News
Ad
Ad
Ad
Tag

Matteo Murgia

Browsing

Ricevitore MISTRAL, un vento d’innovazione nelle osservazioni di SRT

MISTRAL è un ricevitore di nuova generazione per osservazioni nelle lunghezze d’onda millimetriche realizzato nell’ambito del recente progetto di potenziamento del Sardinia Radio Telescope per lo studio dell’universo radio ad alta frequenza. Le caratteristiche principali di questo strumento consistono nel grandissimo numero di rivelatori che vengono raffreddati a temperature prossime allo zero assoluto e di un’ottica fredda dedicata che permettono di ottenere immagini di grande nitidezza. MISTRAL ha effettuato la sua “prima luce” osservando ben tre diversi oggetti celesti: la nebulosa di Orione, i lobi radio del buco nero supermassiccio nella galassia M87 e il resto di supernova Cassiopea A. Queste immagini rappresentano le prime osservazioni scientifiche a 90 GHz ottenute utilizzando SRT.

MISTRAL è il ricevitore di nuova generazione installato sul Sardinia Radio Telescope (SRT) e costruito da Sapienza Università di Roma per l’Istituto Nazionale di Astrofisica (INAF) nell’ambito del potenziamento del radiotelescopio per lo studio dell’universo alle alte frequenze finanziato da un progetto PON (Programma Operativo Nazionale), concluso nel 2023 e che oggi vede risultati sempre più concreti. MISTRAL, in questo caso, sta per “MIllimetric Sardinia radio Telescope Receiver based on Array of Lumped elements kids” , ovvero “ricevitore di onde millimetriche per il Sardinia Radio Telescope basato su una rete di rivelatori a induttanza cinetica”.

MISTRAL è un ricevitore innovativo sotto molteplici aspetti. I ricevitori radioastronomici sono tipicamente “mono pixel”, cioè sensibili alla radiazione proveniente da una sola direzione e questo richiede lunghe scansioni con il telescopio per poter realizzare immagini panoramiche della zona di cielo di interesse. Una soluzione per superare questa limitazione è costruire ricevitori “multi pixel”, sensibili cioè alla radiazione proveniente da più direzioni simultaneamente. MISTRAL porta questo concetto all’estremo. Al suo interno è infatti custodito un cuore ultra-freddo composto da una matrice di 415 rivelatori a induttanza cinetica (KIDs) sviluppati in collaborazione con il CNR-IFN di Roma e raffreddati ad appena una frazione di grado dalla temperatura di zero assoluto, pari a -273,15 gradi Celsius.

“È proprio questo elevato numero di rivelatori accoppiato con un sistema ottico sviluppato appositamente a rendere MISTRAL uno strumento estremamente efficace e rapido per l’imaging a largo campo di sorgenti deboli ed estese”, commenta Paolo de Bernardis, Coordinatore Scientifico del ricevitore per Sapienza Università di Roma.

MISTRAL è stato installato nel maggio 2023 nel fuoco gregoriano, localizzato al centro della grande parabola di 64 metri di diametro di SRT. Subito dopo è iniziata la messa in servizio del ricevitore, il cosiddetto commissioning, un’intensa serie di test tecnici e osservativi con l’obiettivo di integrare il ricevitore nel sistema del telescopio. Un team di ricercatori di INAF e Sapienza sta lavorando fianco a fianco con l’obiettivo di portare MISTRAL alle sue massime prestazioni e poterlo quindi offrire alla comunità scientifica per osservazioni regolari.

“Il commissioning – spiega Matteo Murgia, Responsabile Scientifico del ricevitore per INAF – è normalmente un passaggio di routine nella installazione di nuova strumentazione. Tuttavia, si trasforma in una vera sfida nel caso di un ricevitore nel millimetrico come MISTRAL, che richiede che le prestazioni del telescopio siano spinte al limite sotto ogni aspetto”.

“Inizialmente – dichiara Elia Battistelli, Project Manager del ricevitore per Sapienza Università di Roma – si sono affrontati e superati diversi ostacoli legati alla criogenia davvero eccezionale del ricevitore, ottenendo infine la temperatura necessaria per mettere in misura i KIDs, ossia appena 0,2 gradi sopra lo zero assoluto”.

Il miglioramento delle prestazioni della superficie attiva di SRT ha permesso a partire da settembre 2024 di raggiungere la sensibilità adeguata per calibrare lo strumento. È stato quindi possibile procedere all’ ottimizzazione dell’allineamento tra le ottiche di MISTRAL e quelle di SRT.

Il team di commissioning ha inoltre lavorato senza sosta per sviluppare le procedure e il software necessari per il puntamento e la messa a fuoco. Contemporaneamente, INAF e Sapienza hanno realizzato le procedure di calibrazione e composizione delle immagini. A questo punto MISTRAL era finalmente pronto per le osservazioni di “prima luce” di sorgenti radio estese. In successione sono stati osservati tre oggetti celesti iconici: la Nebulosa di Orione, la radiogalassia M87, e il resto di supernova Cassiopea A. Queste osservazioni hanno evidenziato la grande versatilità di MISTRAL e confermato le sue capacità di realizzare immagini di grande dettaglio di oggetti celesti in contesti astrofisici anche molto diversi tra loro.

“Il traguardo raggiunto con le immagini di prima luce di SRT a 90 GHz – commenta Isabella Pagano, Direttrice Scientifica dell’INAF – segna un passo importante nell’ampliamento degli orizzonti scientifici del radiotelescopio che dimostra così di essere in grado di operare con successo alle alte frequenze radio per le quali era stato progettato”.

Con la “prima luce” ottenuta osservando questi affascinanti oggetti cosmici, si conclude questa prima fase di test tecnici e inizia una fase, non meno importante, di validazione scientifica, volta a verificare le prestazioni di MISTRAL con sorgenti sempre più deboli, per garantire che sia pronto per le numerose sfide scientifiche per cui è stato progettato. MISTRAL affronterà un’ampia gamma di questioni scientifiche, dalla cosmologia e fisica degli ammassi di galassie, allo studio dei nuclei galattici attivi, della struttura delle nubi molecolari e della loro relazione con la formazione stellare nelle galassie vicine e nella Via Lattea, fino allo studio dei corpi celesti del nostro Sistema Solare. Le attività del team di commissioning continuano quindi con l’obiettivo di verificare le prestazioni di MISTRAL in ciascuno di questi casi scientifici e di rendere il ricevitore disponibile alla comunità scientifica il prima possibile.

 

Le prime immagini acquisite da MISTRAL

A dicembre 2024 MISTRAL è stato puntato verso la famosa Nebulosa di Orione (nota anche come M42) al centro della omonima costellazione. Situata a una distanza di circa 1350 anni luce dalla Terra, M42 è una delle regioni di formazione stellare attive più vicine ed è caratterizzata da idrogeno ionizzato eccitato da un gruppo di stelle massicce, noto come il Trapezio. M42 fa parte di un vasto complesso di nubi molecolari che si estende per 30 gradi nel cielo, mentre MISTRAL ne ha osservato la parte centrale ad una risoluzione angolare di 12 secondi d’arco. Nell’immagine è ben visibile la Barra di Orione a sud, che segna un confine netto tra la regione di idrogeno ionizzato e la nube molecolare sottostante. Si notano inoltre i picchi di emissione in prossimità delle stelle del Trapezio e della Nebulosa Kleinmann–Low, una densa nube molecolare di formazione stellare che ospita un ammasso stellare interessato in passato da un evento esplosivo. L’ emissione di M42 visibile a 90 GHz è una miscela pressoché uguale di radiazione prodotta dall’idrogeno ionizzato e quella delle polveri fredde contenute nel complesso di nubi molecolari sottostante.

Nel riquadro a sinistra si mostra l’immagine della nebulosa M42 realizzata a 90 GHz con il ricevitore MISTRAL. A destra una sovrapposizione dell’immagine MISTRAL con una immagine a più largo campo ottenuta dall’ Hubble Space Telescope (Credits: MISTRAL commissioning team; NASA, ESA, and The Hubble Heritage Team (STScI/AURA))
Nel riquadro a sinistra si mostra l’immagine della nebulosa M42 realizzata a 90 GHz con il ricevitore MISTRAL. A destra una sovrapposizione dell’immagine MISTRAL con una immagine a più largo campo ottenuta dall’ Hubble Space Telescope (Crediti per l’immagine: MISTRAL commissioning team; NASA, ESA, and The Hubble Heritage Team (STScI/AURA))

A febbraio 2025 MISTRAL ha osservato, sempre alla frequenza di 90 GHz, la radiogalassia M87, il cui nucleo attivo contiene un ormai famoso buco nero supermassiccio presente nella costellazione della Vergine, il primo di cui è stata ottenuta una immagine diretta grazie alla storica osservazione dell’Event Horizon Telescope nel 2019. La sorgente radio che circonda M87 ha una struttura complessa, costituita da lobi interni delle dimensioni di circa trentamila anni luce (poco più della distanza che ci separa dal centro della Via Lattea) circondati da una bolla di plasma esterna su più larga scala. Queste strutture sono il risultato dell’attività del buco nero centrale nel corso dei precedenti milioni di anni. Nell’immagine di MISTRAL sono visibili I lobi radio interni, le strutture più recenti tuttora alimentate da una coppia di getti radio relativistici che si propagano dal buco nero centrale. Osservare queste strutture a frequenze così alte fornisce informazioni nuove e preziose sui meccanismi fisici che alimentano le particelle radio emittenti all’interno della sorgente.

Immagine della sorgente radio attorno a M87 rivelata da MISTRAL a 90 GHz rappresentata in toni di rosso e curve di livello, sovrapposta ad una immagine ottica, in toni di blu, della galassia (Crediti per la foto: MISTRAL commissioning team; Sloan Digital Sky Survey)
Immagine della sorgente radio attorno a M87 rivelata da MISTRAL a 90 GHz rappresentata in toni di rosso e curve di livello, sovrapposta ad una immagine ottica, in toni di blu, della galassia (Crediti per la foto: MISTRAL commissioning team; Sloan Digital Sky Survey)

Infine, nell’ultima sessione di aprile 2025, MISTRAL ha osservato, attraverso due scansioni incrociate di circa mezz’ora ciascuna, il resto di supernova Cassiopea A (Cas-A) una delle più intense radio sorgenti del cielo avente una dimensione angolare di circa 5 minuti d’arco (circa un sesto del diametro apparente della luna piena). Il guscio di gas in espansione è visibile nella sua interezza e, grazie alla risoluzione angolare di SRT a queste lunghezze d’onda, si possono apprezzare i dettagli e le variazioni di luminosità della struttura filamentare.

Immagine del resto di supernova Cassiopea A realizzata a 90 GHz con il ricevitore MISTRAL (Crediti per l'immagine: MISTRAL commissioning team)
Immagine del resto di supernova Cassiopea A realizzata a 90 GHz con il ricevitore MISTRAL (Crediti per l’immagine: MISTRAL commissioning team)

 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma e dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica – INAF

ABELL 523: SCOPERTA UN’EMISSIONE RADIO POLARIZZATA DI DIMENSIONI MAI VISTE

Un team internazionale di scienziati guidato da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) ha rivelato per la prima volta un segnale polarizzato nel gas intergalattico dell’ammasso di galassie Abell 523 che si estende su scale mai osservate prima, circa ottanta volte la dimensione della Via Lattea. Questo segnale polarizzato fornisce una prova diretta della presenza di un debole ma esteso campo magnetico che pervade l’ammasso, fino alla sua periferia. Il risultato è in pubblicazione sulla rivista Monthly Notices of the Royal Astronomical Society.

Abell 523 emissione radio
ammasso di galassie Abell 523: scoperta un’emissione radio polarizzata di dimensioni mai viste

Gli ammassi di galassie sono gli oggetti più grandi nell’universo a essere tenuti insieme dalla gravità e includono fino a centinaia o migliaia di galassie. Oltre che nella banda ottica e nei raggi X, gli ammassi di galassie sono studiati anche alle lunghezze d’onda radio. Le onde radio rivelano talvolta emissione diffusa che dimostra in maniera incontrovertibile la presenza di un gas di particelle che si muovono con velocità prossime a quella della luce e di un campo magnetico nel vasto spazio che separa le galassie dell’ammasso.

Se il campo magnetico intergalattico ha una struttura ordinata su scale molto estese, il segnale radio ad esso associato che viene captato dagli strumenti sulla Terra può rivelarci una sua importante caratteristica, ovvero la sua polarizzazione, che riflette il grado di ordine del campo magnetico dell’ammasso. Questa informazione permette di condurre uno studio dettagliato delle caratteristiche magnetiche del mezzo intergalattico, contribuendo ad ampliare la conoscenza dell’origine ed evoluzione del magnetismo cosmico, uno degli obiettivi chiave della radioastronomia moderna. Con questo obiettivo, il team a guida INAF ha concentrato la sua attenzione sull’ammasso di galassie denominato Abell 523, un ammasso di galassie invisibile a occhio nudo che si trova a circa 1,6 miliardi di anni luce dal Sistema solare e appare nel cielo circa a metà strada tra la costellazione di Orione e quella del Toro. Per le osservazioni sono stati usati i dati raccolti dallo Jansky Very Large Array (VLA), una rete di radiotelescopi costruita nel New Mexico, USA. Il campo di osservazione, pari a circa un grado quadrato, ha consentito di individuare una zona di emissione polarizzata senza soluzione di continuità pari a ben 80 galassie come la Via Lattea, cioè circa 8 milioni di anni luce.

“Grazie al Very Large Array (VLA) siamo riusciti ad osservare l’emissione polarizzata associata al mezzo intergalattico dell’ammasso Abell 523 e fare luce su un fenomeno altrimenti inaccessibile. L’emissione polarizzata che abbiamo scoperto si estende su scale spaziali in cui quella in intensità totale non è infatti visibile” spiega Valentina Vacca, ricercatrice dell’INAF di Cagliari e prima autrice dello studio.

“Le osservazioni in polarizzazione sono poco interessate da alcuni limiti strumentali, per gli addetti ai lavori si parla di limite di confusione, rispetto a quelle in intensità totale. A parità di tempo osservativo e risoluzione, le osservazioni in polarizzazione possono raggiungere sensibilità molto più elevate e rivelare sorgenti deboli che non sarebbero visibili altrimenti” commenta Federica Govoni, ricercatrice presso l’INAF di Cagliari e responsabile della Divisione Nazionale Abilitante per la Radioastronomia dell’INAF.

Già altri studi in passato indicavano che sarebbe stato possibile rivelare questo tipo di segnale con radiotelescopi sempre più avanzati.

“Pensavamo però di dover aspettare alcuni decenni e l’avvento dell’Osservatorio SKA. Il risultato che abbiamo ottenuto – dice Matteo Murgia, primo ricercatore dell’INAF di Cagliari – anticipa i tempi e dimostra che questo tipo di studi può essere già svolto con gli strumenti attuali”.

Lo studio è accettato per la pubblicazione nell’articolo “Puzzling large-scale polarization in the galaxy cluster Abell 523” di Valentina Vacca, Federica Govoni, Matteo Murgia, Richard A. Perley, Luigina Feretti, Gabriele Giovannini, Ettore Carretti, Fabio Gastaldello, Filippo Cova, Paolo Marchegiani, Elia Battistelli, Walter Boschin, Torsten A. Ensslin, Marisa Girardi, Francesca Loi e Federico Radiconi sul sito web della rivista Monthly Notices of the Royal Astronomical Society.

 

Testo e foto dall’Ufficio stampa Istituto Nazionale di Astrofisica – INAF

Andromeda a 6.6 GHz: un’immagine unica della galassia sorella della Via Lattea 

galassia di Andromeda immagine
Image credits, Radio:WSRT/R. Braun (https://www.astron.nl/); Microwave:SRT/S.Fatigoni et al. (http://www.srt.inaf.it/); Infrared:NASA/Spitzer/K. Gordon (https://www.spitzer.caltech.edu/); Visible: Robert Gendler (http://www.robgendlerastropics.com/); Ultraviolet: NASA/GALEX (http://www.galex.caltech.edu/); X-ray: ESA/XMM/W. Pietsch (https://www.cosmos.esa.int/web/xmm-newton)

L’immagine ottenuta a tale frequenza, oltre a essere senza precedenti, ha permesso di definire nel dettaglio la morfologia della galassia e in particolare di individuare le regioni dove nascono le nuove stelle.

galassia di Andromeda immagine
Image credits, Radio:WSRT/R. Braun (https://www.astron.nl/); Microwave:SRT/S.Fatigoni et al. (http://www.srt.inaf.it/); Infrared:NASA/Spitzer/K. Gordon (https://www.spitzer.caltech.edu/); Visible: Robert Gendler (http://www.robgendlerastropics.com/); Ultraviolet: NASA/GALEX (http://www.galex.caltech.edu/); X-ray: ESA/XMM/W. Pietsch (https://www.cosmos.esa.int/web/xmm-newton)

I risultati dello studio, frutto della collaborazione fra la Sapienza e l’lstituto Nazionale di Astrofisica sono stati pubblicati sulla rivista Astronomy & Astrophysics.

Andromeda è una delle galassie più studiate di tutti i tempi e probabilmente anche la più conosciuta al grande pubblico per la sua prossimità e somiglianza con la nostra galassia, la Via Lattea. Infatti, una conoscenza della natura dei processi fisici che avvengono al suo interno permetterebbe di capire meglio cosa avviene nella nostra galassia, come se la guardassimo dall’esterno.

Paradossalmente, proprio ciò che finora ha ostacolato una osservazione approfondita di Andromeda nelle microonde è la sua stessa conformazione. Infatti, a causa delle sua prossimità alla Via Lattea questa ha una dimensione angolare di diversi gradi in cielo, il che la mette fuori dalla portata degli interferometri costituiti da schiere di antenne di piccola taglia. Per poter osservare Andromeda a frequenze di 6.6 GHz e superiori è indispensabile disporre di un unico radiotelescopio a disco singolo dotato di una grande area efficace.

Oggi, una collaborazione scientifica fra la Sapienza Università di Roma e l’Istituto Nazionale di Astrofisica – INAF, ha permesso di ottenere con il Sardinia Radio Telescope una immagine della galassia di Andromeda completamente nuova, a 6.6 GHz, una frequenza mai sondata prima d’ora.

L’ottima risoluzione angolare del telescopio ha permesso di definire nel dettaglio la morfologia e di ampliare così le conoscenze finora disponibili su questa galassia.

I risultati dello studio, realizzato con la partecipazione anche di numerosi enti e università internazionali come la University of British Columbia, l’Instituto de Radioastronomia y Astrofisica – UNAM in Messico, l’Instituto de Astrofisica de Canarias, l’Infrared Processing Analysis Center – IPAC in California, sono stati pubblicati sulla rivista Astronomy & Astrophysics. 

A questa frequenza (6.6 GHz) l’emissione della galassia è vicina al suo minimo, complicando la possibilità di ottenere una immagine così definita. Nonostante ciò, grazie alle 66 ore di osservazione con il Sardinia Radio Telescope e a un consistente lavoro di elaborazione dei dati, i ricercatori sono riusciti a mappare la galassia con alta sensibilità.

“Il Sardinia Radio Telescope è una grande antenna a disco singolo in grado di operare ad alte frequenze radio – sottolinea Matteo Murgia dell’INAF di Cagliari- e di produrre dati di elevatissima importanza scientifica e immagini di assoluta qualità”.

 “Combinando questa nuova immagine con quelle precedentemente acquisite – aggiunge Elia Battistelli del Dipartimento di Fisica della Sapienza e coordinatore dello studio – abbiamo fatto significativi passi in avanti nel chiarire la natura della emissione di microonde di Andromeda, distinguendo i processi fisici che avvengono in diverse regioni della galassia”

Andromeda galassia immagine

“In particolare siamo riusciti a determinare la frazione di emissione dovuta ai processi termici legati alle prime fasi della formazione di nuove stelle, e la frazione di segnale radio imputabile ai meccanismi non-termici dovuti a raggi cosmici che spiraleggiano nel campo magnetico presente nel mezzo interstellare” concludono Federico Radiconi del Dipartimento di Fisica della Sapienza e Sofia Fatigoni della Università della British Columbia.

Andromeda galassia immagine

Con i dati ottenuti, per i ricercatori è stato possibile così stimare il ritmo di formazione stellare di Andromeda e produrre una mappa dettagliata che ha messo in evidenza il disco della galassia come regione d’elezione per la nascita di nuove stelle.

Per ottenere questa immagine unica di Andromeda il team ha sviluppato e implementato dei software ad hoc che hanno permesso, tra le altre cose, di testare nuovi algoritmi per la identificazione di sorgenti a più bassa emissione nel campo di vista attorno ad Andromeda, il più vasto mai esaminato a una frequenza di 6.6 GHz: in questo modo i ricercatori hanno estratto dalla mappa un catalogo di circa un centinaio di sorgenti puntiformi, ovvero stelle, galassie e altri oggetti, sullo sfondo di Andromeda.

Andromeda galassia immagine

Riferimenti:

Study of the thermal and non-thermal emission components in M31: the Sardinia Radio Telescope view at 6.6 GHz – S. Fatigoni, F. Radiconi, E.S. Battistelli, M. Murgia, E. Carretti, P. Castangia, R. Concu, P. de Bernardis, J. Fritz, R. Genova-Santos, F. Govoni, F. Guidi, L. Lamagna, S. Masi, A. Melis, R. Paladini, F.M. Perez-Toledo, F. Piacentini, S. Poppi, R. Rebolo, J.A. Rubino-Martin, G. Surcis, A. Tarchi, V. Vacca – Astronomy & Astrophysics 2021

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma