News
Ad
Ad
Ad
Tag

ESO

Browsing

Cha 1107-7626, un pianeta vagabondo cresce a ritmo record

Situato a circa 620 anni luce di distanza, il pianeta vagabondo Cha 1107-7626, circa 5-10 volte più massiccio di Giove, non orbita attorno a una stella. E sta divorando il materiale da un disco che lo circonda a una velocità di sei miliardi di tonnellate al secondo: la più alta mai rilevata per qualsiasi tipo di pianeta. A guidare la scoperta, pubblicata oggi su ApJL, è stato Víctor Almendros-Abad dell’INAF di Palermo.

Rappresentazione artistica di Cha 1107-7626. Situato a circa 620 anni luce di distanza, questo pianeta vagabondo è circa 5-10 volte più massiccio di Giove e non orbita attorno a una stella. Sta divorando il materiale da un disco che lo circonda e, utilizzando il Very Large Telescope (Vlt) dell’Eso, gli astronomi hanno scoperto che lo sta facendo a una velocità di sei miliardi di tonnellate al secondo, la più alta mai rilevata per qualsiasi tipo di pianeta. Il team sospetta che forti campi magnetici potrebbero incanalare il materiale verso il pianeta, un fenomeno osservato solo nelle stelle. Crediti: ESO/L. Calçada/M. Kornmesser
Rappresentazione artistica di Cha 1107-7626. Situato a circa 620 anni luce di distanza, questo pianeta vagabondo è circa 5-10 volte più massiccio di Giove e non orbita attorno a una stella. Sta divorando il materiale da un disco che lo circonda e, utilizzando il Very Large Telescope (Vlt) dell’Eso, gli astronomi hanno scoperto che lo sta facendo a una velocità di sei miliardi di tonnellate al secondo, la più alta mai rilevata per qualsiasi tipo di pianeta. Il team sospetta che forti campi magnetici potrebbero incanalare il materiale verso il pianeta, un fenomeno osservato solo nelle stelle. Crediti: ESO/L. Calçada/M. Kornmesser

Gli astronomi hanno identificato un enorme “scatto di crescita” in un cosiddetto pianeta erratico. A differenza dei pianeti del Sistema solare, questi oggetti non orbitano intorno a una stella, ma fluttuano liberamente, isolati. Le nuove osservazioni, effettuate con il Very Large Telescope dell’Osservatorio europeo australe (VLT dell’ESO), rivelano che il pianeta vagabondo sta divorando gas e polvere dai dintorni a un ritmo di sei miliardi di tonnellate al secondo. Si tratta del tasso di crescita più elevato mai registrato per un pianeta erratico, ma anche per un pianeta di qualsiasi tipo, e fornisce preziose informazioni su come i pianeti si formano e crescono.

«Molti pensano ai pianeti come a mondi tranquilli e stabili, ma con questa scoperta vediamo che oggetti di massa planetaria che fluttuano liberamente nello spazio possono essere luoghi avvincenti»,

dice Víctor Almendros-Abad, astronomo dell’INAF – Osservatorio astronomico di Palermo e autore principale del nuovo studio.

L’oggetto appena studiato, con una massa da cinque a dieci volte quella di Giove, si trova a circa 620 anni luce di distanza da noi nella costellazione del Camaleonte. Chiamato ufficialmente Cha 1107-7626, questo pianeta vagabondo è ancora in formazione ed è alimentato da un disco di gas e polvere che lo circonda. Questo materiale ricade costantemente sul pianeta isolato, un processo noto come accrescimento. Tuttavia, il gruppo guidato da Almendros-Abad ha ora scoperto che il tasso di accrescimento del giovane pianeta non è costante.

Nell’agosto del 2025, l’accrescimento sul pianeta aveva un tasso circa otto volte superiore rispetto a quello di pochi mesi prima, pari a sei miliardi di tonnellate al secondo!

«Questo è l’episodio di accrescimento più intenso mai registrato per un oggetto di massa planetaria»,

aggiunge Almendros-Abad. La scoperta, pubblicata oggi su The Astrophysical Journal Letters, è stata realizzata con lo spettrografo X-shooter installato sul VLT dell’Eso, situato nel deserto di Atacama, in Cile. Il gruppo ha utilizzato anche i dati del telescopio spaziale James Webb, gestito dalle agenzie spaziali di Usa, Europa e Canada, e i dati d’archivio dello spettrografo Sinfoni installato sul VLT dell’ESO.

«L’origine dei pianeti erratici rimane una questione non risolta: sono gli oggetti di formazione stellare con la minima massa possibile o pianeti giganti espulsi dai propri sistemi di origine?»

Questo si chiede il coautore Aleks Scholz, astronomo presso l’Università di St Andrews, Regno Unito. I risultati indicano che almeno alcuni pianeti vagabondi potrebbero condividere un percorso di formazione simile a quello delle stelle, poiché simili aumenti rapidi del tasso di accrescimento sono stati osservati in precedenza in stelle giovani. Come spiega la coautrice Belinda Damian, astronoma presso l’Università di St Andrews,

«questa scoperta sfuma il confine tra stelle e pianeti e ci offre un’anteprima dei primi periodi di formazione dei pianeti vagabondi».

Confrontando la luce emessa prima e durante l’aumento, gli astronomi hanno raccolto indizi sulla natura del processo di accrescimento. Sorprendentemente, l’attività magnetica sembra aver giocato un ruolo nel guidare la drastica caduta di massa, un fenomeno osservato finora solo nelle stelle. Ciò suggerisce che anche oggetti di piccola massa possano possedere forti campi magnetici in grado di alimentare questi eventi di accrescimento. Il gruppo ha anche scoperto che la chimica del disco intorno al pianeta è cambiata durante l’episodio di accrescimento, con la presenza di vapore acqueo durante l’evento ma non prima. Questo fenomeno era stato osservato nelle stelle, ma mai in un pianeta di alcun tipo.

I pianeti liberi sono difficili da rivelare, poiché sono molto deboli, ma il futuro ELT (Extremely Large Telescope) dell’ESO potrebbe cambiare la situazione. I suoi potenti strumenti e il gigantesco specchio principale consentiranno agli astronomi di scoprire e studiare un numero maggiore di questi pianeti solitari, aiutando a comprendere meglio quanto siano simili a stelle. Come afferma la coautrice e astronoma dell’ESO Amelia Bayo,

«l’idea che un oggetto planetario possa comportarsi come una stella è suggestivo e ci invita a chiederci come potrebbero essere i mondi oltre il nostro durante le fasi iniziali».

 

DICHIARAZIONE DI VÍCTOR ALMENDROS-ABAD, ASTRONOMO INAF E PRIMO AUTORE DELLO STUDIO:

“Ciò che rende questa scoperta davvero speciale non è solo il fatto di aver misurato il più alto tasso di crescita mai osservato in un oggetto di massa planetaria, ma anche che si tratta della prima eruzione documentata in un oggetto di questo tipo. Fino ad ora, eventi di questo tipo erano stati osservati soltanto in giovani stelle, dove si ritiene giochino un ruolo fondamentale nell’accumulo di massa durante le prime fasi dell’evoluzione. Trovarne uno in un oggetto di appena cinque-dieci volte la massa di Giove dimostra che i meccanismi che guidano la formazione stellare possono operare sulla scala planetaria. Questo apre una finestra del tutto nuova su come evolvono i pianeti e i loro dischi.”

“Per me, la scoperta è stata emozionante anche a livello personale. Tutto è iniziato come un semplice controllo tecnico, per verificare che un problema strumentale fosse stato risolto. Ma nei nuovi dati ho visto subito che la riga di emissione dell’idrogeno appariva completamente diversa, molto più intensa e con una nuova forma. Ho capito immediatamente che stava accadendo qualcosa di straordinario e ho avvisato subito il team. Da quel momento abbiamo seguito l’oggetto passo dopo passo, e con l’arrivo di nuovi dati è diventato sempre più chiaro che si trattava di un’eruzione lunga e complessa. È stata un’esperienza unica, e un promemoria che in astronomia le scoperte avvengono spesso quando meno te lo aspetti.”

Riferimenti bibliografici:

Victor Almendros-Abad et al., 2025 ApJL 992 L2, DOI: 10.3847/2041-8213/ae09a8

Testi, video e immagini dall’Ufficio Stampa INAF – Istituto Nazionale di Astrofisica, ESO.

PSR J1023+0038, TRA GLI ALTI E BASSI DI UNA PULSAR: IL SEGRETO È NELLA SUA POLARIZZAZIONE

Un team internazionale guidato dall’Istituto Nazionale di Astrofisica ha misurato per la prima volta la polarizzazione della luce emessa da una pulsar al millisecondo transizionale in tre diverse bande dello spettro elettromagnetico. Lo studio, pubblicato su The Astrophysical Journal Letters, indica che l’emissione è dominata dal vento di particelle prodotto della pulsar e non dalla materia che la pulsar stessa sta risucchiando alla sua stella compagna.

Rappresentazione artistica delle regioni centrali del sistema PSR J1023+0038, che mostra la pulsar, il disco di accrescimento interno e il vento della pulsar. Crediti: Marco Maria Messa (Università di Milano e INAF) e Maria Cristina Baglio (INAF)
Rappresentazione artistica delle regioni centrali del sistema PSR J1023+0038, che mostra la pulsar, il disco di accrescimento interno e il vento della pulsar. Crediti: Marco Maria Messa (Università di Milano e INAF) e Maria Cristina Baglio (INAF)

Un team internazionale, guidato dall’Istituto Nazionale di Astrofisica (INAF), ha individuato nuove prove su come le pulsar al millisecondo transizionali, una particolare classe di resti stellari, interagiscono con la materia circostante. Il risultato, pubblicato su The Astrophysical Journal Letters, è stato ottenuto grazie a osservazioni effettuate con l’Imaging X-ray Polarimetry Explorer (IXPE) della NASA, il Very Large Telescope (VLT) dell’European Southern Observatory (ESO) in Cile e il Karl G. Jansky Very Large Array (VLA) nel New Mexico: si tratta di una delle prime campagne osservative di polarimetria multi-banda mai realizzate su una sorgente binaria a raggi X, coprendo simultaneamente le bande X, ottica e radio.

La missione spaziale IXPE in preparazione prima del lancio. Crediti: NASA
La missione spaziale IXPE in preparazione prima del lancio. Crediti: NASA

La sorgente analizzata è PSR J1023+0038, una cosiddetta pulsar al millisecondo transizionale. Questi oggetti sono particolarmente interessanti perché alternano fasi in cui si comportano come pulsar “canoniche” – ovvero stelle di neutroni isolate che ruotano su sé stesse centinaia di volte in un secondo, emettendo fasci di luce pulsata – a fasi in cui attraggono e accumulano materia da una stella compagna vicina, formando un disco di accrescimento visibile nei raggi X.

“Le pulsar al millisecondo transizionali sono laboratori cosmici che ci aiutano a capire come le stelle di neutroni evolvono nei sistemi binari”, spiega Maria Cristina Baglio, ricercatrice INAF e prima autrice dello studio. “J1023 è una sorgente particolarmente preziosa di dati perché transita chiaramente tra il suo stato attivo, in cui si nutre della stella compagna, e uno stato più dormiente, in cui si comporta come una pulsar standard emettendo onde radio rilevabili. Durante le osservazioni, la pulsar era in una fase attiva a bassa luminosità, caratterizzata da rapidi cambiamenti tra diversi livelli di luminosità in raggi X”.

Maria Cristina Baglio
Maria Cristina Baglio

In questo studio, per la prima volta, si è misurata simultaneamente la polarizzazione della luce emessa da questa sorgente in tre bande dello spettro elettromagnetico: raggi X (con IXPE), luce visibile (con il VLT) e onde radio (con il VLA). In particolare, IXPE ha rilevato un livello di polarizzazione nei raggi X di circa il 12%, il più elevato mai osservato finora in un sistema binario come quello di J1023. Nella banda ottica, la sorgente mostra una polarizzazione più bassa (circa 1%), ma con un angolo perfettamente allineato a quello della radiazione X, suggerendo una comune origine fisica. Nelle onde radio, invece, è stato fissato un limite massimo di polarizzazione di circa il 2%.

“Questa osservazione, data la bassa intensità del flusso X, è stata estremamente impegnativa, ma la sensibilità di IXPE ci ha permesso di rilevare e misurare con sicurezza questo notevole allineamento tra la polarizzazione ottica e quella nei raggi X”, afferma Alessandro Di Marco, ricercatore INAF e co-autore del lavoro. “Questo studio rappresenta un modo ingegnoso per testare scenari teorici grazie a osservazioni polarimetriche su più lunghezze d’onda”.

I risultati confermano una previsione teorica pubblicata nel 2023 da Maria Cristina Baglio e Francesco Coti Zelati, ricercatore presso l’Istituto di scienze spaziali di Barcellona, Spagna e co-autore dello studio, secondo cui l’emissione polarizzata osservata sarebbe generata dall’interazione tra il vento della pulsar e la materia del disco di accrescimento. La forte polarizzazione nei raggi X prevista, tra il 10 e il 15%, è stata effettivamente rilevata, confermando il modello teorico. Si tratta di un’indicazione chiara che le pulsar al millisecondo transizionali sono alimentate principalmente dalla rotazione e dal vento relativistico della pulsar, piuttosto che dal solo accrescimento di materia dalla stella compagna.

Capire cosa alimenta davvero queste stelle ultra-compatte, che alternano due nature profondamente diverse, rappresenta un passo fondamentale per decifrare il comportamento della materia e dell’energia in condizioni estreme. Questo studio porta la comunità scientifica un passo più vicino a comprendere meccanismi universali che regolano fenomeni come i getti dei buchi neri e le nebulose da vento di pulsar.

Riferimenti bibliografici:

L’articolo “Polarized multiwavelength emission from pulsar wind – accretion disk interaction in a transitional millisecond pulsar”, di M. C. Baglio, F. C. Zelati, A. Di Marco, F. La Monaca, A. Papitto, A. K. Hughes, S. Campana, D. M. Russell, D. F. Torres, F. Carotenuto, S. Covino, D. De Martino, S. Giarratana, S. E. Motta, K. Alabarta, P. D’Avanzo, G. Illiano, M. M. Messa, A. M. Zanon e N. Rea, è stato pubblicato online sulla rivista Astrophysical Journal Letters.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF.

KiDS J0842+0059: SCOPERTA GALASSIA FOSSILE A TRE MILIARDI DI ANNI LUCE

Grazie a osservazioni ad altissima risoluzione con il Large Binocular Telescope in Arizona, un team guidato dall’Istituto Nazionale di Astrofisica (INAF) ha confermato l’esistenza di una galassia rimasta praticamente immutata per circa sette miliardi di anni: un autentico fossile cosmico che permette di studiare la formazione delle prime galassie nella storia dell’universo.

Nel corso della storia del cosmo, le galassie tendono a crescere ed evolvere attraverso la fusione con altre galassie. Ma esistono dei rari esemplari che si comportano come una capsula del tempo: queste galassie, dette fossili o relitti (in inglese, relic), si sono formate molto rapidamente nelle primissime fasi dell’universo, producendo la quasi totalità delle loro stelle in meno di tre miliardi di anni dopo il Big Bang, e da allora sono rimaste praticamente intatte. Alle osservazioni si presentano con un aspetto denso e compatto, popolate da stelle ricche di elementi pesanti, e senza alcun segno di formazione stellare in corso.

Un nuovo studio ha ora osservato la galassia relic più lontana mai scoperta: un fossile cosmico, rimasto immutato per circa 7 miliardi di anni. Si chiama KiDS J0842+0059 ed è la prima galassia fossile massiccia confermata al di fuori dell’universo locale, attraverso osservazioni spettroscopiche e immagini ad alta risoluzione.

La scoperta, realizzata da un team internazionale di ricercatori e ricercatrici guidato dall’Istituto Nazionale di Astrofisica (INAF), è stata resa possibile grazie al Large Binocular Telescope (LBT), telescopio gestito da Italia, Germania e Stati Uniti sulla sommità del Monte Graham, in Arizona. I risultati sono pubblicati nell’edizione di luglio della rivista Monthly Notices of the Royal Astronomical Society.

“Abbiamo scoperto una galassia ‘perfettamente conservata’ da miliardi di anni, un vero reperto archeologico che ci racconta come nascevano le prime galassie e ci aiuta a capire come si è evoluto l’universo fino a oggi”, spiega Crescenzo Tortora, ricercatore INAF e primo autore del lavoro. “Le galassie fossili sono come i dinosauri dell’universo: studiarle ci permette di comprendere in quali condizioni ambientali si sono formate e come si sono evolute le galassie più massicce che vediamo oggi”.

La galassia, che osserviamo com’era circa tre miliardi di anni fa, era stata inizialmente identificata nel 2018 all’interno del progetto KiDS (Kilo Degree Survey), una survey pubblica dello European Southern Observatory (ESO) realizzata dal telescopio italiano VST (VLT Survey Telescope) che si trova all’Osservatorio di Paranal, in Cile. Le immagini KiDS hanno fornito una stima della massa e delle dimensioni della galassia, le cui proprietà sono state ulteriormente caratterizzate mediante osservazioni con lo strumento X-Shooter sul Very Large Telescope dell’ESO, anch’esso in Cile. Tutte le sue caratteristiche sembravano indicare che si trattasse di una galassia fossile: dalla massa stellare, pari a circa cento miliardi di masse solari, alla formazione stellare, assente per gran parte della vita della galassia, fino alle dimensioni, più compatte rispetto a quelle di galassie con pari massa stellare.

Sulle dimensioni e la struttura della galassia, tuttavia, restavano alcune incertezze. Per confermare la compattezza della galassia, sono state cruciali nuove osservazioni realizzate con il Large Binocular Telescope (LBT), in grado di ottenere immagini molto più nitide grazie al sistema SOUL di ottica adattiva, che compensa in tempo reale gli effetti della turbolenza atmosferica. Le osservazioni della galassia KiDS J0842+0059 raccolte con LBT hanno un grado di dettaglio dieci volte superiore rispetto ai dati della survey KiDS: sono le immagini più dettagliate di una galassia relic a questa distanza e consentono di studiarne forma e dimensioni come mai prima d’ora.

“I dati del Large Binocular Telescope ci hanno permesso di confermare che KiDS J0842+0059 è effettivamente compatta e quindi una vera galassia relic, con una forma simile a NGC 1277 e alle galassie compatte che osserviamo nelle prime fasi dell’universo”, spiega la coautrice Chiara Spiniello, ricercatrice all’Università di Oxford, associata INAF e principal investigator del progetto INSPIRE, che ha contribuito alla caratterizzazione delle proprietà di questa galassia. Fino ad oggi, NGC 1277 era uno dei pochi prototipi confermati di questa rara classe di galassie. “È la prima volta che riusciamo a farlo con dati di così alta risoluzione per una galassia relic così distante”.

L’esistenza di galassie relic massicce come KiDS J0842+0059 oppure NGC 1277 dimostra che alcune galassie possono formarsi rapidamente, restare compatte, e poi rimanere inerti per miliardi di anni, sfuggendo alla crescita che ha interessato la maggior parte delle loro controparti attraverso fusioni con altre galassie.

“Studiare questi fossili cosmici ci aiuta a ricostruire la storia di formazione dei nuclei delle galassie massicce odierne, che — a differenza delle galassie relic — hanno subito processi di fusione, accrescendo materia proprio attorno a quelle prime galassie (compatte) dalle quali si sono originate”, conclude Tortora. “Con tecnologie all’avanguardia come l’ottica adattiva e il supporto di telescopi come LBT, possiamo migliorare la nostra comprensione di questo tipo di galassie. Nel futuro prossimo, inoltre, faremo un passo in avanti, puntando a cercare, confermare e studiare nuove galassie relic attraverso i dati di qualità e risoluzione unica del telescopio spaziale Euclid”.

 La galassia relic KiDS J0842+0059, osservata con il VST nell’ambito della survey KiDS (a sinistra) e con il Large Binocular Telescope (a destra). Crediti: C. Tortora/INSPIRE/VST/ESO/LBT
La galassia relic KiDS J0842+0059, osservata con il VST nell’ambito della survey KiDS (a sinistra) e con il Large Binocular Telescope (a destra). Crediti: C. Tortora/INSPIRE/VST/ESO/LBT

Per ulteriori informazioni:

L’articolo “INSPIRE: INvestigating Stellar Populations In RElics – IX. KiDS J0842 + 0059: the first fully confirmed relic beyond the local Universe”, di C. Tortora, G. Tozzi, G. Agapito, F. La Barbera, C. Spiniello, R. Li, G. Carlà, G. D’Ago, E. Ghose, F. Mannucci, N. R. Napolitano, E. Pinna, M. Arnaboldi, D. Bevacqua, A. Ferrè-Mateu, A. Gallazzi, J. Hartke, L. K. Hunt, M. Maksymowicz-Maciata, C. Pulsoni, P. Saracco, D. Scognamiglio e M. Spavone, è stato pubblicato sulla rivista Monthly Notices of the Royal Astronomical Society.

Testo, video e immagine dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF.

EPPUR SI MUOVONO, RUOTANDO: IL PROGETTO LEWIS MOSTRA INASPETTATE PROPRIETÀ SULLE GALASSIE ULTRA DIFFUSE: MOTI DI ROTAZIONE DELLE STELLE INTORNO AL CENTRO DELLE STESSE UDG

Il progetto LEWIS a guida INAF ha permesso per la prima volta di mappare i moti delle stelle che compongono 30 galassie ultra diffuse, scoprendo che esse ruotano attorno al loro centro: un risultato inatteso che mette in crisi le attuali teorie riguardanti questa particolare classe di galassie. I risultati presentati nei due articoli appena pubblicati sulla rivista Astronomy & Astrophysics potrebbero cambiare la nostra comprensione dell’evoluzione delle UDG e del loro legame con la materia oscura.

Immagine delle galassie NGC3314 e UDG32 acquisite con la OmegaCAM installata al telescopio VST. Crediti: ESO/INAF - E. Iodice
Immagine delle galassie NGC3314 e UDG32 acquisite con la OmegaCAM installata al telescopio VST. Crediti: ESO/INAF – E. Iodice

Nuovi dettagli sulle galassie ultra diffuse, le cosiddette Ultra-Diffuse Galaxies (UDG), sono stati svelati grazie a due studi recentemente pubblicati sulla rivista Astronomy & Astrophysics. I lavori, realizzati con un contributo fondamentale di ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica, hanno mappato per la prima volta la cinematica stellare di circa 30 UDG nell’ammasso galattico dell’Idra, distante oltre 160 milioni di anni luce da noi.

La scoperta inattesa di moti di rotazione delle stelle intorno al centro di queste elusive e deboli galassie potrebbe cambiare radicalmente la nostra comprensione della loro storia di formazione ed evoluzione. Questo studio è stato reso possibile grazie al progetto internazionale “Looking into the faintEst WIth MUSE” (LEWIS), guidato dalla ricercatrice INAF Enrichetta Iodice, che ha utilizzato il potente spettrografo a campo integrale MUSE, installato al Very Large Telescope (VLT) dell’ESO in Cile.

Le galassie ultra diffuse, scoperte di recente grazie ai progressi tecnologici in astronomia, sono galassie poco luminose ma molto estese e di bassa luminosità. Identificate per la prima volta in grandi quantità nel 2015, la loro natura e il loro processo di formazione sono ancora oggetto di intensa ricerca. Le nuove analisi spettroscopiche con il progetto LEWIS hanno rivelato che queste galassie si trovano in ambienti estremamente variabili, mostrando una sorprendente varietà nelle loro proprietà fisiche, come la cinematica delle stelle che le compongono e la quantità di materia oscura presente.

Rappresentazione artistica di una galassia ultra diffusa in fase di rotazione. Crediti: C. Butitta/INAF
Progetto LEWIS: scoperta inattesa di moti di rotazione delle stelle intorno al centro di queste elusive e deboli galassie ultra diffuse. Rappresentazione artistica di una galassia ultra diffusa in fase di rotazione. Crediti: C. Butitta/INAF

Uno dei risultati più significativi ed inaspettati del progetto LEWIS è l’identificazione di diverse classi cinematiche di UDG nell’ammasso dell’Idra. Quasi la metà delle galassie esaminate mostra segni evidenti di rotazione nelle stelle che le compongono. Una scoperta che contrasta con una convinzione precedente, secondo cui queste galassie non dovrebbero mostrare questo tipo di moti. Questo risultato potrebbe essere fondamentale per comprendere meglio la struttura di queste galassie e il loro legame con la materia oscura.

“I risultati che abbiamo ottenuto hanno avuto una duplice soddisfazione”, dice Chiara Buttitta, ricercatrice postdoc  INAF e prima autrice di uno dei due articoli pubblicati su Astronomy & Astrophysics. “Non solo siamo stati in grado di ricavare i moti stellari in queste galassie estremamente deboli, ma abbiamo trovato qualcosa che non ci aspettavamo di osservare”.

Le osservazioni hanno permesso in particolare di realizzare un’analisi dettagliata di UDG32, una galassia ultra diffusa che è stata scoperta all’estremità dei filamenti della galassia a spirale NGC3314A. La UDG32 è appena visibile, ed appare come una debole macchia giallastra nelle immagini. Una delle possibili origini proposte per le UDG è la formazione da nubi di gas nei filamenti di galassie come la NGC3314A. Questa è rimasta solo un’ipotesi fino a quando è stata scoperta la UDG32. In particolare, una nube di gas presente nei filamenti, se raggiunge la densità critica, sotto l’azione della forza gravitazionale può collassare e formare stelle, diventando un nuovo sistema originatosi dal materiale rilasciato dalla galassia madre. L’analisi dei dati LEWIS ha confermato che la UDG32 è associata alla coda di filamenti della galassia NGC3314A: quindi non è solo un effetto di proiezione che localizza casualmente la UDG32 nella coda di NGC3314A. Inoltre, i nuovi dati hanno mostrato che la UDG32 è caratterizzata da una popolazione stellare ricca di metalli e di età intermedia, più giovane delle altre UDG osservate nell’ammasso dell’Idra, consistente con l’ipotesi che questa galassia potrebbe essersi formata da materiale pre-arricchito nel gruppo sud-est dell’ammasso dell’Idra e quindi liberato da una galassia più massiccia.

LEWIS è il primo grande progetto dell’ESO, guidato da INAF, interamente dedicato allo studio delle UDG. Questo programma ha raddoppiato il numero di galassie ultra diffuse analizzate spettroscopicamente, fornendo per la prima volta una visione globale delle loro proprietà all’interno di un ammasso di galassie ancora in fase di formazione.

“Il progetto LEWIS è stata una sfida. Quando questo programma è stato accettato dall’ESO abbiamo realizzato che fosse una miniera di dati da esplorare. E tale si è rivelato” afferma Enrichetta Iodice, ricercatrice INAF e responsabile scientifica del progetto. “La ‘forza’ di LEWIS, grazie alla spettroscopia integrale dello strumento usato, risiede nel poter studiare contemporaneamente, per ogni singola galassia, non solo i moti delle stelle, ma anche la popolazione stellare media e, quindi, avere indicazioni sull’età di formazione e le proprietà degli ammassi globulari, traccianti fondamentali anche per il contenuto di materia oscura. Mettendo insieme i singoli risultati, come in un puzzle, si ricostruisce la storia di formazione di questi sistemi”.

Per ulteriori informazioni:

L’articolo “Looking into the faintEst WIth MUSE (LEWIS): Exploring the nature of ultra-diffuse galaxies in the Hydra-I cluster”, di Buttita C. Iodice E. et al. è stato pubblicato online sulla rivista Astronomy & Astrophysics.

L’articolo “Looking into the faintEst WIth MUSE (LEWIS): Exploring the nature of ultra-diffuse galaxies in the Hydra I cluster”, di Hartke J., Iodice E., et al. è stato pubblicato online sulla rivista Astronomy & Astrophysics.

La pagina web del progetto LEWIS: https://sites.google.com/inaf.it/lewis/home

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica – INAF.

L’UNIONE EUROPEA FINANZIA LO STUDIO CONCETTUALE DELLA NUOVA INFRASTRUTTURA ASTRONOMICA DA TERRA WIDE FIELD SPECTROSCOPIC TELESCOPE – WST

È stato firmato lo scorso 4 novembre il contratto per il finanziamento dello studio concettuale di un nuovo telescopio, il Wide Field Spectroscopic Telescope (in breve WST), che potrebbe diventare operativo in Cile dopo il 2040.  Il consorzio internazionale che ha ottenuto il finanziamento, proporrà WST come progetto candidato a diventare la prossima infrastruttura osservativa dello European Southern Observatory (ESO) dopo il completamento dello Extremely Large Telescope (ELT), attualmente in costruzione nelle Ande Cilene.

Link: https://www.wstelescope.com/

Rendering del progetto WST. Crediti: G.Gausachs/WST
Rendering del progetto WST. Crediti: G.Gausachs/WST

L’innovativo progetto WST per realizzare un telescopio interamente dedicato a survey – campagne osservative estese – spettroscopiche di tutti i tipi di oggetti celesti, dalle galassie più lontane, agli asteroidi e comete del nostro Sistema Solare, è stato selezionato nell’ambito del Programma Quadro Horizon Europe dell’Unione Europea con un bando competitivo destinato alle infrastrutture di ricerca. Il consorzio internazionale alla guida del progetto WST ha ottenuto tre milioni di euro da utilizzare nei prossimi tre anni – durante il triennio 2025-2027 – per completare uno studio concettuale dettagliato del nuovo telescopio.

Il consorzio internazionale vede la partecipazione di diciannove istituti di ricerca in Europa e in Australia, con un team scientifico composto da oltre seicento membri provenienti da trentadue Paesi di tutti e cinque i continenti. Alla guida del consorzio Roland Bacon del Centro Nazionale della Ricerca Scientifica (Centre National de la Recherche Scientifique – CNRS, Francia) e Sofia Randich dell’Istituto Nazionale di Astrofisica (INAF), supportati da un Project Office e da uno Steering Commitee del quale fanno parte rappresentanti di tutti gli istituti coinvolti. L’Italia partecipa, oltre che con l’INAF, anche con l’Università di Bologna. Nutrito è il coinvolgimento di ricercatori e ricercatrici del nostro Paese in ruoli chiave e di responsabilità in WST, sia sugli aspetti scientifici che tecnologici.

WST promette di rispondere a una necessità individuata dalla comunità scientifica internazionale: un telescopio della classe dei 10 metri, con ampio campo visivo,  dedicato in modo esclusivo all’acquisizione di spettri delle sorgenti celesti. La necessità di avere a disposizione questo tipo di struttura osservativa compare esplicitamente in molti piani scientifici strategici internazionali che individuano i punti chiave della ricerca astrofisica della prossima decade, tra cui lo European Astronet Roadmap 2023.

Infatti, nonostante siano in fase di costruzione telescopi da terra con specchi principali di 30-40 metri, non esiste un telescopio fra quelli esistenti, in via di sviluppo, o proposti che presenti le stesse caratteristiche di WST e che lo rende un unicum: l’attuale disegno prevede infatti uno specchio principale del diametro di 12 metri, il funzionamento simultaneo di uno spettrografo multi-oggetto (MOS) in grado di osservare su un ampio campo visivo (tre gradi quadrati, quanto la superficie apparente di 12 lune piene) e altissime capacità di “multiplex” (20.000 fibre), insieme a uno spettrografo a campo integrale panoramico (IFS) che copre una superficie apparente di cielo di 9 minuti d’arco quadrati.

“Queste specifiche sono molto ambiziose e collocano il progetto WST al di sopra delle infrastrutture osservative da terra esistenti e in fase di programmazione. In soli cinque anni di attività, il MOS permetterebbe di ottenere spettri di 250 milioni di galassie e 25 milioni di stelle a bassa risoluzione spettrale e più 2 milioni di stelle ad alta risoluzione, mentre l’IFS fornirebbe 4 miliardi di spettri, grazie ai quali  i ricercatori potranno ottenere una caratterizzazione completa delle sorgenti. Per mettere questi numeri in contesto, sarebbero necessari 43 anni per ottenere gli stessi 4 miliardi di spettri utilizzando la IFS disponibile sul telescopio VLT dell’ESO oppure 375 anni dello strumento 4MOST che sta per diventare operativo, per osservare i 250 milioni di galassie, raggiungendo la stessa ‘profondità’ ”, dice Roland Bacon.

“Il Wide Field Spectroscopic Telescope produrrà scienza di punta e trasformativa, e permetterà di affrontare temi e domande scientifiche rilevanti riguardanti la cosmologia; la formazione, l’evoluzione, arricchimento chimico delle galassie (inclusa la Via Lattea); l’origine di stelle e pianeti; l’astrofisica che studia eventi transienti o variabili nel tempo; l’astrofisica-multimessaggera”, aggiunge Sofia Randich.

 Il Wide Field Spectroscopic Telescope (WST) verrà utilizzato per affrontare molte questioni aperte nell'astrofisica moderna: dalla formazione delle strutture su larga scala nell'universo primordiale, all'interazione delle galassie nella rete cosmica, dalla formazione della nostra stessa Galassia, fino all'evoluzione delle stelle e alla formazione di pianeti intorno a esse. Crediti: WST/V.Springel, Max-Planck-Institut für Astrophysik/ESO
Il Wide Field Spectroscopic Telescope (WST) verrà utilizzato per affrontare molte questioni aperte nell’astrofisica moderna: dalla formazione delle strutture su larga scala nell’universo primordiale, all’interazione delle galassie nella rete cosmica, dalla formazione della nostra stessa Galassia, fino all’evoluzione delle stelle e alla formazione di pianeti intorno a esse. Crediti: WST/V.Springel, Max-Planck-Institut für Astrophysik/ESO

Lo studio concettuale finanziato grazie ai fondi del programma Horizon Europe affronterà tutti gli aspetti rilevanti necessari per avere un quadro completo: il disegno del telescopio e degli strumenti che verranno installati a bordo, l’individuazione del sito in Cile dove collocare il telescopio stesso, l’ulteriore definizione dei casi scientifici, la predisposizione di un “survey plan” insieme allo sviluppo di un modello operativo per il telescopio, schemi e idee innovative per l’analisi dei dati acquisiti, con lo scopo di massimizzare il ritorno scientifico.

Lo studio concettuale presterà particolare attenzione alla sostenibilità ambientale.  L’impatto ambientale sarà infatti uno dei criteri che guiderà le scelte tecnologiche e si svilupperanno soluzioni che permetteranno di mitigare le principali fonti di emissione di anidride carbonica. L’impatto ambientale previsto sia in fase di costruzione, che in fase di operatività di WST sarà documentato in dettaglio alla fine dello studio.

Nel futuro prossimo, l’ESO aprirà una call for ideas per valutare i progetti più innovativi e promettenti dal punto di vista scientifico su cui investire dopo la realizzazione di Elt, la cui prima luce è prevista nel 2028. Se approvato, il WST diventerebbe la prossima grande infrastruttura dell’ESO, con il potenziale per affrontare questioni astrofisiche dal carattere rivoluzionario dal 2040 in poi.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

LA PRIMA ANALISI 3D SULLA FORMAZIONE ED EVOLUZIONE DEGLI AMMASSI GLOBULARI

Uno studio pubblicato oggi sulla rivista Astronomy & Astrophysics apre nuove prospettive sulla nostra comprensione della formazione ed evoluzione dinamica delle popolazioni stellari multiple negli ammassi globulari, agglomerati di stelle di forma sferica, molto compatti, formati tipicamente da 1-2 milioni di stelle. Un gruppo di ricercatori, dell’Istituto Nazionale di Astrofisica (INAF), dell’Università degli Studi di Bologna e dell’Università dell’Indiana negli USA, ha infatti condotto la prima analisi cinematica 3D (tridimensionale) delle popolazioni stellari multiple per un campione rappresentativo di 16 ammassi globulari nella nostra Galassia, fornendo una descrizione osservativa pionieristica del modo in cui le stelle si muovono al loro interno e della loro evoluzione dall’epoca di formazione fino allo stato presente.

Galleria di immagini dei 16 ammassi globulari analizzati in ordine di differenza delle proprietà cinematiche osservate tra le popolazioni stellari multiple. Crediti: ESA/Hubble - ESO - SDSS
Galleria di immagini dei 16 ammassi globulari analizzati in ordine di differenza delle proprietà cinematiche osservate tra le popolazioni stellari multiple. Crediti: ESA/Hubble – ESO – SDSS

Emanuele Dalessandro, ricercatore presso l’INAF di Bologna, primo autore dell’articolo e coordinatore del gruppo di lavoro spiega:

“La comprensione dei processi fisici alla base della formazione ed evoluzione iniziale degli ammassi globulari è una delle più affascinanti e discusse domande astrofisiche degli ultimi 20-25 anni. I risultati del nostro studio forniscono la prima evidenza concreta che gli ammassi globulari si siano generati attraverso molteplici eventi di formazione stellare e pongono vincoli fondamentali sul percorso dinamico seguito dagli ammassi nel corso della loro evoluzione. Questi risultati sono stati possibili grazie a un approccio multi-diagnostico e alla combinazione di osservazioni e simulazioni dinamiche allo stato dell’arte”.

Lo studio evidenzia che le differenze cinematiche tra le popolazioni multiple sono estremamente utili per comprendere i meccanismi di formazione ed evoluzione di queste antiche strutture.

Con età che possono arrivare a 12-13 miliardi di anni (quindi fino all’alba del Cosmo), gli ammassi globulari sono tra i primi sistemi a essersi formati nell’Universo e rappresentano una popolazione tipica di tutte le galassie.  Sono sistemi compatti – con masse di alcune centinaia di migliaia di masse solari e dimensioni di pochi parsec –  e osservabili anche in galassie lontane.

“La loro rilevanza astrofisica è enorme – afferma Dalessandro – perché non solo ci aiutano a verificare i modelli cosmologici della formazione dell’Universo grazie alla loro età, ma ci offrono anche laboratori naturali per studiare la formazione, l’evoluzione e l’arricchimento chimico delle galassie”.

Nonostante gli ammassi stellari siano stati studiati per oltre un secolo, risultati osservativi recenti dimostrano che la loro conoscenza è ancora incompleta.

“Risultati ottenuti negli ultimi due decenni, hanno inaspettatamente dimostrato che gli ammassi globulari sono composti da più di una popolazione di stelle: una primordiale, con proprietà chimiche simili a quelle di altre stelle nella Galassia, e una con abbondanze chimiche anomale di elementi leggeri quali elio, ossigeno, sodio, azoto”,

dice Mario Cadelano, ricercatore al Dipartimento di Fisica e Astronomia dell’Università di Bologna e associato INAF, tra gli autori dello studio.

“Nonostante il gran numero di osservazioni e modelli teorici finalizzati a caratterizzare le proprietà di queste popolazioni, i meccanismi che regolano la loro formazione non sono tutt’ora compresi”.

Il satellite Gaia dell’ESA che mappa le stelle della Via Lattea. Crediti: ESA/ATG medialab; background: ESO/S. Brunier
Il satellite Gaia dell’ESA che mappa le stelle della Via Lattea. Crediti: ESA/ATG medialab; background: ESO/S. Brunier

Lo studio si basa sulla misura delle velocità nelle tre dimensioni, ovvero sulla combinazione di moti propri e velocità radiali, ottenuti dal telescopio dell’ESA Gaia e da dati ottenuti tra gli altri con il telescopio VLT dell’ESO principalmente nell’ambito della survey MIKiS (Multi Instrument Kinematic Survey), una survey spettroscopica specificamente indirizzata all’esplorazione della cinematica interna degli ammassi globulari. L’utilizzo di questi telescopi, dallo spazio e da terra, ha garantito una visione 3D senza precedenti della distribuzione di velocità delle stelle negli ammassi globulari selezionati.

Il Very Large Telescope (VLT) dell'ESO durante alcune osservazioni. Crediti: ESO/S. Brunier
Il Very Large Telescope (VLT) dell’ESO durante alcune osservazioni. Crediti: ESO/S. Brunier

Dalle analisi emerge che le stelle con differenti abbondanze di elementi leggeri sono caratterizzate da proprietà cinematiche differenti, come la velocità di rotazione e la distribuzione delle orbite.

“In questo lavoro abbiamo analizzato nel dettaglio come si muovono all’interno di ogni ammasso migliaia di stelle”, aggiunge Alessandro Della Croce, studente di dottorato presso l’INAF di Bologna. “È risultato subito chiaro che stelle appartenenti a diverse popolazioni sono caratterizzate da proprietà cinematiche differenti: le stelle con composizione chimica anomala tendenzialmente ruotano all’interno dell’ammasso più velocemente delle altre e si diffondono progressivamente dalle regioni centrali verso quelle più esterne”.

L’intensità di queste differenze cinematiche dipende all’età dinamica degli ammassi globulari.

“Questi risultati sono compatibili con l’evoluzione dinamica a ‘lungo termine’ di sistemi stellari in cui le stelle con abbondanze chimiche anomale si formano più centralmente concentrate e più rapidamente rotanti di quelle standard. Ciò di conseguenza suggerisce che gli ammassi globulari si siano generati attraverso eventi multipli di formazione stellare e fornisce un tassello importante nella definizione dei processi fisici e dei tempi-scala alla base della formazione ed evoluzione di ammassi stellari massicci”, sottolinea Dalessandro.

Questa nuova visione tridimensionale del moto delle stelle all’interno degli ammassi globulari fornisce un quadro inedito e affascinante sulla formazione ed evoluzione dinamica di questi sistemi, contribuendo a chiarire alcuni dei misteri più complessi riguardanti l’origine di queste antichissime strutture.


 

Riferimenti Bibliografici:

L’articolo “A 3D view of multiple populations kinematics in Galactic globular clusters”, di  E. Dalessandro, M. Cadelano, A. Della Croce, F. I. Aros, E. B. White, E. Vesperini, C. Fanelli, F. R. Ferraro, B. Lanzoni, S. Leanza, L. Origlia, è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo e immagini dagli Uffici Stampa INAF – Istituto Nazionale di Astrofisica e Alma Mater Studiorum – Università degli Studi di Bologna

Scienziati scoprono Barnard b, un pianeta in orbita intorno alla stella di Barnard, la stella singola più vicina al Sole

This artist’s impression shows Barnard b, a sub-Earth-mass planet that was discovered orbiting Barnard’s star. Its signal was detected with the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), and astronomers were able to confirm it with data from other instruments. An earlier promising detection in 2018 around the same star could not be confirmed by these data. On this newly discovered exoplanet, which has at least half the mass of Venus but is too hot to support liquid water, a year lasts just over three Earth days.Crediti: ESO/M. Kornmesser
Impressione artistica del pianeta Barnard b.
Crediti: ESO/M. Kornmesser

Utilizzando il VLT (Very Large Telescope) dell’ESO (Osservatorio Europeo Australe), alcuni astronomi hanno scoperto un esopianeta in orbita intorno alla stella di Barnard, la stella singola più vicina al Sole. Su questo esopianeta appena scoperto, che ha una massa pari ad almeno la metà di quella di Venere, un anno dura poco più di tre giorni terrestri. Le osservazioni dell’équipe suggeriscono anche l’esistenza di altri tre candidati esopianeti, in orbite diverse intorno alla stella.

Situata a soli sei anni luce di distanza, la stella di Barnard è il secondo sistema stellare, dopo il gruppo di tre stelle di Alpha Centauri, e la stella singola più vicina a noi. Grazie alla sua vicinanza, è un obiettivo primario nella ricerca di esopianeti simili alla Terra. Nonostante una promettente riveazione nel 2018, finora nessun pianeta era stato confermato in orbita intorno alla stella di Barnard.

Rappresentazione grafica delle distanze relative tra le stelle più vicine e il Sole.
Crediti: IEEC/Science-Wave – Guillem Ramisa
Il grafico mostra la costellazione di Ofiuco (o Serpentario), a cavallo dell'equatore celeste. È indicata la posizione della stella di Barnard, così come l'ubicazione della maggior parte delle stelle visibili a occhio nudo in una notte buia e serena. Crediti: ESO, IAU and Sky & Telescope
Il grafico mostra la costellazione di Ofiuco (o Serpentario), a cavallo dell’equatore celeste. È indicata la posizione della stella di Barnard, così come l’ubicazione della maggior parte delle stelle visibili a occhio nudo in una notte buia e serena.
Crediti: ESO, IAU and Sky & Telescope

La scoperta di questo nuovo esopianeta, annunciata in un articolo pubblicato oggi sulla rivista Astronomy & Astrophysics, è il risultato di osservazioni effettuate negli ultimi cinque anni con il VLT dell’ESO, situato presso l’Osservatorio del Paranal in Cile.

Anche se ci è voluto molto tempo, siamo sempre stati fiduciosi di poter trovare qualcosa“,

afferma Jonay González Hernández, ricercatore presso l’Instituto de Astrofísica de Canarias in Spagna e autore principale dell’articolo. L’équipe stava cercando segnali da possibili esopianeti all’interno della zona abitabile o temperata della stella di Barnard, l’intervallo in cui l’acqua può essere liquida sulla superficie del pianeta. Le nane rosse come la stella di Barnard sono spesso considerate dagli astronomi poiché lì i pianeti rocciosi di piccola massa sono più facili da rilevare che intorno a stelle più grandi, simili al Sole. [1]

Barnard b [2], come viene chiamato l’esopianeta appena scoperto, è venti volte più vicino alla stella di Barnard di quanto Mercurio lo sia al Sole. Orbita intorno alla stella in 3,15 giorni terrestri e ha una temperatura superficiale di circa 125 °C.

Barnard b è uno degli esopianeti di massa più piccola trovati finora e uno dei pochi noti con una massa inferiore a quella della Terra. Ma il pianeta è troppo vicino alla stella ospite, più vicino rispetto alla zona abitabile“, spiega González Hernández. “Anche se la stella è circa 2500 gradi più fredda del Sole, in quella posizione fa troppo caldo perchè si possa mantenere acqua liquida sulla superficie“.

Per le osservazioni, il gruppo di lavoro ha utilizzato ESPRESSO, uno strumento molto preciso progettato per misurare l’oscillazione di una stella causata dall’attrazione gravitazionale di uno o più pianeti in orbita intorno ad essa. I risultati ottenuti da queste osservazioni sono stati confermati dai dati di altri strumenti specializzati nella caccia agli esopianeti: HARPS presso l’Osservatorio di La Silla dell’ESO, HARPS-N e CARMENES. I nuovi dati, tuttavia, non supportano l’esistenza dell’esopianeta segnalato nel 2018.

Oltre al pianeta confermato, l’équipe internazionale ha anche trovato indizi di altri tre candidati esopianeti in orbita intorno alla stessa stella. Serviranno ulteriori osservazioni con ESPRESSO per la conferma.

Ora dobbiamo continuare a osservare questa stella per confermare gli altri segnali candidati“, afferma Alejandro Suárez Mascareño, anch’egli ricercatore presso l’Instituto de Astrofísica de Canarias e coautore dello studio. “Ma la scoperta di questo pianeta, insieme con altre scoperte precedenti come Proxima b e d, dimostra che il nostro angolino cosmico è pieno di pianeti di piccola massa“.

L’Extremely Large Telescope (ELT) dell’ESO, attualmente in costruzione, è destinato a trasformare il campo della ricerca sugli esopianeti. Lo strumento ANDES dell’ELT consentirà di rivelare un numero sempre maggiore di questi piccoli pianeti rocciosi nella zona temperata intorno a stelle vicine, oltre la portata degli attuali telescopi, e di studiarne la composizione dell’atmosfera.

La panoramica mostra i dintorni della nana rossa nota come stella di Barnard, nella costellazione dell'Ofiuco. L'immagine è stata prodotta a partire dai dati della DSS2 (Digitized Sky Survey 2). Nel centro dell'immagine si trova la stella di Barnard, catturata in tre diverse esposizioni. La stella è la più veloce nel cielo notturno e il suo grande moto proprio - lo spostamento apparente sulla volta celeste - viene evidenziato dal fatto che la posizione cambi tra osservazioni successive - mostrate in rosso, giallo e blu. Crediti: ESO/Digitized Sky Survey 2 Acknowledgement: Davide De Martin E — Red Dots
La panoramica mostra i dintorni della nana rossa nota come stella di Barnard, nella costellazione dell’Ofiuco. L’immagine è stata prodotta a partire dai dati della DSS2 (Digitized Sky Survey 2). Nel centro dell’immagine si trova la stella di Barnard, catturata in tre diverse esposizioni. La stella è la più veloce nel cielo notturno e il suo grande moto proprio – lo spostamento apparente sulla volta celeste – viene evidenziato dal fatto che la posizione cambi tra osservazioni successive – mostrate in rosso, giallo e blu.
Crediti:
ESO/Digitized Sky Survey 2 Acknowledgement: Davide De Martin
E — Red Dots

Note

[1] Gli astronomi osservano preferenzialmente le stelle fredde, come le nane rosse, perché la loro zona temperata è molto più vicina alla stella rispetto alle stelle più calde, come il Sole. Ciò significa che i pianeti che orbitano all’interno della zona temperata hanno periodi orbitali più brevi, consentendo agli astronomi di monitorarli per diversi giorni o settimane, anziché anni. Inoltre, le nane rosse sono molto meno massicce del Sole, quindi sono più facilmente disturbate dall’attrazione gravitazionale dei loro pianeti  e quindi oscillano maggiormente.
[2] È pratica comune nella scienza dare agli esopianeti il nome della stella ospite seguito da una lettera minuscola: “b” indica il primo pianeta identificato, “c” il successivo e così via. Il nome Barnard b è stato quindi dato anche a un candidato pianeta precedentemente identificato, ma non confermato, intorno alla stella di Barnard.

Ulteriori Informazioni

Questo risultato è stato presentato nell’articolo “A sub-Earth-mass planet orbiting Barnard’s star” pubblicato su Astronomy & Astrophysics. (https://www.aanda.org/10.1051/0004-6361/202451311)

L’équipe è composta da J. I. González Hernández (Instituto de Astrofísica de Canarias, Spagna [IAC] e Departamento de Astrofísica, Universidad de La Laguna, Spagna [IAC-ULL]), A. Suárez Mascareño (IAC e IAC-ULL), A. M. Silva (Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portogallo [IA-CAUP] e Departamento de Física e Astronomia Faculdade de Ciências, Universidade do Porto, Portogallo [FCUP]), A. K. Stefanov (IAC e IAC-ULL), J. P. Faria (Observatoire de Genève, Université de Genève, Svizzera [UNIGE]; IA-CAUP e FCUP), H. M. Tabernero (Departamento de Física de la Tierra y Astrofísica & Instituto de Física de Partículas y del Cosmos, Universidad Complutense de Madrid, Spagna), A. Sozzetti (INAF – Osservatorio Astrofisico di Torino, Italia [INAF-OATo]), R. Rebolo (IAC; IAC-ULL e Consejo Superior de Investigaciones Científicas, Spagna [CSIC]), F. Pepe (UNIGE), N. C. Santos (IA-CAUP; FCUP), S. Cristiani (INAF – Osservatorio Astronomico di Trieste, Italia [INAF-OAT] e Institute for Fundamental Physics of the Universe, Trieste, Italia [IFPU]), C. Lovis (UNIGE), X. Dumusque (UNIGE), P. Figueira (UNIGE e IA-CAUP), J. Lillo-Box (Centro de Astrobiología, CSIC-INTA, Madrid, Spagna [CAB]), N. Nari (IAC; Light Bridges S. L., Canarias, Spagna e IAC-ULL), S. Benatti (INAF – Osservatorio Astronomico di Palermo, Italia [INAF-OAPa]), M. J. Hobson (UNIGE), A. Castro-González (CAB), R. Allart (Institut Trottier de Recherche sur les Exoplanètes, Université de Montréal, Canada e UNIGE), V. M. Passegger (National Astronomical Observatory of Japan, Hilo, USA; IAC; IAC-ULL e Hamburger Sternwarte, Hamburg, Germania), M.-R. Zapatero Osorio (CAB), V. Adibekyan (IA-CAUP e FCUP), Y. Alibert (Center for Space and Habitability, University of Bern, Svizzera e Weltraumforschung und Planetologie, Physikalisches Institut, University of Bern, Svizzera), C. Allende Prieto (IAC e IAC-ULL), F. Bouchy (UNIGE), M. Damasso (INAF-OATo), V. D’Odorico (INAF-OAT e IFPU), P. Di Marcantonio (INAF-OAT), D. Ehrenreich (UNIGE), G. Lo Curto (European Southern Observatory, Santiago, Cile [ESO Chile]), R. Génova Santos (IAC e IAC-ULL), C. J. A. P. Martins (IA-CAUP e Centro de Astrofísica da Universidade do Porto, Portogallo), A. Mehner (ESO Chile), G. Micela (INAF-OAPa), P. Molaro (INAF-OAT), N. Nunes (Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Portogallo), E. Palle (IAC e IAC-ULL), S. G. Sousa (IA-CAUP e FCUP), e S. Udry (UNIGE).

L’ESO (European Southern Observatory o Osservatorio Europeo Australe) consente agli scienziati di tutto il mondo di scoprire i segreti dell’Universo a beneficio di tutti. Progettiamo, costruiamo e gestiamo da terra osservatori di livello mondiale – che gli astronomi utilizzano per affrontare temi interessanti e diffondere il fascino dell’astronomia – e promuoviamo la collaborazione internazionale per l’astronomia. Fondato come organizzazione intergovernativa nel 1962, oggi l’ESO è sostenuto da 16 Stati membri (Austria, Belgio, Danimarca, Francia, Finlandia, Germania, Irlanda, Italia, Paesi Bassi, Polonia, Portogallo, Regno Unito, Repubblica Ceca, Spagna, Svezia e Svizzera), insime con il paese che ospita l’ESO, il Cile, e l’Australia come partner strategico. Il quartier generale dell’ESO e il Planetario e Centro Visite Supernova dell’ESO si trovano vicino a Monaco, in Germania, mentre il deserto cileno di Atacama, un luogo meraviglioso con condizioni uniche per osservare il cielo, ospita i nostri telescopi. L’ESO gestisce tre siti osservativi: La Silla, Paranal e Chajnantor. Sul Paranal, l’ESO gestisce il VLT (Very Large Telescope) e il VLTI (Very Large Telescope Interferometer), così come due telescopi per survey, VISTA, che lavora nell’infrarosso, e VST (VLT Survey Telescope) in luce visibile. Sempre a Paranal l’ESO ospiterà e gestirà la schiera meridionale di telescopi di CTA, il Cherenkov Telescope Array Sud, il più grande e sensibile osservatorio di raggi gamma del mondo. Insieme con partner internazionali, l’ESO gestisce APEX e ALMA a Chajnantor, due strutture che osservano il cielo nella banda millimetrica e submillimetrica. A Cerro Armazones, vicino a Paranal, stiamo costruendo “il più grande occhio del mondo rivolto al cielo” – l’ELT (Extremely Large Telescope, che significa Telescopio Estremamente Grande) dell’ESO. Dai nostri uffici di Santiago, in Cile, sosteniamo le operazioni nel paese e collaboriamo con i nostri partner e la società cileni.

La traduzione dall’inglese dei comunicati stampa dell’ESO è un servizio dalla Rete di Divulgazione Scientifica dell’ESO (ESON: ESO Science Outreach Network) composta da ricercatori e divulgatori scientifici da tutti gli Stati Membri dell’ESO e altri paesi. Il nodo italiano della rete ESON è gestito da Anna Wolter.

Testo, video e immagini dall’Osservatorio Europeo Australe – ESO.

VLT E ALMA CATTURANO RAFFICHE DI VENTO RELATIVISTICO DAL QUASAR DELLA GALASSIA J0923+0402, IN PIENA ATTIVITÀ

Un team di ricerca guidato dall’Istituto Nazionale di Astrofisica (INAF) e dall’Università degli studi di Trieste ha di nuovo imbrigliato i lontanissimi ed energici venti relativistici generati da un quasar lontano ma decisamente attivo (uno dei più luminosi finora scoperti). In uno studio pubblicato sulla rivista The Astrophysical Journal viene riportata la prima osservazione a diverse lunghezze d’onda dell’interazione tra buco nero e il quasar della galassia ospite durante le fasi iniziali dell’Universo, circa 13 miliardi di anni fa. Oltre all’evidenza di una tempesta di gas generata dal buco nero, gli esperti hanno scoperto per la prima volta un alone di gas che si estende ben oltre la galassia, suggerendo la presenza di materiale espulso dalla galassia stessa tramite i venti generati dal buco nero.

alone quasar della galassia J0923+0402 Alone gigante di gas freddo, esteso quasi 50 mila anni luce, rivelato attorno ad una galassia dell’Universo di circa 13 miliardi di anni fa tramite osservazioni multibanda. Questa scoperta fornisce informazioni chiave su come il gas venga espulso o catturato dalle galassie dell’Universo giovane. Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani, J. da Silva & M. Bischetti
Alone gigante di gas freddo, esteso quasi 50 mila anni luce, rivelato attorno ad una galassia dell’Universo di circa 13 miliardi di anni fa tramite osservazioni multibanda. Questa scoperta fornisce informazioni chiave su come il gas venga espulso o catturato dalle galassie dell’Universo giovane. Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani, J. da Silva & M. Bischetti

La galassia protagonista dello studio è J0923+0402, un oggetto lontanissimo da noi, per la precisione a redshift z = 6.632 (ossia la sua radiazione che osserviamo è stata emessa quando l’Universo aveva meno di un miliardo di anni) con al centro un quasar. La luce dei quasar (o quasi-stellar radio source) viene prodotta quando il materiale galattico che circonda il buco nero supermassiccio si raccoglie in un disco di accrescimento. Infatti, nell’avvicinarsi al buco nero per poi esserne inghiottita, la materia si scalda emettendo grandi quantità di radiazione brillante nella luce visibile e ultravioletta.

“L’utilizzo congiunto di osservazioni multibanda ha permesso di studiare, in un range di scale spaziali molto ampio e dalle regioni più nucleari fino al mezzo circumgalatico, il quasar più lontano con misura di vento nucleare e l’alone di gas più esteso rilevato in epoche remote (circa 50 mila anni luce)”, spiega Manuela Bischetti, prima autrice dello studio e ricercatrice presso l’INAF e l’Università degli studi di Trieste.

I dati descritti nell’articolo sono frutto della collaborazione di gruppi di ricerca che lavorano su frequenze diverse dello spettro elettromagnetico. In primis lo spettrografo X-Shooter, installato sul Very Large Telescope (VLT) dell’ESO, ha captato raffiche di materia, in gergo BAL winds (dall’inglese venti con righe di assorbimento larghe o broad absorption line), in grado di raggiungere velocità relativistiche fino a decine di migliaia di chilometri al secondo, misurandone e calcolandone le caratteristiche. Le potenti antenne cilene di ALMA (l’Atacama Large Millimeter/submillimeter Array sempre dell’ESO), ricevendo frequenze dai 242 ai 257 GHz provenienti dall’alba del Cosmo, sono state attivate per cercare la controparte nel gas freddo dei venti BAL e capire se si estendesse oltre la scala della galassia.

La ricercatrice sottolinea: “I BAL sono venti che si osservano nello spettro ultravioletto del quasar che, data la grande distanza da noi, osserviamo a lunghezze d’onda dell’ottico e vicino infrarosso. Per fare queste osservazioni abbiamo usato lo spettrografo X-Shooter del Very Large Telescope. Avevamo già scoperto il BAL di questo quasar due anni fa. Il problema è che non sapevamo quantificare quanto fosse energetico. Questo vento BAL è un vento di gas caldo (decine di migliaia di gradi) che si muove a decine di migliaia di km/s. Allo stesso tempo le osservazioni in banda millimetrica di ALMA ci hanno permesso di capire cosa stia succedendo nella galassia e attorno a essa andando a vedere cosa succede al gas freddo (qualche centinaio di gradi). Abbiamo trovato che il vento si estende anche sulla scala della galassia (ma ha delle velocità più basse, 500 km/s. Questa è una cosa aspettata, il vento decelera man mano che si espande), il che ci ha fatto pensare che questo mega alone di gas sia stato creato dal materiale che i venti hanno espulso dalla galassia”.

La posizione della sorgente energetica è stata poi “immortalata” dapprima dalla Hyper Suprime-Cam (HSC), una gigantesca fotocamera installata sul telescopio Subaru e sviluppata dall’Osservatorio Astronomico Nazionale del Giappone (National Astronomical Observatory of Japan – NAOJ), e – con una misura molto più accurata – dalla NIRCam, una fotocamera a raggi infrarossi installata sul telescopio spaziale James Webb (JWST delle agenzie spaziali NASA, ESA e CSA).

“Questo quasar verrà osservato nuovamente dal JWST in futuro per studiare meglio sia il vento che l’alone”, annuncia Bischetti.

La ricercatrice prosegue spiegando il perché di questa survey: “Ci siamo chiesti se l’attività del buco nero potesse avere un impatto sulle fasi iniziali di evoluzione delle galassie, e tramite quali meccanismi questo avvenga. Vincente è stata la combinazione di dati multibanda che vanno dall’ottico e vicino infrarosso – per misurare le proprietà del buco nero, e cosa avviene nel nucleo della galassia – fino alle osservazioni in banda millimetrica – per studiare cosa avviene all’interno e attorno alla galassia”. Le misure effettuate “sono di routine nell’Universo locale, ma questi risultati non erano mai stati ottenuti prima a redshift z>6”, aggiunge.

“Il nostro studio ci aiuta a capire come il gas venga espulso o catturato dalle galassie dell’Universo giovane e come i buchi neri crescono e possono avere un impatto sull’evoluzione delle galassie. Sappiamo che il fato delle galassie come la Via Lattea è strettamente legato a quello dei buchi neri, poiché questi possono generare tempeste galattiche in grado di spegnere la formazione di nuove stelle. Studiare le epoche primordiali ci permette di capire le condizioni iniziali dell’Universo che vediamo oggi”, conclude Bischetti.


 

Per altre informazioni:

L’articolo “Multi-phase black-hole feedback and a bright [CII] halo in a Lo-BAL quasar at z∼6.6”, di Manuela Bischetti, Hyunseop Choi, Fabrizio Fiore, Chiara Feruglio, Stefano Carniani, Valentina D’Odorico, Eduardo Bañados, Huanqing Chen, Roberto Decarli, Simona Gallerani, Julie Hlavacek-Larrondo, Samuel Lai, Karen M. Leighly, Chiara Mazzucchelli, Laurence Perreault-Levasseur, Roberta Tripodi, Fabian Walter, Feige Wang, Jinyi Yang, Maria Vittoria Zanchettin, Yongda Zhu, è stato pubblicato sulla rivista The Astrophysical Journal.

 

 

Testo e immagine dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

CONSORZIO ANDES, VIA LIBERA ALLO SPETTROGRAFO CHE CI INFORMERÀ SULLE PROPRIETÀ DEGLI OGGETTI ASTRONOMICI E CI DIRÀ DOVE C’È VITA SU ALTRI MONDI

Oggi l’ESO ha firmato l’accordo con un consorzio internazionale guidato dall’Istituto Nazionale di Astrofisica (INAF) per la progettazione e la costruzione di ANDES, uno strumento di altissima tecnologia che sarà installato sull’Extremely Large Telescope (ELT) dell’ESO, in costruzione sulle Ande cilene. ANDES verrà utilizzato per cercare segni di vita negli esopianeti e studiare le prime stelle che si sono accese nell’Universo, ma anche per testare le variazioni delle costanti fondamentali della fisica e misurare l’accelerazione dell’espansione dell’Universo.

rendering dell'Extremely Large Telescope, in costruzione sulla cima del Cerro Armazones in Cile, ad oltre 3000 metri di quota. Crediti: ESO
rendering dell’Extremely Large Telescope, in costruzione sulla cima del Cerro Armazones in Cile, ad oltre 3000 metri di quota. Crediti: ESO

L’accordo è stato firmato dal Direttore Generale dell’European Southern Observatory (ESO) Xavier Barcons e da Roberto Ragazzoni, Presidente dell’Istituto Nazionale di Astrofisica (INAF), l’Ente che guida il consorzio ANDES. Alla cerimonia della firma erano presenti anche Sergio Maffettone, Console Generale d’Italia a Monaco di Baviera, e Alessandro Marconi dell’Università di Firenze e associato INAF, Principal Investigator di ANDES, oltre ad altri rappresentanti dell’ESO, dell’INAF e del consorzio ANDES, che vede la partecipazione di Istituti, Università ed Enti di Ricerca di 13 Paesi. La firma ha avuto luogo presso il quartier generale dell’ESO a Garching, in Germania.

foto della firma dell'accordo. Crediti: ESO
foto della firma dell’accordo. Crediti: ESO

“ANDES è una macchina che sfrutta molte delle tecnologie sviluppate in Italia e che complementa gli sforzi che come INAF stiamo facendo per individuare mondi alieni” commenta Roberto Ragazzoni, presidente dell’Istituto Nazionale di Astrofisica. “Poterne analizzare chimicamente la composizione delle atmosfere è uno di quei problemi formidabili che mettono a dura prova la filiera tecnologica sia della ricerca che industriale. Anche se al limite delle sue capacità, potrebbe riuscire a fornire misure dirette della espansione dell’universo, ma certamente aprire nuovi quesiti che solleciteranno ulteriori sviluppi tecnologici, in un circolo virtuoso che l’INAF porta avanti da tempo”.

rappresentazione artistica dello strumento ANDES. Crediti: ESO
Consorzio ANDES, via libera allo spettrografo che ci informerà sulle proprietà degli oggetti astronomici e ci dirà dove c’è vita su altri mondi. L’immagine è una rappresentazione artistica dello strumento ANDES. Crediti: ESO

Precedentemente denominato HIRES, ANDES (ArmazoNes high Dispersion Echelle Spectrograph) è un sofisticato spettrografo, uno strumento che divide la luce nelle lunghezze d’onda che la compongono in modo che gli astronomi possano determinare importanti proprietà degli oggetti astronomici, come la loro composizione chimica. Lo strumento avrà prestazioni senza precedenti nelle osservazioni in luce visibile e nel vicino infrarosso e, in combinazione con il potente sistema di specchi ed ottica adattiva che costituiscono ELT, consentirà enormi passi in avanti nello studio dell’Universo.

“ANDES è uno strumento con un enorme potenziale per scoperte scientifiche rivoluzionarie, che possono influenzare profondamente la nostra percezione dell’Universo ben oltre la comunità di scienziati”, afferma Alessandro Marconi.

ANDES permetterà di realizzare indagini dettagliate delle atmosfere di esopianeti simili alla Terra, consentendo agli astronomi di analizzare la loro composizione, alla ricerca di tracce legate alla presenza di vita. Sarà anche in grado di analizzare elementi chimici in oggetti lontani nell’Universo primordiale, rendendolo probabilmente il primo strumento in grado di rilevare le firme delle stelle di Popolazione III, le prime stelle in assoluto che si sono formate nell’Universo. Inoltre, gli astronomi saranno in grado di utilizzare i dati ANDES per verificare se le costanti fondamentali della fisica variano nel tempo e nello spazio. I suoi dati saranno utilizzati anche per misurare direttamente l’accelerazione dell’espansione dell’Universo, uno degli enigmi ancora insoluti dell’astrofisica.

Il contributo di INAF ad ANDES, oltre alla responsabilità di gestione manageriale e ingegneristica del progetto a livello di sistema e di sviluppo software (con le sedi coinvolte di Trieste per il management, Milano per l’ingegneria del sistema e Bologna per la parte di collegamento scientifico), copre anche la progettazione e la successiva realizzazione opto-meccanica e software, di alcuni moduli che compongono ANDES. In particolare, la sede INAF di Firenze con i contributi di quelle di Trieste e Brera è responsabile sia del collegamento in fibra ottica che consentirà il passaggio della luce tra i vari moduli di ANDES che del modulo di ottica adattiva. Oltre all’aspetto tecnologico, quello scientifico vede la partecipazione di ricercatrici e ricercatori di quasi tutte le sedi INAF, con quella di Trieste responsabile anche del coordinamento del pacchetto scientifico che studierà le galassie ed il mezzo intergalattico.

Il telescopio ELT dell’ESO è attualmente in costruzione nel deserto di Atacama, nel nord del Cile. Quando entrerà in funzione alla fine di questo decennio, l’ELT sarà il più grande telescopio mai costruito al mondo, che aprirà letteralmente una nuova era nell’astronomia da Terra.

Per ulteriori informazioni:

https://andes.inaf.it/

https://elt.eso.org/

 

Testo e immagine dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

PROGETTO FATE: PREVISIONI DELLA TURBOLENZA OTTICA PER SPINGERE IL VERY LARGE TELESCOPE AL MASSIMO DELLE SUE POTENZIALITÀ

Per ottenere immagini astronomiche sempre più accurate non basta solo aumentare le dimensioni dei nuovi telescopi o dotarli di strumentazione allo stato dell’arte. Le prestazioni della maggior parte degli strumenti che osservano il cielo, soprattutto nella luce visibile e nell’infrarosso, dipendono fortemente dalle condizioni meteorologiche in atto durante le operazioni, e in particolare dalla turbolenza dell’atmosfera sopra di essi.  Conoscere con sufficiente anticipo tali condizioni diventa quindi sempre più importante e decisivo per ottimizzare l’utilizzo dei migliori telescopi al mondo, come l’attuale Very Large Telescope (VLT) e il futuro Extremely Large Telescope (ELT), sulle Ande cilene, entrambi dell’European Southern Observatory (ESO). È cruciale poter sfruttare al massimo le capacità di questi gioielli della tecnologia compatibilmente con le condizioni atmosferiche massimizzando il ritorno scientifico prodotto.  Il costo tipico di una notte di osservazioni con il VLT si aggira infatti attorno ai 100mila euro: una cifra che spiega da sé quanto sia critico sfruttare al meglio le condizioni ideali dell’atmosfera. Con questi obiettivi l’Istituto Nazionale di Astrofisica ha vinto un bando internazionale di ESO finalizzato a produrre previsioni della turbolenza ottica (TO) e dei principali parametri atmosferici per ottimizzare le osservazioni astronomiche del VLT e di tutti gli strumenti di cui è equipaggiato. Il progetto selezionato, denominato FATE (Forecasting Atmosphere and Turbulence for ESO sites) vede la collaborazione del consorzio CNR/Regione Toscana LaMMA (Laboratorio di Monitoraggio e Modellistica Ambientale per lo sviluppo sostenibile), che fornisce servizi meteo anche per la Protezione Civile italiana.

Il progetto FATE è iniziato nel novembre 2022 e nel periodo settembre – dicembre 2023 è entrato in fase di ‘commissioning’, con i test di verifica delle specifiche tecniche e di funzionamento. Una volta terminato, si entrerà nella fase operativa in cui ESO potrà ottimizzare strategie osservative per il VLT e iniziare a pianificare quelle di ELT, la cui entrata in funzione è attualmente prevista per il 2028.

“Il commissioning è durato 4 mesi e aveva come scopo quello di verificare la robustezza del sistema di previsione e il rispetto delle specifiche tecniche richieste da ESO, ovvero dell’accuratezza delle previsioni dei distinti parametri a scale temporali differenti” dice Elena Masciadri, ricercatrice INAF e responsabile scientifica del progetto FATE. “Le fluttuazioni spazio-temporali della turbolenza ottica hanno scale tipiche molto più piccole di quelle dei classici parametri atmosferici e pertanto la previsione della turbolenza ottica è un obiettivo molto più difficile da raggiungere. Le specifiche tecniche di ESO sono inoltre abbastanza stringenti come è naturale aspettarsi, considerando che il VLT è senza dubbio uno dei telescopi di maggior prestigio al mondo ma anche uno dei più complessi, essendo costituito da ben quattro telescopi da 8,2 m di diametro più quattro telescopi ausiliari da 1.8 metri, dotati di una grande varietà di strumentazione e quindi di possibilità osservative. Possiamo dire di essere soddisfatti del commissioning – prosegue Masciadri – in quanto ci ha permesso di dimostrare la robustezza e l’affidabilità del sistema e allo stesso tempo di meglio definire i margini di miglioramento dell’accuratezza delle previsioni dove ci concentreremo nella seconda fase del progetto”.

I moderni telescopi sono ormai dotati di strumentazione intercambiabile che ha specifiche condizioni di utilizzo, che dipende anche dalle condizioni atmosferiche in essere durante le osservazioni. Alcuni di questi strumenti sono poco sensibili, ad esempio, ad una elevata concentrazione di umidità nell’aria, altri invece ne vengono quasi completamente “accecati”. Per alcune tipologie di programmi scientifici è molto importante raccogliere dati in presenza di poca turbolenza atmosferica, ad esempio in tutte le osservazioni che necessitano un elevato livello di dettaglio in piccole porzioni di cielo che sfruttano i benefici dell’ottica adattiva, come nella ricerca di esopianeti. In generale la conoscenza della turbolenza ottica è fondamentale in tutte le osservazioni supportate da ottica adattiva (OA).  L’ELT sarà una facility supportata al 100% dall’OA quindi la previsione della TO è certamente cruciale per l’astronomia del prossimo futuro.

Oltre a prevedere una serie di parametri atmosferici sopra il sito osservativo del VLT come temperatura, intensità e direzione del vento, umidità relativa, vapore acqueo e copertura nuvolosa, il progetto FATE si occuperà nelle ore notturne anche della previsione di parametri cosiddetti astroclimatici, tra cui il cosiddetto seeing, un parametro che indica il livello di perturbazione dell’atmosfera nella qualità delle immagini astronomiche. Ma cosa è la turbolenza ottica? Le fluttuazioni di temperatura nell’aria generano fluttuazioni dell’indice di rifrazione che a sua volta perturba il fronte d’onda della luce proveniente dagli oggetti celesti osservati. Tale fronte d’onda risulta così ‘imperfetto’ e l’immagine raccolta dal telescopio perde l’accuratezza dei dettagli, limitando così le potenzialità della strumentazione impiegata. Le tecniche di ottica adattiva hanno l’obiettivo di correggere queste perturbazioni, ma le loro prestazioni dipendono dallo stato della turbolenza: per questo è fondamentale poter disporre di una previsione accurata della turbolenza ottica.

Un sistema di previsione come quello previsto nel progetto FATE si basa su modelli idrodinamici che si definiscono a “mesoscala”: il modello viene applicato su una regione limitata della Terra, raggiungendo una più alta risoluzione rispetto a quello che potrebbe fornire una previsione su scala globale. Si tratta di una previsione che viene realizzata usando come dati di inizializzazione quelli prodotti da modelli a circolazione generale, ovvero applicati all’intero globo terrestre dallo European Centre for Medium Range Weather Forecast (ECMWF), il centro che agisce per conto dell’intera comunità europea.

L’esperienza di INAF nel campo delle previsioni di turbolenza ottica per l’astronomia acquisita negli anni è stata fondamentale per arrivare al progetto FATE:

“Abbiamo sviluppato un modello per la previsione della turbolenza ottica, denominato Astro-Meso-NH negli anni ’90 e da allora il sistema si è evoluto, è stato applicato a diversi tra i maggiori osservatori al mondo e più recentemente è stato automatizzato rendendo il modello utilizzabile in modalità operativa e non solo di ricerca” ricorda Elena Masciadri. “lo sviluppo delle moderne tecniche di ‘assimilation data’ e più in generale le tecniche statistiche di filtraggio spaziale ci hanno garantito livelli di accuratezza inimmaginabili solo una decina di anni fa. INAF – conclude Masciadri – ha la responsabilità scientifica del progetto FATE, curando lo sviluppo del sistema automatico di previsione operativa, dello studio e sviluppo degli algoritmi necessari per ottenere le specifiche tecniche del sistema di previsione e di tutte le attività necessarie al miglioramento delle prestazioni che verrà attuato nel corso dei primi anni della fase operativa. Il LaMMA ha la responsabilità operativa di gestire e monitorare il sistema di previsione, sia a livello giornaliero che su intervalli temporali più lunghi e di garantire quindi una copertura ottimale del sistema.” “Il software per la produzione delle previsioni della turbolenza ottica è operativo presso il LaMMA e sfrutta risorse computazionali dei sistemi HPC (High Performance Computing) dedicate esclusivamente a FATE e acquisite anche grazie ad un contributo di Regione Toscana. La collaborazione del LaMMA in questo progetto poggia in primis sul suo Centro di Calcolo che da oltre venti anni, ha mostrato la propria affidabilità in termini di robustezza e resilienza nell’ambito del servizio meteo svolto per la Regione Toscana” dice Alberto Ortolani, ricercatore del LaMMA e responsabile delle attività LaMMA in FATE. “Le notevoli competenze scientifiche sviluppate presso INAF nel campo della previsione della turbolenza ottica e la pluriennale esperienza del Consorzio LaMMA nel gestire servizi operativi ha fatto sì che la proposta risultasse vincitrice nella call internazionale aperta da ESO. Aver vinto con una proposta toscana ci rende particolarmente orgogliosi”.

Progetto FATE Very Large Telescope VLT La Via Lattea si staglia sopra ai telescopi che costituiscono il Very Large Telescope, all'Osservatorio del Paranal, in Cile. Crediti: P. Horálek/ESO
La Via Lattea si staglia sopra ai telescopi che costituiscono il Very Large Telescope, all’Osservatorio del Paranal, in Cile. Crediti: P. Horálek/ESO

Testo e immagine dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).