News
Ad
Ad
Ad
Tag

Matteo Murgia

Browsing

ABELL 523: SCOPERTA UN’EMISSIONE RADIO POLARIZZATA DI DIMENSIONI MAI VISTE

Un team internazionale di scienziati guidato da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) ha rivelato per la prima volta un segnale polarizzato nel gas intergalattico dell’ammasso di galassie Abell 523 che si estende su scale mai osservate prima, circa ottanta volte la dimensione della Via Lattea. Questo segnale polarizzato fornisce una prova diretta della presenza di un debole ma esteso campo magnetico che pervade l’ammasso, fino alla sua periferia. Il risultato è in pubblicazione sulla rivista Monthly Notices of the Royal Astronomical Society.

Abell 523 emissione radio
ammasso di galassie Abell 523: scoperta un’emissione radio polarizzata di dimensioni mai viste

Gli ammassi di galassie sono gli oggetti più grandi nell’universo a essere tenuti insieme dalla gravità e includono fino a centinaia o migliaia di galassie. Oltre che nella banda ottica e nei raggi X, gli ammassi di galassie sono studiati anche alle lunghezze d’onda radio. Le onde radio rivelano talvolta emissione diffusa che dimostra in maniera incontrovertibile la presenza di un gas di particelle che si muovono con velocità prossime a quella della luce e di un campo magnetico nel vasto spazio che separa le galassie dell’ammasso.

Se il campo magnetico intergalattico ha una struttura ordinata su scale molto estese, il segnale radio ad esso associato che viene captato dagli strumenti sulla Terra può rivelarci una sua importante caratteristica, ovvero la sua polarizzazione, che riflette il grado di ordine del campo magnetico dell’ammasso. Questa informazione permette di condurre uno studio dettagliato delle caratteristiche magnetiche del mezzo intergalattico, contribuendo ad ampliare la conoscenza dell’origine ed evoluzione del magnetismo cosmico, uno degli obiettivi chiave della radioastronomia moderna. Con questo obiettivo, il team a guida INAF ha concentrato la sua attenzione sull’ammasso di galassie denominato Abell 523, un ammasso di galassie invisibile a occhio nudo che si trova a circa 1,6 miliardi di anni luce dal Sistema solare e appare nel cielo circa a metà strada tra la costellazione di Orione e quella del Toro. Per le osservazioni sono stati usati i dati raccolti dallo Jansky Very Large Array (VLA), una rete di radiotelescopi costruita nel New Mexico, USA. Il campo di osservazione, pari a circa un grado quadrato, ha consentito di individuare una zona di emissione polarizzata senza soluzione di continuità pari a ben 80 galassie come la Via Lattea, cioè circa 8 milioni di anni luce.

“Grazie al Very Large Array (VLA) siamo riusciti ad osservare l’emissione polarizzata associata al mezzo intergalattico dell’ammasso Abell 523 e fare luce su un fenomeno altrimenti inaccessibile. L’emissione polarizzata che abbiamo scoperto si estende su scale spaziali in cui quella in intensità totale non è infatti visibile” spiega Valentina Vacca, ricercatrice dell’INAF di Cagliari e prima autrice dello studio.

“Le osservazioni in polarizzazione sono poco interessate da alcuni limiti strumentali, per gli addetti ai lavori si parla di limite di confusione, rispetto a quelle in intensità totale. A parità di tempo osservativo e risoluzione, le osservazioni in polarizzazione possono raggiungere sensibilità molto più elevate e rivelare sorgenti deboli che non sarebbero visibili altrimenti” commenta Federica Govoni, ricercatrice presso l’INAF di Cagliari e responsabile della Divisione Nazionale Abilitante per la Radioastronomia dell’INAF.

Già altri studi in passato indicavano che sarebbe stato possibile rivelare questo tipo di segnale con radiotelescopi sempre più avanzati.

“Pensavamo però di dover aspettare alcuni decenni e l’avvento dell’Osservatorio SKA. Il risultato che abbiamo ottenuto – dice Matteo Murgia, primo ricercatore dell’INAF di Cagliari – anticipa i tempi e dimostra che questo tipo di studi può essere già svolto con gli strumenti attuali”.

Lo studio è accettato per la pubblicazione nell’articolo “Puzzling large-scale polarization in the galaxy cluster Abell 523” di Valentina Vacca, Federica Govoni, Matteo Murgia, Richard A. Perley, Luigina Feretti, Gabriele Giovannini, Ettore Carretti, Fabio Gastaldello, Filippo Cova, Paolo Marchegiani, Elia Battistelli, Walter Boschin, Torsten A. Ensslin, Marisa Girardi, Francesca Loi e Federico Radiconi sul sito web della rivista Monthly Notices of the Royal Astronomical Society.

 

Testo e foto dall’Ufficio stampa Istituto Nazionale di Astrofisica – INAF

Andromeda a 6.6 GHz: un’immagine unica della galassia sorella della Via Lattea 

galassia di Andromeda immagine
Image credits, Radio:WSRT/R. Braun (https://www.astron.nl/); Microwave:SRT/S.Fatigoni et al. (http://www.srt.inaf.it/); Infrared:NASA/Spitzer/K. Gordon (https://www.spitzer.caltech.edu/); Visible: Robert Gendler (http://www.robgendlerastropics.com/); Ultraviolet: NASA/GALEX (http://www.galex.caltech.edu/); X-ray: ESA/XMM/W. Pietsch (https://www.cosmos.esa.int/web/xmm-newton)

L’immagine ottenuta a tale frequenza, oltre a essere senza precedenti, ha permesso di definire nel dettaglio la morfologia della galassia e in particolare di individuare le regioni dove nascono le nuove stelle.

galassia di Andromeda immagine
Image credits, Radio:WSRT/R. Braun (https://www.astron.nl/); Microwave:SRT/S.Fatigoni et al. (http://www.srt.inaf.it/); Infrared:NASA/Spitzer/K. Gordon (https://www.spitzer.caltech.edu/); Visible: Robert Gendler (http://www.robgendlerastropics.com/); Ultraviolet: NASA/GALEX (http://www.galex.caltech.edu/); X-ray: ESA/XMM/W. Pietsch (https://www.cosmos.esa.int/web/xmm-newton)

I risultati dello studio, frutto della collaborazione fra la Sapienza e l’lstituto Nazionale di Astrofisica sono stati pubblicati sulla rivista Astronomy & Astrophysics.

Andromeda è una delle galassie più studiate di tutti i tempi e probabilmente anche la più conosciuta al grande pubblico per la sua prossimità e somiglianza con la nostra galassia, la Via Lattea. Infatti, una conoscenza della natura dei processi fisici che avvengono al suo interno permetterebbe di capire meglio cosa avviene nella nostra galassia, come se la guardassimo dall’esterno.

Paradossalmente, proprio ciò che finora ha ostacolato una osservazione approfondita di Andromeda nelle microonde è la sua stessa conformazione. Infatti, a causa delle sua prossimità alla Via Lattea questa ha una dimensione angolare di diversi gradi in cielo, il che la mette fuori dalla portata degli interferometri costituiti da schiere di antenne di piccola taglia. Per poter osservare Andromeda a frequenze di 6.6 GHz e superiori è indispensabile disporre di un unico radiotelescopio a disco singolo dotato di una grande area efficace.

Oggi, una collaborazione scientifica fra la Sapienza Università di Roma e l’Istituto Nazionale di Astrofisica – INAF, ha permesso di ottenere con il Sardinia Radio Telescope una immagine della galassia di Andromeda completamente nuova, a 6.6 GHz, una frequenza mai sondata prima d’ora.

L’ottima risoluzione angolare del telescopio ha permesso di definire nel dettaglio la morfologia e di ampliare così le conoscenze finora disponibili su questa galassia.

I risultati dello studio, realizzato con la partecipazione anche di numerosi enti e università internazionali come la University of British Columbia, l’Instituto de Radioastronomia y Astrofisica – UNAM in Messico, l’Instituto de Astrofisica de Canarias, l’Infrared Processing Analysis Center – IPAC in California, sono stati pubblicati sulla rivista Astronomy & Astrophysics. 

A questa frequenza (6.6 GHz) l’emissione della galassia è vicina al suo minimo, complicando la possibilità di ottenere una immagine così definita. Nonostante ciò, grazie alle 66 ore di osservazione con il Sardinia Radio Telescope e a un consistente lavoro di elaborazione dei dati, i ricercatori sono riusciti a mappare la galassia con alta sensibilità.

“Il Sardinia Radio Telescope è una grande antenna a disco singolo in grado di operare ad alte frequenze radio – sottolinea Matteo Murgia dell’INAF di Cagliari- e di produrre dati di elevatissima importanza scientifica e immagini di assoluta qualità”.

 “Combinando questa nuova immagine con quelle precedentemente acquisite – aggiunge Elia Battistelli del Dipartimento di Fisica della Sapienza e coordinatore dello studio – abbiamo fatto significativi passi in avanti nel chiarire la natura della emissione di microonde di Andromeda, distinguendo i processi fisici che avvengono in diverse regioni della galassia”

Andromeda galassia immagine

“In particolare siamo riusciti a determinare la frazione di emissione dovuta ai processi termici legati alle prime fasi della formazione di nuove stelle, e la frazione di segnale radio imputabile ai meccanismi non-termici dovuti a raggi cosmici che spiraleggiano nel campo magnetico presente nel mezzo interstellare” concludono Federico Radiconi del Dipartimento di Fisica della Sapienza e Sofia Fatigoni della Università della British Columbia.

Andromeda galassia immagine

Con i dati ottenuti, per i ricercatori è stato possibile così stimare il ritmo di formazione stellare di Andromeda e produrre una mappa dettagliata che ha messo in evidenza il disco della galassia come regione d’elezione per la nascita di nuove stelle.

Per ottenere questa immagine unica di Andromeda il team ha sviluppato e implementato dei software ad hoc che hanno permesso, tra le altre cose, di testare nuovi algoritmi per la identificazione di sorgenti a più bassa emissione nel campo di vista attorno ad Andromeda, il più vasto mai esaminato a una frequenza di 6.6 GHz: in questo modo i ricercatori hanno estratto dalla mappa un catalogo di circa un centinaio di sorgenti puntiformi, ovvero stelle, galassie e altri oggetti, sullo sfondo di Andromeda.

Andromeda galassia immagine

Riferimenti:

Study of the thermal and non-thermal emission components in M31: the Sardinia Radio Telescope view at 6.6 GHz – S. Fatigoni, F. Radiconi, E.S. Battistelli, M. Murgia, E. Carretti, P. Castangia, R. Concu, P. de Bernardis, J. Fritz, R. Genova-Santos, F. Govoni, F. Guidi, L. Lamagna, S. Masi, A. Melis, R. Paladini, F.M. Perez-Toledo, F. Piacentini, S. Poppi, R. Rebolo, J.A. Rubino-Martin, G. Surcis, A. Tarchi, V. Vacca – Astronomy & Astrophysics 2021

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma