli di formazione e migrazione planetarie, ma non ne abbiamo ancora una conferma certa. Tuttavia, una quindicina di pianeti attorno a stelle di tipo solare come Kepler-10c sembrano avere proprio la composizione prevista da questi modelli. La prova del nove dell’esistenza dei water world dovrebbe venire dallo studio delle loro atmosfere con il telescopio spaziale James Webb, perché ci aspettiamo che essi abbiano delle atmosfere particolarmente ricche di vapore acqueo”.

Lo studio del sistema Kepler-10 ci aiuta a capire come si formano i pianeti attorno alle loro stelle. Super-terre come Kepler-10b e sub-Nettuni come Kepler-10c, così comuni nella Galassia ma assenti nel nostro Sistema solare, rappresentano un tassello cruciale per comprendere la varietà dei mondi che orbitano attorno ad altre stelle. In particolare, studiare la composizione dei pianeti cosiddetti sub-nettuniani e capire se sono ricchi o poveri di ghiaccio, può fornire indicazioni non solo sulla loro origine, ma anche sulle prime fasi di formazione dei sistemi planetari e quindi del nostro stesso Sistema solare. Conoscere come e dove si formano questi pianeti e i loro moti di migrazione verso la loro stella, significa guardare indietro nel tempo per scoprire qualcosa in più sulle origini della Terra e forse anche  della vita.


 

Riferimenti Bibliografici:

L’articolo In-depth characterization of the Kepler-10 three-planet system with HARPS-N radial velocities and Kepler transit timing variations, di A. S. Bonomo, L. Borsato, V.M. Rajpaul, L. Zeng, M. Damasso, N.C. Hara, M. Cretignier, A. Leleu, N. Unger, X. Dumusque, F. Lienhard, A. Mortier, L. Naponiello, L. Malavolta, A. Sozzetti, D.W. Latham, K. Rice, R. Bongiolatti, L. Buchhave, A.C. Cameron, A.F. Fiorenzano, A. Ghedina, R.D. Haywood, G. Lacedelli, A. Massa, F. Pepe, E. Poretti e S. Udry è stato pubblicato online sulla rivista Astronomy & Astrophysics.

Testo e immagini dall’Ufficio Stampa dell’Istituto Nazionale di Astrofisica – INAF

SPIRALI DI PLASMA NELLO SPAZIO: LO STRUMENTO METIS A BORDO DELLA MISSIONE SOLAR ORBITER SVELA LA NATURA CONTORTA DEL VENTO SOLARE, OSSERVANDO UNA STRUTTURA RADIALE NELLA CORONA SOLARE CHE EVOLVE PER DIVERSE ORE 

Osservata per la prima volta dallo strumento Metis a bordo della missione Solar Orbiter, con una risoluzione spaziale e temporale mai raggiunta prima, una struttura radiale nella corona solare che evolve per diverse ore fino a distanze di tre raggi solari.

Immagine in luce visibile ottenuta dal coronografo Metis il 12 ottobre 2022, durante il passaggio al perielio della sonda Solar Orbiter. Al centro del campo di vista, il Sole ripreso dallo strumento EUI nella lunghezza d'onda di 174 Angstrom. Il riquadro giallo ritrae la struttura elicoidale oggetto dello studio.Crediti: Metis e EUI (Solar Orbiter/ESA). L'immagine è stata realizzata da Vincenzo Andretta (INAF di Napoli)
Immagine in luce visibile ottenuta dal coronografo Metis il 12 ottobre 2022, durante il passaggio al perielio della sonda Solar Orbiter. Al centro del campo di vista, il Sole ripreso dallo strumento EUI nella lunghezza d’onda di 174 Angstrom. Il riquadro giallo ritrae la struttura elicoidale oggetto dello studio.
Crediti: Metis e EUI (Solar Orbiter/ESA). L’immagine è stata realizzata da Vincenzo Andretta (INAF di Napoli)

Roma, 26 marzo 2025 – Il 12 ottobre 2022, durante un passaggio ravvicinato al Sole, le riprese ottenute dal coronografo italiano Metis a bordo della missione Solar Orbiter dell’Agenzia Spaziale Europea (ESA) hanno catturato un fenomeno spettacolare e inedito per livello di dettaglio: l’evoluzione, nella corona solare, di una lunga struttura radiale che si anima di un moto elicoidale persistente per diverse ore. Per la prima volta, con una risoluzione spaziale e temporale mai raggiunte prima, è stato possibile osservare direttamente l’espulsione di strutture a spirale dalla corona solare, compatibili con le torsioni magnetiche che i modelli teorici associano all’origine del vento solare.

Grazie alla combinazione di immagini in luce visibile e tecniche di elaborazione avanzate, Metis – progettato da Istituto Nazionale di Astrofisica (INAF), Università di Firenze, Università di Padova, CNR-IFN, e realizzato dall’Agenzia Spaziale Italiana (ASI) con la collaborazione dell’industria italiana – ha mostrato come il Sole possa trasferire energia e materia verso lo spazio in forma di onde e plasma intrecciati tra loro, rivelando un meccanismo fondamentale nella dinamica dell’eliosfera.

Alla guida dello studio, pubblicato oggi sul sito web della rivista The Astrophysical Journal, c’è Paolo Romano, primo ricercatore dell’INAF di Catania. Romano, che ha coordinato il lavoro di un ampio team internazionale, afferma:

“È la prima volta che osserviamo direttamente un fenomeno così esteso e duraturo, compatibile con la riconnessione magnetica in una struttura chiamata pseudostreamer. Questa osservazione offre una finestra inedita sulla fisica che sta alla base della formazione del vento solare. Questo risultato non solo conferma teorie elaborate da anni, ma fornisce finalmente un riscontro visivo diretto”.

Ma cos’è uno pseudostreamer? Si tratta di una configurazione del campo magnetico solare in cui due regioni chiuse di polarità opposta sono immerse in un ambiente di campo magnetico aperto. Nella corona, gli pseudostreamer sono le “canne del vento” del Sole: regioni da cui, in seguito a un’eruzione, possono aprirsi nuovi canali per il flusso del plasma verso lo spazio interplanetario.

Nel caso dell’evento ripreso da Metis, tutto ha avuto inizio con l’eruzione di una protuberanza polare – un gigantesco arco di plasma “appeso” ai campi magnetici nella regione nord del Sole – che ha innescato una piccola espulsione di massa coronale (CME). Ma il vero spettacolo è arrivato dopo, nella lunga fase di rilassamento che ha seguito l’eruzione. È lì che Metis ha osservato il susseguirsi di strutture filamentose, luminose e scure, che si attorcigliano lungo la linea radiale della corona, a distanze comprese tra 1,5 e 3 raggi solari.

Il team ha interpretato questi segnali come la firma visibile di un processo previsto da tempo: la riconnessione magnetica, che trasferisce il plasma e la torsione magnetica dalle regioni chiuse del campo solare verso quelle aperte, innescando onde di tipo torsionale – le onde di Alfvén – e lanciandole nello spazio.

Un tassello fondamentale è arrivato dal confronto con sofisticate simulazioni numeriche condotte da Peter Wyper, della Durham University, in collaborazione con Spiro Antiochos del NASA Goddard Space Flight Center. Le immagini sintetiche prodotte da queste simulazioni mostrano un’evoluzione sorprendentemente simile a quella ripresa da Metis: strutture elicoidali che si propagano lungo il campo aperto, con caratteristiche geometriche e dinamiche in forte accordo con i dati osservati.

“Le prestazioni uniche di Metis in termini di risoluzione spaziale e temporale aprono una nuova finestra sulla comprensione dell’origine del vento solare”, commenta Marco Romoli, dell’Università di Firenze e responsabile scientifico dello strumento Metis. “Per la prima volta vediamo l’intera evoluzione di un processo di rilascio di energia magnetica, dalle sue radici nel Sole fino all’apertura nello spazio interplanetario”.

“Le onde di Alfvén torsionali e in generale i meccanismi fisici che innescano fluttuazioni magnetiche di questo tipo – dichiara Marco Stangalini responsabile del programma Solar Orbiter per l’Agenzia Spaziale Italiana – sono da tempo ritenuti tra i principali meccanismi alla base dell’accelerazione del vento solare. Metis, grazie alla elevata cadenza temporale delle sue immagini, ci offre la possibilità di osservare direttamente questi processi fisici, consentendo anche un miglioramento della modellistica fisica ad essi associata”.

Le osservazioni di Metis non solo confermano i modelli teorici più avanzati, ma suggeriscono che lo stesso meccanismo – la riconnessione magnetica a piccola scala – possa avvenire continuamente sulla superficie del Sole, generando quei “microgetti” che alimentano il vento solare Alfvénico rivelato anche dalla sonda Parker Solar Probe.

In altre parole, quella spirale luminosa che Metis ha visto danzare nella corona potrebbe essere solo la versione gigante di un processo che avviene ovunque, continuamente, e che rende possibile l’esistenza stessa del vento solare.

Per maggiori informazioni:

Il video pubblicato dall’ESA con immagini composite del Sole che evidenziano la presenza di spirali di plasma in propagazione nella corona solare (Crediti: V. Andretta e P. Romano (INAF), ESA & NASA/Solar Orbiter/Metis/EUI).

L’articolo Metis Observations of Alfvenic Outflows Driven by Interchange Reconnection in a Pseudostreamer di P. Romano, P. Wyper, V. Andretta, S. Antiochos, G. Russano, D. Spadaro, L. Abbo, L. Contarino, A. Elmhamdi, F. Ferrente, R. Lionello, B.J. Lynch, P. MacNeice, M. Romoli, R. Ventura, N. Viall, A. Bemporad, A. Burtovoi, V. Da Deppo, Y. De Leo, S. Fineschi, F. Frassati, S. Giordano, S.L. Guglielmino, C. Grimani, P. Heinzel, G. Jerse, F. Landini, G. Naletto, M. Pancrazzi, C. Sasso, M. Stangalini, R. Susino, D. Telloni, L. Teriaca, M. Uslenghi è stato pubblicato online sulla rivista The Astrophysical Journal.

 

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica – INAF e dall’Agenzia Spaziale Italiana – ASI

Big Wheel” (Ruota Panoramica), scoperta una galassia a disco sorprendentemente grande nell’universo primordiale

In un articolo su “Nature Astronomy”, Sebastiano Cantalupo e Weichen Wang, professore e post-doc del gruppo di ricerca “Cosmic Web” dell’Università di Milano-Bicocca, descrivono la rapida e inaspettata crescita di un enorme disco galattico nelle prime fasi di sviluppo dell’universo. Uno studio condotto grazie ai dati ricevuti dal James Webb Space Telescope e che apre una nuova finestra sulle fasi iniziali della formazione delle galassie.

La galassia Big Wheel (al centro) e il suo ambiente cosmico
La galassia Big Wheel (al centro) e il suo ambiente cosmico. La galassia è un gigantesco disco rotante a redshift z = 3,25, con chiari bracci a spirale. È finora unica per le sue grandi dimensioni del disco, che si estende per più di 30 kpc, più grande di qualsiasi altro disco di galassia confermato in questa epoca dell’universo

Milano, 17 marzo 2025 – Una galassia a disco sorprendentemente grande nell’universo primordiale, ovvero in un periodo cosmico iniziale – circa due miliardi di anni dopo il Big Bang – e che presenta quindi dimensioni più tipiche dei dischi galattici giganti dell’Universo attuale. È la scoperta del gruppo di ricerca “Cosmic Web”, nato all’interno dell’Unità di Astrofisica del dipartimento di Fisica dell’Università di Milano-Bicocca, riportata in un articolo pubblicato oggi su “Nature Astronomy” (“A giant disk galaxy two bilion years after the Big Bang”, DOI: 10.1038/s41550-025-02500-2), a firma di Weichen Wang e Sebastiano Cantalupo, rispettivamente assegnista di ricerca (post-doc) e professore ordinario dell’ateneo, oltre agli altri membri del gruppo “Cosmic Web” e collaboratori internazionali. Una scoperta basata sui dati ottenuti dai ricercatori di Milano-Bicocca dal James Webb Space Telescope (JWST), l’osservatorio spaziale più grande e potente mai costruito finora, erede di Hubble, frutto di una partnership tra la NASA, l’ESA e l’Agenzia spaziale canadese (Canadian Space Agency).

«Quando e come si formano i dischi galattici è ancora un enigma nell’astronomia moderna – afferma Sebastiano Cantalupo – I primi anni di osservazioni del James Webb Space Telescope hanno rivelato una pletora di dischi galattici nell’Universo primordiale, che corrisponde a un’epoca cosmica di undici miliardi di anni fa, o due miliardi di anni dopo il Big Bang. Prima della nostra osservazione, erano tuttavia stati scoperti da JWST solo dischi galattici molto più piccoli di quelli che vediamo nell’universo locale. Per questo motivo, si pensava fino ad ora che la formazione dei dischi più grandi avesse richiesto la maggior parte dell’età dell’universo. Per poter fare nuova luce sulla questione, abbiamo rivolto la nostra attenzione all’Universo primordiale e, in particolare, ad uno speciale ambiente cosmico».

Gli studiosi del Cosmic Web Group, hanno condotto il loro studio utilizzando nuove osservazioni dal JWST, integrate da dati provenienti da altre strutture come il telescopio spaziale Hubble, il Very Large Telescope (VLT) e l’Atacama Large Millimeter/submillimeter Array (ALMA). Queste osservazioni erano mirate verso una specifica regione del cielo, che si trova a 11-12 miliardi di anni luce di distanza da noi e che è incorporata in una struttura su larga scala che probabilmente evolverà in un ammasso di galassie, una regione quasi unica nell’universo, eccezionalmente densa, con un’alta concentrazione di galassie, gas e buchi neri. «Un laboratorio nel quale si possono studiare i meccanismi di formazione delle galassie. Infatti, grazie alla velocità finita della luce, osservazioni e immagini del telescopio sono una foto di quella regione di cielo quando l’universo aveva “solo” 2 miliardi di anni».

«Utilizzando i dati di due strumenti – prosegue Weichen Wang – la Near-Infrared Camera e il Near-Infrared Spectrograph, a bordo del JWST, abbiamo identificato le galassie all’interno di questa regione iperdensa e abbiamo analizzato i loro redshift, la loro morfologia e la loro cinematica, tutti necessari per l’identificazione dei dischi galattici. Le osservazioni ci hanno portato alla scoperta di un disco sorprendentemente grande nella struttura su larga scala. Questa galassia, che abbiamo chiamato “Big Wheel”, o “Ruota Panoramica” in italiano date le sue enormi dimensioni (Figura 1), ha un raggio effettivo (cioè il raggio che contiene metà della luce totale) di circa 10 kiloparsec. “Big Wheel” è circa tre volte più grande delle galassie scoperte in precedenza con masse stellari e tempi cosmici simili, ed è anche almeno tre volte più grande di quanto previsto dalle attuali simulazioni cosmologiche. È invece paragonabile alle dimensioni della maggior parte dei dischi massicci visti nell’attuale Universo».

Ulteriori analisi spettroscopiche hanno confermato che “Big Wheel” è un disco che ruota come una galassia a spirale, ovvero come la Via Lattea, la nostra galassia».

La crescita precoce e rapida di questo disco potrebbe essere correlata al suo ambiente altamente sovradenso, che, a differenza di quanto dicano i modelli di formazione galattica più diffusi, potrebbe offrire condizioni fisiche favorevoli a questa formazione precoce.

«Ambienti eccezionalmente densi come quello che ospita la Big Wheel rimangono un territorio relativamente inesplorato – conclude Sebastiano Cantalupo –. Sono necessarie ulteriori osservazioni mirate per costruire un campione statistico di dischi giganti nell’Universo primordiale e aprire così una nuova finestra sulle fasi iniziali della formazione delle galassie».

Il gruppo di ricerca Cosmic Web. Il quarto da sinistra Sebastiano Cantalupo. In piedi Weichen Wang
Il gruppo di ricerca Cosmic Web. Il quarto da sinistra Sebastiano Cantalupo. In piedi Weichen Wang

Sebastiano Cantalupo, Weichen Wang e il Cosmic Web Group

Classe 1980, Sebastiano Cantalupo è professore ordinario di Astrofisica all’Università di Milano-Bicocca. Vincitore di un finanziamento ERC (European Research Council) nel 2020, rientra in Italia dopo 17 anni all’estero (Politecnico di Zurigo,Università di CambridgeUniversità della California a Santa Cruz), scegliendo l’Università di Milano-Bicocca per proseguire le sue linee di ricerca. Cantalupo guida un team chiamato “Cosmic Web”, dal nome del suo progetto di ricerca, formato da otto ricercatori e, oltre all’ERC, ha ricevuto nel 2020 un finanziamento da Fondazione Cariplo (bando “Attrattività e competitività su strumenti dell’European Research Council”) e un ulteriore supporto, nel 2021, dal bando Fare, il programma MUR (Ministero Università e Ricerca) per la ricerca di eccellenza.

Weichen Wang è nato nel 1994. Si è laureato (bachelor degree) in Fisica nel 2016 alla Tsinghua University di Pechino e ha conseguito nel 2022 un dottorato in Astrofisica alla Johns Hopkins University di Baltimora. Dal 2022 è assegnista di ricerca (post-doc) all’Università di Milano-Bicocca.

Da sinistra, Sebastiano Cantalupo e Weichen Wang
Da sinistra, Sebastiano Cantalupo e Weichen Wang

Testo e immagini dall’Ufficio stampa Università di Milano-Bicocca

JWST OSSERVA UN ANTICHISSIMO BUCO NERO SUPERMASSICCIO DORMIENTE, A ‘RIPOSO’ DOPO UN’ABBUFFATA COSMICA, NELLA GALASSIA GN-1001830

È uno dei più grandi buchi neri supermassicci non attivi mai osservati nell’universo primordiale e il primo individuato durante l’epoca della reionizzazione. La scoperta, pubblicata sulla rivista Nature, è stata possibile grazie alle rilevazioni del telescopio spaziale James Webb. Allo studio hanno partecipato anche INAF, Scuola Normale Superiore di Pisa e Sapienza Università di Roma.

JWST buco nero dormiente GN-1001830 Illustrazione artistica che rappresenta l'aspetto potenziale del buco nero supermassiccio scoperto dal team di ricerca durante la sua fase di intensa attività super-Eddington. Crediti: Jiarong Gu
Illustrazione artistica che rappresenta l’aspetto potenziale del buco nero supermassiccio scoperto dal team di ricerca durante la sua fase di intensa attività super-Eddington. Crediti: Jiarong Gu

Anche i buchi neri schiacciano un sonnellino tra una mangiata e l’altra. Un team internazionale di scienziati, guidato dall’Università di Cambridge, ha scoperto un antichissimo buco nero supermassiccio “dormiente” in una galassia compatta, relativamente quiescente e che vediamo come era quasi 13 miliardi di anni fa. La galassia è GN-1001830. Il buco nero, descritto in un articolo pubblicato oggi sulla rivista Nature, ha una massa pari a 400 milioni di volte quella del Sole e risale a meno di 800 milioni di anni dopo il Big Bang, rendendolo uno degli oggetti più antichi e massicci mai rilevati.

Questo mastodontico oggetto è inoltre il primo buco nero supermassiccio non attivo, in termini di accrescimento di materia, osservato durante l’epoca della reionizzazione, una fase di transizione nell’universo primordiale durante la quale il gas intergalattico è stato ionizzato dalla radiazione delle prime sorgenti cosmiche. Probabilmente rappresenta solo la punta dell’iceberg di una intera popolazione di buchi neri “a riposo” ancora da osservare in questa epoca lontana. La scoperta, a cui partecipano ricercatrici e ricercatori anche dell’Istituto Nazionale di Astrofisica (INAF), della Scuola Normale Superiore di Pisa e della Sapienza Università di Roma, si basa sui dati raccolti telescopio spaziale James Webb (JWST), nell’ambito del programma JADES (JWST Advanced Extragalactic Survey).

In che senso il buco nero è “dormiente”? Grazie a questi dati, il gruppo di ricerca ha stabilito che, nonostante la sua dimensione colossale, questo buco nero sta accrescendo la materia circostante a un ritmo molto basso a differenza di quelli di massa simile osservati nella stessa epoca (i cosiddetti quasar) – circa 100 volte inferiore al limite teorico massimo – rendendolo praticamente inattivo.

JWST buco nero dormiente GN-1001830 Immagine in falsi colori ottenuta dal telescopio spaziale JWST, che mostra una piccola frazione del campo GOODS-North. La galassia evidenziata nel riquadro ospita un antichissimo buco nero supermassiccio 'dormiente'. Crediti: JADES Collaboration
Immagine in falsi colori ottenuta dal telescopio spaziale JWST, che mostra una piccola frazione del campo GOODS-North. La galassia evidenziata nel riquadro ospita un antichissimo buco nero supermassiccio ‘dormiente’. Crediti: JADES Collaboration

Un’altra peculiarità di questo buco nero ad alto redshift (ossia collocato nell’universo primordiale) è il suo rapporto con la galassia ospite: la sua massa rappresenta il 40 per cento della massa stellare totale, un valore mille volte superiore a quello dei buchi neri normalmente osservati nell’universo vicino. Alessandro Trinca, ricercatore post-doc oggi in forza all’Università degli studi dell’Insubria ma già post-doc presso l’INAF di Roma per un anno, spiega:

“Questo squilibrio suggerisce che il buco nero abbia avuto una fase di crescita rapidissima, sottraendo gas alla formazione stellare della galassia. Ha rubato tutto il gas che aveva a disposizione prima di diventare dormiente lasciando la componente stellare a bocca asciutta”.

Alessandro Trinca, ricercatore post-doc presso l’Università degli studi dell’Insubria
Alessandro Trinca, ricercatore post-doc presso l’Università degli studi dell’Insubria

Rosa Valiante, ricercatrice dell’INAF di Roma coinvolta nel team internazionale e coautrice dell’articolo, aggiunge:

“Comprendere la natura dei buchi neri è da sempre un argomento che affascina l’immaginario collettivo: sono oggetti apparentemente misteriosi che mettono alla prova ‘famose’ teorie scientifiche come quelle di Einstein e Hawking. La necessità di osservare e capire i buchi neri, da quando si formano a quando diventano massicci fino a miliardi di volte il nostro Sole, spinge non solo la ricerca scientifica a progredire, ma anche l’avanzamento tecnologico”.

Rosa Valiante, ricercatrice presso l’INAF di Roma
Rosa Valiante, ricercatrice presso l’INAF di Roma

I buchi neri supermassicci così antichi, come quello descritto nell’articolo su Nature, rappresentano un mistero in astrofisica. La rapidità con cui questi oggetti sono cresciuti nelle prime fasi della storia dell’Universo sfida i modelli tradizionali, che non sono in grado di spiegare la formazione di buchi neri di tale portata. In condizioni normali, i buchi neri accrescono materia fino a un limite teorico, chiamato “limite di Eddington”, oltre il quale la pressione della radiazione generata dall’accrescimento contrasta ulteriori flussi di materiale verso il buco nero. La scoperta di questo buco nero primordiale supporta l’ipotesi che fasi brevi ma intense di accrescimento dette “super-Eddington” siano essenziali per spiegare l’esistenza di questi “giganti cosmici” nell’universo primordiale. Si tratta di fasi durante le quali i buchi neri riuscirebbero a inglobare materia a un ritmo molto superiore, sfuggendo temporaneamente a questa limitazione, intervallate da periodi di dormienza.

“Se la crescita avvenisse a un ritmo inferiore al limite di Eddington, il buco nero dovrebbe accrescere il gas in modo continuativo nel tempo per sperare di raggiungere la massa osservata. Sarebbe quindi molto improbabile osservarlo in una fase dormiente”, spiega Raffaella Schneider, professoressa del Dipartimento di Fisica della Sapienza.

Raffaella Schneider, professoressa del Dipartimento di Fisica della Sapienza
Raffaella Schneider, professoressa del Dipartimento di Fisica della Sapienza

Gli scienziati ipotizzano che buchi neri simili siano molto più comuni di quanto si pensi, ma oggetti in un tale stato dormiente emettono pochissima luce, il che li rende particolarmente difficili da individuare, persino con strumenti estremamente avanzati come il telescopio spaziale Webb. E allora come scovarli? Sebbene non possano essere osservati direttamente, la loro presenza viene svelata dal bagliore di un disco di accrescimento che si forma intorno a loro. Con il JWST, telescopio delle agenzie spaziali americana (NASA), europea (ESA) e canadese (CSA) progettato per osservare oggetti estremamente poco luminosi e distanti, sarà possibile esplorare nuove frontiere nello studio delle prime strutture galattiche.

Stefano Carniani, ricercatore della Scuola Normale Superiore di Pisa e membro del team JADES commenta:

“Questa scoperta apre un nuovo capitolo nello studio dei buchi neri distanti. Grazie alle  immagini del James Webb, potremo indagare le proprietà dei buchi neri dormienti, rimasti finora invisibili. Queste osservazioni offrono i pezzi mancanti per completare il puzzle della formazione e dell’evoluzione delle galassie nell’universo primordiale”.

Stefano Carniani, ricercatore presso la Scuola Normale Superiore di Pisa
Stefano Carniani, ricercatore presso la Scuola Normale Superiore di Pisa

La scoperta rappresenta solo l’inizio di una nuova fase di indagine. Il JWST sarà ora utilizzato per individuare altri buchi neri dormienti simili, contribuendo a svelare nuovi misteri sull’evoluzione delle strutture cosmiche nell’universo primordiale.Le osservazioni utilizzate in questo lavoro sono state ottenute nell’ambito della collaborazione JADES tra i team di sviluppo degli strumenti Near-Infrared Camera (NIRCam) e Near-Infrared Spectrograph (NIRSpec), con un contributo anche dal team statunitense del Mid-Infrared Instrument (MIRI).

JWST buco nero dormiente GN-1001830 Un’immagine in tre colori del nucleo galattico attivo e della galassia ospite JADES GN 1146115. L’immagine è stata creata con diversi filtri (rosso F444W, verde F277W e blu F115W) utilizzando gli strumenti dal James Webb Space Telescope NIRCam e NIRSpec in modalità multi-oggetto, come parte del programma JADES (JWST Advanced Extragalactic Survey). La galassia si trova a un redshift di 6.68, che corrisponde a un’epoca di meno di 800 milioni di anni dopo il Big Bang. Crediti: I. Juodzbalis et al. / Nature (2024)
Un’immagine in tre colori del nucleo galattico attivo e della galassia ospite JADES GN 1146115. L’immagine è stata creata con diversi filtri (rosso F444W, verde F277W e blu F115W) utilizzando gli strumenti dal James Webb Space Telescope NIRCam e NIRSpec in modalità multi-oggetto, come parte del programma JADES (JWST Advanced Extragalactic Survey). La galassia si trova a un redshift di 6.68, che corrisponde a un’epoca di meno di 800 milioni di anni dopo il Big Bang. Crediti: I. Juodzbalis et al. / Nature (2024)

 

Riferimenti bibliografici:

L’articolo “A dormant, overmassive black hole in the early Universe”, di Ignas Juodžbalis, Roberto Maiolino, William M. Baker, Sandro Tacchella, Jan Scholtz, Francesco D’Eugenio, Raffaella Schneider, Alessandro Trinca, Rosa Valiante, Christa DeCoursey, Mirko Curti, Stefano Carniani, Jacopo Chevallard, Anna de Graaff, Santiago Arribas, Jake S. Bennett, Martin A. Bourne, Andrew J. Bunker, Stephane Charlot, Brian Jiang, Sophie Koudmani, Michele Perna, Brant Robertson, Debora Sijacki, Hannah Ubler, Christina C. Williams, Chris Willott, Joris Witstok, è stato pubblicato sulla rivista Nature.

Testo e immagini dagli Uffici Stampa INAF, Scuola Normale Superiore Pisa, Ufficio Stampa e Comunicazione Sapienza Università di Roma

Sotto la superficie di Io non c’è un oceano di magma liquido, ma un mantello solido

Un nuovo studio pubblicato su Nature, basato sui dati di gravità raccolti dalla sonda Juno della NASA durante dei sorvoli della luna Io di Giove esclude la presenza di un oceano di magma sotto la sua superficie

Sotto la superficie di Io, il satellite Galileiano più vicino a Giove, non c’è un oceano di magma liquido come si era pensato fino ad oggi, ma un mantello solido. A rivelarlo è uno studio pubblicato su Nature realizzato anche grazie al lavoro di diversi ricercatori della Sapienza Università di Roma e dell’Università di Bologna.

La ricerca, coordinata da Ryan Park del Jet Propulsion Laboratory dalla NASA, ha sfruttato i dati collezionati dalla sonda Juno della NASA durante due recenti sorvoli ravvicinati della luna insieme ai dati storici della missione Galileo, la sonda della NASA che tra il 1995 e il 2003 ha esplorato il sistema di Giove.

“La combinazione dei dati acquisiti da Juno con quelli collezionati dalla sonda Galileo oltre 20 anni fa – spiega Daniele Durante, ricercatore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – ha permesso di migliorare la stima della risposta mareale di Io, che fornisce indicazioni dirette della deformabilità della struttura interna della luna.”

Io è un satellite unico nel sistema di Giove grazie alla sua intensa attività vulcanica, che lo rende l’oggetto geologicamente più attivo del sistema solare. Per decenni si è creduto che l’enorme attrazione gravitazionale di Giove fosse sufficiente a creare un oceano di magma sotto la sua superficie, che alimentasse i suoi vulcani. Le misure di induzione magnetica condotte dalla sonda Galileo avevano infatti suggerito la presenza di un oceano di magma sotto la superficie di questa luna.

Questo scenario è stato però rivisto a seguito delle nuove osservazioni realizzate da Juno, la sonda che dal 2016 sta esplorando Giove e, più recentemente, le sue lune. Juno ha sorvolato per due volte Io a circa 1.500 chilometri di quota, raccogliendo dati del campo gravitazionale della luna molto accurati. I risultati dell’analisi mostrano una risposta gravitazionale della luna alle forze di marea piuttosto modesta.

“La risposta della luna alle forze di marea esercitate da Giove è risultata piuttosto bassa – afferma Luciano Iess, professore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – indicazione dell’assenza di un oceano di magma vicino alla superficie e, piuttosto, della presenza di un mantello solido profondo al suo interno”.

Lo studio è stato pubblicato su Nature con il titolo “Io’s tidal response precludes a shallow magma ocean”. Per Sapienza Università di Roma hanno partecipato Daniele Durante e Luciano Iess, in collaborazione con i colleghi dell’Università di Bologna, Luis Gomez Casajus, Marco Zannoni, Andrea Magnanini e Paolo Tortora. Le attività di ricerca sono state realizzate nell’ambito di un accordo finanziato dall’Agenzia Spaziale Italiana.

Struttura interna di Io. La nuova misura della deformazione mareale suggerisce che la luna non abbia un oceano globale di magma vicino la superficie ma è coerente con la presenza di un mantello più solido (sfumature di verde), con una quantità significativa di materiale fuso (in giallo e arancione) che ricopre un nucleo liquido (in rosso/nero). Illustrazione di Sofia Shen (JPL/Caltech).
Struttura interna di Io. La nuova misura della deformazione mareale suggerisce che la luna non abbia un oceano globale di magma vicino la superficie ma è coerente con la presenza di un mantello più solido (sfumature di verde), con una quantità significativa di materiale fuso (in giallo e arancione) che ricopre un nucleo liquido (in rosso/nero). Illustrazione di Sofia Shen (JPL/Caltech).

Riferimenti bibliografici:

Park, R.S., Jacobson, R.A., Gomez Casajus, L. et al. Io’s tidal response precludes a shallow magma ocean, Nature (2024), DOI: https://doi.org/10.1038/s41586-024-08442-5

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

DOPO DART-LICIACUBE, SU DIDYMOS E DIMORPHOS ANCHE I MASSI PARLANO: DUE STUDI A GUIDA INAF NELL’EDIZIONE SPECIALE DI OGGI DI NATURE COMMUNICATIONS

 Difesa planetaria, detriti spaziali e asteroidi Near-Earth: questo il tema dell’edizione speciale pubblicata oggi da Nature Communications, e nella quale rientra una serie di cinque articoli – due dei quali a guida INAF – che analizzano le caratteristiche della coppia di asteroidi Didymos e Dimorphos, osservati da vicino dagli strumenti della sonda DART prima dell’impatto sul secondo dei due, in un primo esperimento di difesa planetaria realizzato da NASA e ASI.

 immagine di Dimorphos. Il conteggio dei massi e la misura delle loro dimensioni su Dimorphos, e sull’asteroide principale Didymos, ha permesso di comprendere che essi hanno origine da un progenitore comune e che Dimorphos ha ereditato i propri massi dal compagno più grande. Crediti: NASA/Johns Hopkins APL
immagine di Dimorphos. Il conteggio dei massi e la misura delle loro dimensioni su Dimorphos, e sull’asteroide principale Didymos, ha permesso di comprendere che essi hanno origine da un progenitore comune e che Dimorphos ha ereditato i propri massi dal compagno più grande. Crediti: NASA/Johns Hopkins APL

Dopo l’impatto della sonda della NASA DART il 26 settembre 2022 contro Dimorphos, la luna del sistema binario di asteroidi Near-Earth (65803) Didymos, gli occhi degli esperti si sono concentrati sugli effetti dell’esperimento di difesa planetaria. L’obiettivo era testare la possibilità di deviare un corpo vagante come un asteroide nel caso in cui costituisca una minaccia per il nostro pianeta. Eventualità, questa, che dipende anche dalle caratteristiche geologiche del corpo, dalla sua dinamica, e più in generale dalla sua storia. Nature Communications ha pubblicato oggi un’edizione speciale a tema “Difesa planetaria, detriti spaziali e asteroidi Near-Earth” contenente, fra gli altri, cinque articoli che analizzano le caratteristiche e la storia geologica dei due asteroidi Near-Earth di tipo S osservati dalla missione DART-LICIACube, Didymos e Dimorphos. Coautori di tutti, e primi autori di due, Alice Luchetti e Maurizio Pajola dell’INAF di Padova. Agli articoli hanno partecipato anche ulteriori ricercatrici e ricercatori dell’INAF, dell’Agenzia Spaziale Italiana (ASI), di IFAC-CNR, del Politecnico di Milano e delle Università di Bologna e Parthenope. I due articoli a guida INAF si focalizzano, rispettivamente, sull’analisi delle fratture presenti nei massi dell’asteroide Dimorphos – causate da shock termici fra il giorno e la notte – e sul processo di formazione dei due asteroidi, tramite l’identificazione e l’analisi dei massi sulla loro superficie.

LICIACube analizza i lunghi pennacchi di Dimorphos

Anamnesi e storia famigliare di Didymos e Dimorphos

Osservare da vicino la superficie di un asteroide e analizzarne la geologia può dire molto sulla sua storia di formazione. Utilizzando le immagini ad alta risoluzione di Didymos e Dimorphos riprese dalla missione della NASA DART pochi istanti prima dello schianto su Dimorphos, Pajola e il suo team hanno identificato tutti i massi visibili sulla superficie dell’asteroide primario Didymos (per un totale di 169) e dell’asteroide secondario Dimorphos (per un totale di 4734), ricavandone le dimensioni. Hanno poi studiato la distribuzione in taglia di questi massi (in gergo scientifico chiamata SFD, dall’inglese Size-Frequency Distribution) contando quanti massi più grandi di una data dimensione ci sono, in vari intervalli di “taglia”, e collegato questa stima con la distribuzione delle taglie in latitudine, longitudine, pendenza superficiale, accelerazione gravitazionale e insolazione.

“Lo studio della distribuzione in taglia dei massi più grandi di 5 metri su Dimorphos, e di quelli più grandi di 22,8 metri su Didymos, ci ha permesso di dire che questi si sono formati a seguito di un singolo evento di frammentazione – un impatto catastrofico – di un asteroide padre”,

spiega Maurizio Pajola, ricercatore all’INAF di Padova e primo autore dello studio. I due corpi sarebbero, secondo i risultati, aggregati di frammenti rocciosi formatisi a seguito della distruzione catastrofica di un unico genitore comune. Scoperta, questa, confermata anche dalle simulazioni di impatti iperveloci svolte in laboratorio, nonché dall’identificazione dei massi più grandi presenti sui due corpi: 16 metri quello su Dimorphos, e 93 metri quello su Didymos, valori che equivalgono a circa un decimo della dimensione dell’asteroide su cui si trovano. Massi così grandi, infatti, non potrebbero essersi formati a seguito di impatti sulle superfici dei due corpi, che sarebbero rimasti disintegrati nello scontro.

a) Mosaico ad alta risoluzione di Dimorphos in cui il riquadro rosa mostra l'area analizzata nell’articolo di Lucchetti et al. (2024); b) Primo piano dell'immagine acquisita 1,818 s prima dell'impatto del DART in cui sono visibili e identificabili le fratture dei massi; c) Fratture dei massi mappate da Lucchetti et al. (2024). Il masso più grande della scena (6,62 m di diametro), Atabaque Saxum, presenta 6 fratture sulla sua superficie. Crediti: NASA/Johns Hopkins APL; 10.1038/s41467-024-50145-y
a) Mosaico ad alta risoluzione di Dimorphos in cui il riquadro rosa mostra l’area analizzata nell’articolo di Lucchetti et al. (2024); b) Primo piano dell’immagine acquisita 1,818 s prima dell’impatto del DART in cui sono visibili e identificabili le fratture dei massi; c) Fratture dei massi mappate da Lucchetti et al. (2024). Il masso più grande della scena (6,62 m di diametro), Atabaque Saxum, presenta 6 fratture sulla sua superficie. Crediti: NASA/Johns Hopkins APL; 10.1038/s41467-024-50145-y

L’eredità di Dimorphos

Due asteroidi, un genitore comune, dunque. Non solo: la distribuzione in taglia dei massi sui due corpi si è rivelata molto simile, cosa che fa pensare che Dimorphos, il più piccolo dei due, in orbita attorno a Didymos, abbia ereditato i propri massi dal compagno. Come? Attraverso il cosiddetto effetto YORP. In pratica, mentre un asteroide ruota su sé stesso, la sua superficie viene illuminata dal Sole in maniera disomogenea, dal momento che la sua geologia è complessa e irregolare. Il risultato è che diverse regioni vengono riscaldate e si raffreddano a velocità differenti, creando una differenza di temperatura che a sua volta può far accelerare o rallentare la rotazione. Un effetto apprezzabile per asteroidi di dimensioni chilometriche o sub-chilometriche, come nel caso di Didymos. L’asteroide attualmente ha un periodo di rotazione di 2,26 ore, ma secondo le simulazioni numeriche basterebbe una lievissima accelerazione che riduca il periodo di rotazione a 2,2596 ore per causare l’eiezione di massi dalla regione equatoriale. È possibile, dunque, secondo i ricercatori, che in passato Didymos ruotasse più velocemente a causa dell’effetto YORP, e che abbia eiettato alcuni massi formando Dimorphos. Scenario, questo, che sarebbe supportato da almeno due evidenze osservative: la prima su Dimorphos, che presenta una distribuzione in taglia simile all’asteroide primario; la seconda su Didymos, che conta una minore densità di massi all’equatore.

 

Fratture termiche

L’immagine acquisita dallo strumento DRACO (Didymos Reconnaissance and Asteroid Camera for Optical navigation) a bordo di DART poco prima dell’impatto, con la sua risoluzione di 5,5 cm sulla superficie di Dimorphos, ha infatti permesso di vedere fratture sulle rocce di Dimorphos con lunghezze variabili da 0,4 a 3 metri, secondo quanto riportato nello studio guidato da Alice Lucchetti, ricercatrice all’INAF di Padova.

“La domanda di partenza è stata: Come si formano le fratture che vediamo sui massi di Dimorphos?” dice Lucchetti. “Abbiamo mappato manualmente le fratture, misurato la loro lunghezza e orientazione, notando che esse sembrano puntare quasi tutte verso la stessa direzione (nordovest-sudest), un dato indicativo dell’azione dello stress termico su queste rocce. Infatti, se queste fossero causate da frane o impatti, punterebbero tutte in direzioni diverse”.

Tramite l’applicazione di un modello termofisico che ha determinato la variazione di temperatura fra giorno e notte sull’asteroide, gli autori sono quindi stati in grado di affermare che il calore del Sole è effettivamente in grado di fratturare le rocce di Dimorphos e, in particolare, che gli stress termici generano la formazione di fratture superficiali che si propagano più rapidamente nella direzione orizzontale al masso stesso rispetto a quella verticale. Ciò avviene in un arco di tempo compreso tra 10mila e 100mila anni, e questa è la prima volta che viene effettuata una simile analisi per un asteroide di tipo S, silicatico.

“Capire come la fatica termica (questo il nome in gergo del fenomeno) agisca su piccoli corpi di diversa composizione è importante non solo per avanzare la conoscenza riguardo la formazione ed evoluzione del Sistema Solare – continua Lucchetti –, ma anche nell’ambito della difesa planetaria. Per predire la risposta e l’efficacia di un impattore cinetico, come la sonda DART su Dimorphos, bisogna conoscere bene il comportamento dei massi presenti sulla superficie dell’asteroide”.

Un fenomeno, questo della fatica termica, che sarebbe avvenuto in situ su Dimorphos dopo la formazione del corpo, e quindi dopo il trasferimento dei massi dall’asteroide Didymos. A dimostrarlo, l’orientazione delle crepe coordinata nei diversi massi: se la frattura termica fosse avvenuta sui massi di Dydimos, poi eiettati su Dimorphos, la direzione delle fratture risulterebbe disordinata e casuale.

“La fatica termica sarebbe quindi in grado di provocare crepe nelle rocce che la subiscono, fino a frantumarle”, conclude Lucchetti.

“Il problema, però – aggiunge Pajola – è che non riusciamo a identificare la polvere causata dal processo di frammentazione. Ciò suggerisce che Dimorphos sia talmente giovane che quelle che stiamo vedendo siano le prima fratture formatisi sui massi dell’asteroide. Capire questo aspetto sarà fra gli obiettivi di studio principali della missione dell’ESA HERA, che entrerà in orbita attorno al sistema binario a fine 2026”.

Riferimenti Bibliografici:

 L’articolo Evidence for multi-fragmentation and mass shedding of boulders on rubble-pile binary asteroid system (65803) Didymos di  M. Pajola, F. Tusberti, A. Lucchetti, O. Barnouin, S. Cambioni, C. M. Ernst, E. Dotto, R. T. Daly, G. Poggiali, M. Hirabayashi, R. Nakano, E. Mazzotta Epifani, N. L. Chabot, V. Della Corte, A. Rivkin, H. Agrusa, Y. Zhang, L. Penasa, R.-L. Ballouz, S. Ivanovski, N. Murdoch, A. Rossi, C. Robin, S. Ieva, J. B. Vincent, F. Ferrari, S. D. Raducan, A. Campo-Bagatin, L. Parro, P. Benavidez, G. Tancredi, Ö. Karatekin, J. M. Trigo-Rodriguez, J. Sunshine, T. Farnham, E. Asphaug, J. D. P. Deshapriya, P. H. A. Hasselmann, J. Beccarelli, S. R. Schwartz, P. Abell, P. Michel, A. Cheng, J. R. Brucato, A. Zinzi, M. Amoroso, S. Pirrotta, G. Impresario, I. Bertini, A. Capannolo, S. Caporali, M. Ceresoli, G. Cremonese, M. Dall’Ora, I. Gai, L. Gomez Casajus, E. Gramigna, R. Lasagni Manghi, M. Lavagna, M. Lombardo, D. Modenini, P. Palumbo, D. Perna, P. Tortora, M. Zannoni e G. Zanotti  è stato pubblicato all’indirizzo https://doi.org/10.1038/s41467-024-50148-9  sulla rivista Nature Communications.

 

L’articolo Fast boulder fracturing by thermal fatigue detected on stony asteroids di A. Lucchetti, S. Cambioni, R. Nakano, O. S. Barnouin, M. Pajola, L. Penasa, F. Tusberti, K. T. Ramesh, E. Dotto, C. M. Ernst, R. T. Daly, E. Mazzotta Epifani, M. Hirabayashi, L. Parro, G. Poggiali, A. Campo Bagatin, R.-L. Ballouz, N. L. Chabot, P. Michel, N. Murdoch, J. B. Vincent, Ö. Karatekin, A. S. Rivkin, J. M. Sunshine, T. Kohout, J.D.P. Deshapriya, P.H.A. Hasselmann, S. Ieva, J. Beccarelli, S. L. Ivanovski, A. Rossi, F. Ferrari, C. Rossi, S. D. Raducan, J. Steckloff, S. Schwartz, J. R. Brucato, M. Dall’Ora, A. Zinzi, A. F. Cheng, M. Amoroso, I. Bertini, A. Capannolo, S. Caporali, M. Ceresoli, G. Cremonese, V. Della Corte, I. Gai, L. Gomez Casajus, E. Gramigna, G. Impresario, R. Lasagni Manghi, M. Lavagna, M. Lombardo, D. Modenini, P. Palumbo, D. Perna, S. Pirrotta, P. Tortora, M. Zannoni e G. Zanotti è stato pubblicato all’indirizzo https://doi.org/10.1038/s41467-024-50145-y sulla rivista Nature Communications.

 

Articoli correlati:

LICIACube analizza i lunghi pennacchi di Dimorphos

 

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF