News
Ad
Ad
Ad
Tag

CNR

Browsing

Ricerca medica, nuovi risultati in Epatologia con l’intelligenza artificiale

 

Grazie ad uno studio sui dati clinici di 12mila pazienti di tutto il mondo identificati quattro sottogruppi di Colangite Biliare Primitiva, classificati in ordine di gravità crescente.
Colangite Biliare Primitiva epatologia intelligenza artificiale
Foto di Gerd Altmann

 

Milano, 16 marzo 2022 – L’intelligenza artificiale al servizio della ricerca medica in Epatologia. Una ricerca condotta dal Centro delle Malattie Autoimmuni del Fegato dell’Università di Milano-Bicocca presso l’Ospedale San Gerardo di Monza, e dal team di Data Science di Rulex a Genova, ha permesso di individuare quattro nuovi sottotipi di Colangite Biliare Primitiva (CBP) basandosi sui dati clinici di più di 12mila soggetti provenienti da tutto il mondo. Il nuovo algoritmo si unisce agli esistenti score prognostici e consente di migliorare la valutazione prognostica dei pazienti già al momento della diagnosi.
«Per noi pazienti questo studio è molto importante considerato il grande numero di pazienti italiani inclusi e le potenzialità di innovazione portate dall’intelligenza artificiale – commenta Davide Salvioni, presidente di AMAF Onlus, l’associazione italiana di pazienti dedicata alle malattie autoimmuni del fegato –. Una migliore conoscenza di queste patologie avrà sicuramente delle ricadute positive sulla capacità dei medici di gestirle in modo più efficace».

La CBP è una malattia del fegato che, benché rara, in Italia colpisce più di 10.000 persone, soprattutto donne oltre i 40 anni di età. Nell’ultimo decennio vi è stato un progressivo miglioramento della stratificazione prognostica dei pazienti con CBP, grazie anche allo sviluppo di score e calcolatori.

 

Di recente l’intelligenza artificiale e il machine learning sono stati applicati con beneficio nello studio di malattie comuni, dalle infezioni alle malattie cardiovascolari, dal tumore alla mammella a quello del colon-retto. Nel contesto delle malattie rare, e della CBP nello specifico, mancavano tuttavia evidenze sperimentali in relazione a queste nuove tecnologie e alle loro applicazioni.

 

Il team del Centro Malattie Autoimmuni del Fegato di Monza guidato dal professor Pietro Invernizzi, ha utilizzato Rulex, uno strumento innovativo di analisi dati che impiega un sofisticato algoritmo di intelligenza artificiale sviluppato dal team di ricerca e sviluppo di Rulex, coordinato dall’amministratore delegato Marco Muselli, e basato su un modello teorico messo a punto all’interno dell’Istituto di Elettronica, di Ingegneria dell’Informazione e delle Telecomunicazioni del CNR di Genova.

 

Lo studio, pubblicato sulla rivista Liver International, ha raccolto la più grande coorte mai esplorata di pazienti con CBP a livello internazionale, includendo pazienti dall’Europa, dal Giappone e dal Nord America (DOI: 10.1111/liv.15141). L’obiettivo del lavoro è stato quello di sfruttare questa enorme mole di dati al fine di migliorare la stratificazione del rischio in questa patologia rara. Sono stati identificati quattro sottogruppi di malattia, in ordine di gravità clinica crescente, basandosi solamente su tre valori di laboratorio: albumina, bilirubina e fosfatasi alcalina.


«Il team di Rulex guidato da Damiano Verda ha raggruppato i pazienti affetti con CBP in modo completamente nuovo e ha creato delle regole molto facili da applicare in clinica per classificare i nuovi pazienti già alla diagnosi», spiega il dottor Alessio Gerussi, primo nome dello studio e ricercatore presso il Centro Malattie Autoimmuni del Fegato di Monza.

 

«Il nostro lavoro non finisce qui: gli studi futuri saranno mirati alla integrazione dei dati clinici con i dati provenienti dal sequenziamento genetico, dalle tecniche di imaging radiologiche e dalle scansioni digitali dei vetrini dei campioni istologici – sottolinea Gerussi –. Lo scopo finale è descrivere la eterogeneità della malattia in modo più raffinato di quanto fatto fino ad ora per offrire cure personalizzate ai pazienti, scopo ultimo della Medicina di Precisione».
Testo dall’Ufficio Stampa Università di Milano-Bicocca

La pelle del camaleonte come modello per lo sviluppo di un dispositivo in grado di misurare i livelli di glucosio nelle urine

Il biosensore, progettato da ricercatori della Sapienza, del Cnr e di altri enti internazionali ispirandosi alla naturale organizzazione nanostrutturata della pelle del rettile, potrà avere anche altri campi di applicazione, come il monitoraggio di marker tumorali o il riconoscimento specifico di anticorpi come quelli anti-SARS-CoV-2.

camaleonte glucosio

Il monitoraggio costante e continuo della glicemia è una pratica fondamentale per la corretta sorveglianza e gestione della terapia del diabete. L’autocontrollo della glicemia avviene principalmente mediante l’utilizzo di piccoli apparecchi elettronici (glucometri) che analizzano in breve tempo i valori glicemici su piccoli quantitativi di sangue. Considerando il costante aumento delle persone diabetiche e iperglicemiche, lo sviluppo di sistemi innovativi che possano essere rapidi, compatti, flessibili, indossabili, e capaci di lavorare senza l’analisi di piccoli quantitativi di sangue, è in costante sviluppo.

In questo contesto, si inserisce lo studio pubblicato sulla rivista NPG Asia Materials – Nature da ricercatori del Dipartimento di Scienze e biotecnologie medico-chirurgiche della Sapienza, in collaborazione con il CNR e altri enti internazionali.

Il team di ricerca ha sviluppato un biosensore per la misurazione delle concentrazioni di glucosio nelle urine che utilizza una combinazione vincente di polimeri a più strati (idrogel) e nanoparticelle di argento: questa struttura multistrato (che ospita nano-riflettori con geometria cubica) è stata ispirata dalla naturale organizzazione nanostrutturata che si trova nella pelle del camaleonte.

“Lo studio – spiega Luciano De Sio della Sapienza – ha dimostrato che il biosensore è in grado di monitorare concentrazioni di glucosio molto basse con un limite di rivelabilità più basso rispetto ai dispositivi attualmente disponibili.

Il dispositivo proposto, oltre a essere flessibile, risulta possedere sia proprietà antibatteriche che foto-termiche grazie alle nanoparticelle di argento: l’utilizzo di una radiazione luminosa consente di produrre significative variazioni di temperatura che rendono il dispositivo sterilizzabile e riutilizzabile.

“I prossimi passi – commenta Antonella Calogero – saranno quelli di sfruttare l’enorme versatilità del dispositivo aggiungendo opportune funzionalizzazioni biochimiche che permettano l’utilizzo del biosensore in altri campi di applicazione, quali il monitoraggio di marker tumorali o il riconoscimento specifico di anticorpi come, ad esempio, quelli sviluppati a seguito di infezione da SARS-CoV-2”.

Inoltre, sarà possibile realizzare biosensori indossabili per il monitoraggio multiplo di analiti di interesse medico, anche in condizioni di microgravità.

Riferimenti:

Ziai, F. Petronella, C. Rinoldi, P. Nakielski,A. Zakrzewska, T. A. Kowalewski, W. Augustyniak, X. Li, A. Calogero, I. Sabała, B. Ding, L. De Sio,* and F. Pierini*Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications. NPG Asia Mater 14, 18 (2022). https://doi.org/10.1038/s41427-022-00365-9

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Clima: equilibrio artico sempre più a rischio

Il cambiamento climatico modifica i delicati ecosistemi lacustri artici. Una ricerca di Sapienza e Consiglio nazionale delle ricerche (Cnr) alle Isole Svalbard studia i cambiamenti in corso. I risultati sono pubblicati su Scientific Reports.

clima equilibrio artico
Clima: equilibrio artico sempre più a rischio. In foto, il rifugio Papphytta, Brøggerhalvøya presso le isole Svalbard. Foto di Superchilum, CC BY-SA 3.0

Uno nuovo studio coordinato dal gruppo di Ecologia trofica del Dipartimento di biologia ambientale della Sapienza fa luce sulle relazioni che legano il clima al funzionamento dei delicati ecosistemi lacustri artici, considerati hotspot di biodiversità e sink di carbonio alle più elevate latitudini.

La ricerca, pubblicata sulla rivista Scientific Reports, fortemente interdisciplinare, è stata realizzata in collaborazione con l’Istituto di scienze polari e l’Istituto di ricerca sulle acque del Cnr, combinando l’analisi elementare e degli isotopi stabili di campioni animali e vegetali con l’analisi di immagini satellitari e la ricostruzione dell’idrodinamica di 18 laghi in 3D alle Isole Svalbard.

I ricercatori hanno studiato le fonti di nutrienti nei laghi e tracciato il loro trasferimento attraverso la rete alimentare, mettendo in relazione i modelli osservati con gli aspetti climatici e idrodinamici dei laghi artici, la copertura nevosa e vegetazionale e la presenza di specie migratrici caratteristiche dell’area. I risultati chiariscono gli effetti diretti e indiretti che queste variabili legate al clima hanno sulle interazioni tra le specie e sul ciclo dei nutrienti (carbonio e azoto) in questi ambienti estremi. Le evidenze ottenute permettono di prevedere che l’aumento della temperatura comporterà un aumento del carico di nutrienti in questi ecosistemi, con conseguenze sulla loro produttività e sui tassi di rilascio di carbonio in atmosfera, entrambi ad oggi limitati dalla carenza di azoto e altri elementi.

“Lo studio, che fa parte di una linea di ricerca più ampia coordinata da Sapienza nell’ambito del Programma di ricerche in Artico e del Programma nazionale di ricerche in Antartide, – evidenzia Edoardo Calizza della Sapienza – aiuta a comprendere meglio come l’aumento delle temperature potrebbe incidere sulla biodiversità e sul funzionamento degli ecosistemi polari, e sui servizi cruciali che essi svolgono sia a scala locale che globale, inclusa la regolazione stessa del clima”.

“L’approccio multidisciplinare, che vede collaborare insieme biologi e geologi sul campo ed in laboratorio, nello studio dei laghi artici, rappresenta sicuramente un valore aggiunto al progetto e consente di studiare in dettaglio le complesse dinamiche esistenti tra fattori biotici ed abiotici, che guidano e vincolano la circolazione dei nutrienti anche a queste latitudini”, sottolinea David Rossi dell’Istituto di ricerca sulle acque del Cnr.

“Il contributo innovativo alle ricerche sugli ecosistemi dei laghi artici è rappresentato dall’integrazione di immagini satellitari e dati al terreno per l’analisi della variabilità spaziale e temporale delle coperture nevose nelle isole Svalbard in cui Il Cnr ha maturato una esperienza pluriennale”, aggiunge Rosamaria Salvatori dell’Istituto di scienze polari. “Il sistema dei laghi analizzati ricade nel territorio della Brogger Peninsula in cui è situata la base scientifica Dirigibile Italia del Cnr”.

 

Riferimenti:

Climate-related drivers of nutrient inputs and food web structure in shallow Arctic lake ecosystems – Edoardo Calizza, Rosamaria Salvatori, David Rossi, Vittorio Pasquali, Giulio Careddu, Simona Sporta Caputi, Deborah Maccapan, Luca Santarelli, Pietro Montemurro, Loreto Rossi & Maria Letizia Costantini – Scientific Reports. DOI https://doi.org/10.1038/s41598-022-06136-4

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Come la vita e il nostro Pianeta sono evoluti insieme

Parte il progetto CoEvolve: indaga la coevoluzione della vita con la Terra

CoEvolve indaga la coevoluzione della vita con la Terra

CoEvolve, il progetto finanziato dal Consiglio Europeo delle Ricerche, guidato dal microbiologo della Federico II di Napoli, Donato Giovannelli, è ufficialmente decollato. Il progetto condurrà il team del Giovannelli-Lab dall’Artico ai deserti delle Ande cilene, e poi dal Costa Rica all’Islanda, alla ricerca di microrganismi che verranno raccolti negli ambienti estremi del nostro pianeta per capire come la Terra e la vita si sono mutualmente influenzati, in una sorta di coevoluzione tra la geosfera e la biosfera terrestre.

‘Quando guardiamo il nostro pianeta tendiamo a pensare che la geologia sia una forza inarrestabile che modella i continenti e gli oceani, e che la vita si adatti a questi cambiamenti ed evolva per tenere il passo. Questo è vero per la maggior parte del tempo, ma ci sono state diverse occasioni durante la storia della Terra in cui l’evoluzione di alcuni processi biologici hanno influenzato notevolmente la geologia, la mineralogia e quindi la traiettoria evolutiva della Terra’ – spiega il coordinator Donato Giovannelli. La realtà è che il nostro pianeta e la vita si sono coevoluti nel tempo, influenzandosi a vicenda per oltre 4 miliardi di anni. ‘È come una delicata danza in cui la vita e il pianeta Terra lavorano insieme per mantenere l’abitabilità del pianeta e sostenere la vita stessa’, dice Donato Giovannelli. Nonostante questo, l’estensione della coevoluzione e le sue forze motrici sono in gran parte sconosciute’.

Il progetto CoEvolve mira a capire come la vita, in particolare i microrganismi, e il pianeta si sono coevoluti nel tempo, concentrandosi sul ruolo dei metalli. Il progetto è finanziato con una sovvenzione di 2,1 milioni di euro dal Consiglio Europeo della Ricerca (ERC Starting Grant 2020).

I microrganismi sono fondamentali per il funzionamento del pianeta e sono stati la forza trainante nel ciclo dei nutrienti e degli elementi dall’origine della vita su questo pianeta. Per controllare il ciclo dei nutrienti e degli elementi, i microrganismi utilizzano un insieme di proteine che contengono metalli nel loro nucleo, utilizzati per controllare efficacemente le reazioni chimiche. A causa di questa relazione, il ruolo dei metalli è importante per la vita (basti pensare solo a cosa comporta un calo di ferro nel sangue).

‘Le conoscenze degli ultimi decenni sulla evoluzione della vita terrestre ci ha fatto comprendere che la disponibilità di metalli è cambiato drammaticamente nel tempo, in gran parte a causa del cambiamento delle concentrazioni di ossigeno nell’atmosfera – sottolinea Giovannelli -. In sintesi, metalli potrebbero aver controllato in una certa misura l’evoluzione della vita microbica stessa’.

Il progetto CoEvolve utilizza microrganismi raccolti in ambienti estremi, dai poli ai deserti, che sono una sorta di modello di antichi tempi geologici, per capire la relazione tra disponibilità di metallo e metabolismo microbico. Una selezione di ambienti diversi, da sorgenti termali negli altipiani del Cile all’Artico norvegese, saranno campionati nei prossimi 5 anni in una serie di missioni la cui delicata logistica richiede una lunga e attenta pianificazione.

CoEvolve coevoluzione
CoEvolve indaga la coevoluzione della vita con la Terra

Donato Giovannelli, dunque, sta raccogliendo nel Giovannelli-Lab un team di scienziati e scienziate con diversi background per affrontare la natura multidisciplinare del progetto CoEvolve, che richiede competenze in microbiologia, biologia molecolare, geochimica, geologia, astrobiologia e big data. La prima fase del progetto è attualmente in corso, con l’allestimento di un nuovo laboratorio geo-bio presso l’Università di Napoli Federico II, e a partire dal 20 febbraio 2022, il team comincia con la prima tappa delle missioni: presso la base artica Dirigibile Italia del CNR (Isole Svalbard, Norvegia) a Ny-Ålesund  (78°55′ N, 11°56′ E). La prima spedizione, i cui dati contribuiranno al CoEvolve, è finanziata con un Progetto di Ricerca in Artico del MUR.

“La mia speranza è che il progetto cambierà il modo in cui comprendiamo e interagiamo con il mondo microbico, aprendo nuove strade in diversi campi come la bioremediation, le biotecnologie e la ricerca sul microbioma umano e potrebbe anche cambiare il modo in cui cerchiamo la vita nell’Universo”, conclude Donato Giovannelli.

 

CoEvolve in breve:

–        Al via il progetto CoEvolve del Dipartimento di Biologia della Federico II di Napoli. Durerà 5 anni, beneficia di un finanziamento ERC europeo di 2.1 milioni di euro. Alla sua guida il microbiologo Donato Giovannelli.

–        Studierà organismi di ambienti estremi, raccolti in Cile, Islanda, Norvegia, Russia, Italia, Costa Rica, per comprendere come la geologia terrestre ha influenzato la vita, e come la vita, a modo suo, abbia a sua volta influenzato la geologia.

–        La prima tappa, in atto in questo momento, alle Isole Svalbard, in Norvegia, presso la base artica del CNR Dirigibile Italia. Il team di microbiologi raccoglierà microorganismi adattati ad un ambiente estremamente freddo.

 

Testo e foto dall’Ufficio Stampa Università Federico II di Napoli.

DALLO STUDIO DEI G-QUADRUPLEX INDICAZIONI UTILI PER PROGETTARE NUOVI FARMACI ONCOTERAPICI

I ricercatori delle Università Milano-Bicocca, Insubria e Padova in collaborazione con il Cnr-Ifn hanno analizzato come si evolvono le strutture secondarie del DNA presenti in alcuni promotori di protooncogeni. Gli studi pubblicati su Nucleic Acids Research.

G-quadruplex farmaci
Dallo studio dei G-quadruplex indicazioni utili per progettare nuovi farmaci oncoterapici. Foto PublicDomainPictures 

Osservare da vicino il comportamento dei G-quadruplex, strutture secondarie del Dna, per contribuire alla messa a punto di farmaci oncoterapici di nuova generazione. I risultati degli studi condotti in collaborazione dai ricercatori delle Università dell’Insubria, di Milano-Bicocca e di Padova, con il coinvolgimento dell’Istituto di Fotonica e nanotecnologie del Consiglio nazionale delle ricerche (Cnr-Ifn), sono confluiti in due lavori pubblicati sulla rivista Nucleic Acids Research (DOI: 10.1093/nar/gkab079 – 10.1093/nar/gkab674).

Quando pensiamo al Dna, la struttura che subito ci affiora alla mente è la doppia elica. Da anni, tuttavia, è noto come il Dna possa assumere localmente strutture non canoniche. Un aspetto particolarmente rilevante è che questi sistemi rappresentano degli interessanti punti di intervento terapeutico per trattare molte patologie tra cui tumori, malattie neurodegenerative, infezioni, e così via. Per la loro particolare importanza funzionale, le strutture secondarie non canoniche denominate G-quartets (G4s) occupano un posto di rilievo in questo contesto. Finora la ricerca di nuovi farmaci indirizzati verso questi bersagli non ha prodotto i risultati sperati e questo deriva in larga parte dal fatto che la struttura del Dna varia sensibilmente nel tempo e nello spazio.

I ricercatori hanno analizzato le proprietà conformazionali e nanomeccaniche dei G4s presenti nel promotore di un particolare protooncogene responsabile di diverse forme tumorali, abbinando tecniche di ensemble a misure di singola molecola per capire come queste strutture evolvono nel tempo, come la loro evoluzione è influenzata dalla matrice di Dna a doppia elica che le circonda e come interagiscono quando si formano una vicina all’altra. Inoltre, è stato osservato come la presenza di sequenze in grado di formare G4s in un tratto di Dna favorisca la denaturazione nanomeccanica della doppia elica in questo tratto, quindi l’inizio dell’espressione genica. Poiché le proteine deputate alla trascrizione del Dna, evento che dà inizio alla sintesi proteica, funzionano esercitando forze e torsioni sui promotori al fine di indurne la denaturazione locale, le informazioni raccolte costituiscono una “fotografia” ad alta risoluzione del bersaglio di elezione. Infine, è stato possibile seguire come si ripiegano queste sequenze e con quale velocità. Queste informazioni aiuteranno a progettare farmaci di nuova generazione che siano in grado di controllare la produzione di oncoproteine in pazienti neoplastici.

«Si tratta di una collaborazione fra soggetti lontani geograficamente, ma coinvolti in una sorta di laboratorio delocalizzato, che sono in grado di realizzare strumentazioni innovative non commerciali e di applicarle alla caratterizzazione di campioni biologici progettati ad hoc. Tutto questo è possibile, grazie anche al supporto delle nostre Istituzioni Universitarie che permettono e facilitano questo networking» dichiara il dottor Luca Nardo del Dipartimento di Scienza e alta tecnologia dell’Università dell’Insubria.

«La ricerca è stata condotta in modo interdisciplinare, con il coinvolgimento paritetico di Biofisici e Chimici Farmaceutici. Infatti, soltanto attraverso una stretta collaborazione tra ricercatori appartenenti a comunità scientifiche che tradizionalmente interagiscono solo marginalmente, disposti a compartecipare competenze complementari, è possibile dare risposte a domande che apparentemente sembrano insolubili. In particolare è stato necessario realizzare misure di singola molecola su filamenti di Dna studiati letteralmente uno per uno, al fine di caratterizzare aspetti che vengono generalmente nascosti da misure di insieme» afferma il professor Francesco Mantegazza, del Dipartimento di Medicina e Chirurgia dell’Università di Milano-Bicocca».

«Il contributo fondamentale dei nostri risultati è quello di aver sottolineato in modo forte alla comunità scientifica come sia necessario capire l’evoluzione nel tempo e nello spazio dei bersagli che vogliamo colpire per intervenire in modo efficace e mirato. Il nostro network, coinvolgendo scienziati con visioni apparentemente diverse, ci ha consentito di rispondere a questa necessità mettendo a punto approcci innovativi e versatili che potranno quindi ora essere utilizzati a più ampio respiro» è quanto riassume la professoressa Claudia Sissi del Dipartimento di Scienze del Farmaco dell’Università degli Studi di Padova.

«In qualità di responsabile del Laboratorio di Fotofisica e Biomolecole a Como, compartecipato da Cnr e Insubria, sono estremamente soddisfatta degli importanti risultati ottenuti negli ultimi anni e di questo in particolare. Ringrazio tutti i giovani ricercatori che nel tempo si sono alternati in laboratorio, senza la cui dedizione e competenza la ricerca sarebbe stata impossibile», conclude la professoressa Maria Bondani del Cnr-Ifn.

 

Testo dall’Ufficio Stampa Università di Padova.

Giorgio Parisi è Nobel per la Fisica 2021

L’assegnazione del Premio al docente Sapienza, resa pubblica oggi alle 11.45, corona una carriera di scienziato costellata di successi e riconoscimenti.

Giorgio Parisi Nobel per la Fisica 2021

Giorgio Parisi è Nobel per la Fisica.
L’assegnazione del Premio, resa pubblica oggi alle ore 11.45, è giunta con la seguente motivazione: “Per la scoperta del legame tra il disordine e le fluttuazioni nei sistemi fisici dalla scala anatomica a quella planetaria”. 

“Quella di oggi è un’emozione difficile da tradurre in parole, è un orgoglio immenso, per la Sapienza, per la comunità scientifica e per il nostro Paese – sottolinea la Rettrice Antonella Polimeni – Giorgio Parisi è un gigante, uno di quelli sulle cui spalle le generazioni future si siederanno per scrutare l’orizzonte della scienza e fare un passo ulteriore verso la conoscenza”


Lo studioso, professore ordinario di Fisica Teorica alla Sapienza di Roma, già Presidente dell’Accademia dei Lincei, è il 6° italiano a ottenere l’ambito riconoscimento nel campo della Fisica, dopo Guglielmo Marconi (1908), Enrico Fermi (1938), Emilio Segre (1959), Carlo Rubbia (1984), Riccardo Giacconi (2002).

Nel 2021, il fisico italiano è stato insignito del Premio Wolf ed è entrato, primo esponente dell’accadmia italiana, nella Clarivate Citation Laureates per “le scoperte rivoluzionarie relative alla cromodinamica quantistica e lo studio dei sistemi disordinati complessi”.

Focus

Giorgio Parisi è professore ordinario di Fisica Teorica alla Sapienza Università di Roma, ricercatore associato all’INFN Istituto Nazionale di Fisica Nucleare ed è stato Presidente dell’Accademia dei Lincei (2018-2021). Nato a Roma nel 1948, Parisi ha completato i suoi studi alla Sapienza Università di Roma dove si è laureato in fisica nel 1970 sotto la guida di Nicola Cabibbo. Ha iniziato la sua carriera scientifica ai Laboratori Nazionali di Frascati dell’INFN, prima come membro del CNR (1971-1973) e successivamente come ricercatore dell’INFN (1973-1981). Durante questo periodo ha trascorso lunghi soggiorni all’estero, prima alla Columbia University di New York (1973-1974), all’Institut des Hautes Études Scientifiques a Bures-sur-Yvettes (1976-1977), all’École Normale Superieure di Parigi (1977-1978). Nella sua carriera scientifica, Giorgio Parisi ha dato molti contributi determinanti e ampiamente riconosciuti in diverse aree della fisica: in fisica delle particelle, meccanica statistica, fluidodinamica, materia condensata, supercomputer. Ha, inoltre, scritto articoli su reti neurali, sistema immunitario e movimento di gruppi di animali. È stato vincitore di due advanced grant dell’ERC European Reasearch Council, nel 2010 e nel 2016, ed è autore di oltre seicento articoli e contributi a conferenze scientifiche e di quattro libri. Le sue opere sono molto conosciute.

Riconoscimenti. Nel 1992 gli è stata conferita la Medaglia Boltzmann (assegnata ogni tre anni dalla IUPAP International Union of Pure and Applied Physics per nuovi risultati in termodinamica e meccanica statistica) per i suoi contributi alla teoria dei sistemi disordinati, e la Medaglia Max Planck nel 2011, dalla società tedesca di fisica Deutsche Physikalische Gesellschaft. Ha ricevuto i premi Feltrinelli per la Fisica nel 1987, Italgas nel 1993, la Medaglia Dirac per la fisica teorica nel 1999, il premio del Primo Ministro italiano nel 2002, Enrico Fermi nel 2003, Dannie Heineman nel 2005, Nonino nel 2005, Galileo nel 2006, Microsoft nel 2007, Lagrange nel 2009, Vittorio De Sica nel 2011, Prix des Trois Physiciens nel 2012, il Nature Award Mentoring in Science nel 2013, High Energy and Particle Physics dell’EPS European Physical Society nel 2015, Lars Onsager dell’APS American Physical Society nel 2016. Nel 2021 ha ricevuto il prestigioso Wolf Prize per la Fisica.  Sempre nel 2021, è entrato, primo esponente dell’accademia italiana, nella Clarivate Citation Laureates.   È membro dell’Accademia dei Quaranta, dell’Académie des Sciences, dell’Accademia Nazionale delle Scienze degli Stati Uniti, dell’Accademia Europea, dell’Academia Europea e dell’American Philosophical Society.

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Ciclo sonno-veglia: a regolarlo anche le cellule immunitarie
Un team internazionale di ricercatori coordinati dal Dipartimento di Fisiologia e farmacologia della Sapienza, ha identificato in alcune cellule coinvolte nel sistema immunitario del cervello un ruolo centrale anche nella regolazione del ciclo sonno-veglia. I risultati dello studio, pubblicato sulla rivista Glia, aprono a nuove prospettive di studio sul funzionamento del cervello.

sonno veglia cellule immunitarie ciclo sonno-veglia
Ciclo sonno-veglia: a regolarlo anche le cellule immunitarie. Foto di Free-Photos

Il sonno è un fenomeno universale nel regno animale che da un lato ha una funzione ristorativa, permettendo il recupero delle energie spese durante la veglia e la rimozione dei prodotti di rifiuto, e dall’altro ha un ruolo fondamentale nei processi cognitivi e nell’elaborazione delle informazioni. Durante il sonno, infatti, si verificano processi computazionali come la formazione e il consolidamento della memoria relativa a eventi avvenuti durante la veglia, così come le alterazioni o la deprivazione di sonno possono comportare disturbi cognitivi.

Sebbene sia stato dimostrato che l’alternanza del ciclo sonno-veglia è regolata sia da stimoli interni (orologio biologico principale, localizzato nel nucleo soprachiasmatico dell’ipotalamo) e da stimoli esterni (come il ciclo buio-luce, l’attività lavorativa o i pasti), i meccanismi cellulari alla base del ciclo sonno-veglia sono in parte ancora sconosciuti.

In questa cornice di ricerca si inserisce un nuovo studio coordinato da ricercatori del Dipartimento di Fisiologia e farmacologia della Sapienza, in collaborazione con il Dipartimento di Medicina molecolare dell’Ateneo, il Consiglio nazionale delle ricerche e altre università e centri di ricerca internazionali, nel quale viene dimostrato per la per la prima volta il ruolo delle cellule della microglia nella regolazione del ciclo sonno-veglia.

Queste cellule si occupano della difesa immunitaria attiva nel sistema nervoso centrale e, secondo il lavoro pubblicato sulla rivista Glia, contribuiscono anche a regolare la durata del sonno, grazie alla loro interazione con le cellule nervose.

“La microglia – spiega Cristina Limatola di Sapienza, coordinatrice dello studio – regola la durata della fase di sonno nei topi anche attraverso il recettore per chemochine CX3CR1, altamente espresso in queste cellule dove svolge importanti ruoli durante sviluppo e maturazione del sistema nervoso centrale”.

“I modelli animali in cui la microglia è stata eliminata attraverso il trattamento con un antagonista del recettore CSF1R, oppure che manchino del recettore CX3CR1 sulla microglia – aggiunge Limatola – mostrano un aumento della fase non-rapid eye movement (NREM) del sonno, durante le ore di veglia associata ad alterazioni della trasmissione sinaptica a livello dell’ippocampo, regione fondamentale per la formazione della memoria a lungo termine”.

Questo lavoro aiuta a svelare i meccanismi alla base della regolazione del ciclo sonno-veglia e apre a nuove prospettive sul ruolo delle cellule della glia nel funzionamento del cervello.

Riferimenti: 

Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle – Giorgio Corsi, Katherine Picard, Maria Amalia di Castro, Stefano Garofalo, Federico Tucci, Giuseppina Chece, Claudio del Percio, Maria Teresa Golia, Marcello Raspa, Ferdinando Scavizzi, Fanny Decoeur, Clotilde Lauro, Mara Rigamonti, Fabio Iannello, Davide Antonio Ragozzino, Eleonora Russo, Giovanni Bernardini, Agnès Nadjar, Maria Eve Tremblay, Claudio Babiloni, Laura Maggi, Cristina Limatola – Glia 2021 Sep 6 DOI: 10.1002/glia.24090

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

QUALI PIANTE PIACCIONO AI RICERCATORI?

Una recente pubblicazione su Nature Plants ha rivelato che alcune caratteristiche morfologiche, come gli steli più alti e i fiori dai colori sgargianti, attirano di più l’attenzione dei ricercatori impegnati nello studio delle piante. Il lavoro è stato condotto dall’Istituto di ricerca sulle acque del Consiglio nazionale delle ricerche di Verbania (Cnr-Irsa) e dall’ Università di Torino in collaborazione con l’Università Federico II di Napoli, il Museo di scienze naturali di Berlino e la Curtin University in Australia e ha analizzato 113 specie delle Alpi sud-occidentali, menzionate in 280 pubblicazioni scientifiche negli ultimi 45 anni.

Veronica allionii – Alpe del Mey

Uno studio, pubblicato sulla prestigiosa rivista internazionale Nature Plants, e condotto da giovani ricercatori dell’Istituto di ricerca sulle acque del Consiglio nazionale delle ricerche di Verbania (Cnr-Irsa) e dell’Università Torino, in collaborazione con l’Università Federico II di Napoli, il Museo di scienze naturali di Berlino e la Curtin University in Australia ha rivelato che per gli scienziati “di campo” la scelta delle specie da studiare potrebbe essere influenzata da fattori estetici. Sul lungo periodo, questo potrebbe introdurre una distorsione negli sforzi di ricerca. Ma come quantificare questo bias?

piante ricercatori
Aquilegia alpina – Val Piora

Le piante hanno giocato un ruolo significativo nell’evoluzione della scienza moderna e le loro proprietà continuano ad essere al centro di importanti ricerche. “In questo studio abbiamo analizzato 280 articoli sottoposti a peer-review dedicati a 113 specie di piante tipiche delle Alpi sud-occidentali, pubblicati negli ultimi 45 anni. Abbiamo scoperto che alcune caratteristiche morfologiche, come gli steli più alti e i fiori dai colori ben visibili, siano tra i tratti che maggiormente attirano l’attenzione dei ricercatori”, dichiara Martino Adamo, ricercatore del Dipartimento di Scienze della Vita e Biologia dei Sistemi dell’Università di Torino e primo autore dello studio.

piante ricercatori
Campanula barbata – Colle della Maddalena

“Abbiamo osservato come le piante dai fiori blu sono molto più studiate rispetto a quelle con fiori scarsamente pigmentati (verdi o marroni). Anche l’altezza dello stelo, che in un certo senso è la capacità di una pianta di svettare tra le altre e quindi ‘farsi notare’ dall’osservatore, è un fattore di selezione importante. Al contrario, e forse paradossalmente, il rischio di estinzione delle specie e i loro tratti ecologici non influiscono sulla probabilità che una specie venga studiata”, aggiunge Stefano Mammola del Cnr-Irsa.

piante ricercatori
Myricaria germanica – Festiona

Si genera così un “bias estetico” negli sforzi della ricerca, sostengono gli autori. “Questo pregiudizio può avere impatti negativi in quanto può orientare gli sforzi di conservazione a favore delle piante più attraenti, indipendentemente dalla loro importanza ecologica per la salute dell’ecosistema generale”, osserva il ricercatore di UniTo Adamo“Questi risultati hanno quindi implicazioni rilevanti per rendere più oggettiva la ricerca scientifica e, in senso ampio, per una più equa prioritizzazione delle specie da proteggere”.

Campanula spicata – V,ne del Valasco

Lo studio intende fornire un’occasione di ragionamento. “Il nostro lavoro non vuole essere una critica alla ricerca svolta dei colleghi, ma piuttosto uno spunto di riflessione”, conclude il ricercatore Cnr-Irsa Mammola“Sebbene le scelte siano a volte guidate dalla comunicabilità del risultato scientifico è comunque importante riflettere sul nostro approccio alla conservazione e renderlo il più equo ed oggettivo possibile: anche un fiore marroncino contribuisce al corretto funzionamento dell’ecosistema, ed è quindi importante studiarlo e proteggerlo”.

Alchemilla – Val Cénis

Testo e foto dall’Università degli Studi di Torino sullo studio pubblicato su Nature Plants circa le piante “preferite” dai ricercatori.

 

Possibili indizi di nuova fisica nei primi risultati di Muon g-2

muon new physics muon nuova fisica

Una nuova e precisa misura delle proprietà magnetiche del muone – particella elementare appartenente alla famiglia dei leptoni, molto simile all’elettrone, ma con una massa circa 200 volte maggiore – fornisce nuova evidenza a favore dell’esistenza di fenomeni fisici non descritti dal Modello Standard, la teoria di riferimento per la spiegazione dei processi subatomici. L’atteso risultato, ottenuto al temine della prima campagna di analisi dei dati acquisiti dall’esperimento Muon g-2, è stato annunciato oggi, mercoledì 7 aprile, nel corso di una presentazione svoltasi presso il Fermi National Accelerator Laboratory (FermiLab) di Batavia, vicino Chicago, il centro statunitense per le ricerche in fisica delle particelle, che ospita l’esperimento. La collaborazione internazionale responsabile di Muon g-2, di cui l’INFN è uno dei principali membri sin dalla sua nascita, è riuscita a ottenere una misura del cosiddetto momento magnetico anomalo del muone con una precisione senza precedenti, confermando le discrepanze con le previsioni del Modello Standard già evidenziate in un precedente esperimento condotto al Brookhaven National Laboratory, vicino New York, e conclusosi nel 2001.

La presente misura di Muon g-2 raggiunge una significatività statistica di 3.3 sigma, o deviazioni standard, e la sua combinazione con il risultato dell’esperimento predecessore porta la significatività della discrepanza a 4,2 sigma, poco meno delle 5 sigma considerate la soglia per poter annunciare una scoperta. Questo risultato fondamentale rappresenta un importante ed entusiasmante indizio della possibile presenza di forze o particelle ancora sconosciute, questione che da decenni alimenta discussioni tra i ricercatori.

“La misura di altissima precisione che abbiamo ottenuto con il nostro esperimento era da lungo tempo attesa da tutta la comunità internazionale della fisica delle particelle. In attesa dei risultati delle analisi sui vari set di dati acquisiti recentemente dall’esperimento e su quelli che verranno raccolti nel prossimo futuro, ci offre già un possibile spiraglio verso una nuova fisica”, afferma Graziano Venanzoni co-portavoce dell’esperimento Muon g-2 e ricercatore della Sezione INFN di Pisa. “L’INFN può ritenersi orgoglioso di questa impresa, avendo svolto un ruolo determinate in tutto l’esperimento. Un successo in buona parte merito dei giovani ricercatori i quali, con il loro talento, idee ed entusiasmo, hanno consentito di ottenere questo primo importante risultato”.

I muoni, che sono generati naturalmente nell’interazione dei raggi cosmici con l’atmosfera terrestre, possono essere prodotti in gran numero dall’acceleratore del Fermilab e iniettati all’interno dell’anello di accumulazione magnetico di Muon g-2, del diametro di 15 metri, dove vengono fatti circolare migliaia di volte con velocità prossima a quella della luce. Come gli elettroni, anche i muoni sono dotati di spin e possiedono un momento magnetico, ovvero producono un campo magnetico del tutto analogo a quello di un ago di bussola. All’interno dell’anello di Muon g-2, il momento magnetico dei muoni acquista un moto di precessione attorno alla direzione del campo magnetico, analogo a quello di una trottola in rotazione. L’esperimento misura con altissima precisione la frequenza di questo moto di precessione dei muoni. Il Modello Standard prevede che per ogni particella il valore del momento magnetico sia proporzionale a un certo numero, detto ‘fattore giromagnetico g’, e che il suo valore sia leggermente diverso da 2, da qui il nome ‘g-2’ o ‘anomalia giromagnetica’ dato a questo tipo di misura. Il risultato di Muon g-2 evidenzia una differenza tra il valore misurato di ‘g-2’ per i muoni e quello previsto dal Modello Standard, la cui previsione si basa sul calcolo delle interazioni dei muoni con particelle “virtuali” che si formano e si annichilano continuamente nel vuoto che li circonda. La discrepanza tra il risultato sperimentale e il calcolo teorico potrebbe quindi essere dovuta a particelle e interazioni sconosciute di cui il Modello Standard non tiene conto. Con il risultato presentato oggi, ottenuto grazie al primo set di dati raccolti da Muon g-2 (Run 1), l’esperimento ha quindi compiuto un importante passo verso la conferma dell’esistenza di fenomeni di nuova fisica.

Per misurare con precisione il fattore giromagnetico del muone c’è bisogno di acquisire dati altrettanto precisi sulla precessione dello spin di questa particella. Il muone decade molto rapidamente producendo un neutrino, un antineutrino e un elettrone, che viene emesso preferibilmente lungo la direzione dello spin del muone. L’esperimento Muon g-2, utilizzando i 24 calorimetri di cui è dotato, misura energia e tempo di arrivo degli elettroni di decadimento e da questi dati estrae la frequenza di precessione dello spin. “La misura di precisione richiede una sofisticata, continua calibrazione dei calorimetri, ovvero l’iniezione di brevi impulsi laser che ne garantiscano la stabilità della risposta, fino a 1 parte su 10.000”, spiega Michele Iacovacci, ricercatore della collaborazione Muon g-2 e della Sezione INFN di Napoli.

Realizzato in Italia, in collaborazione con l’Istituto Nazionale di Ottica del CNR, e finanziato dall’INFN, l’innovativo sistema di calibrazione laser ha rappresentato un notevole passo in avanti rispetto a quelli precedentemente in uso ed è stato uno degli ingredienti fondamentali per ottenere il risultato oggi pubblicato su Physical Review Letter.

Oltre allo sviluppo e alla realizzazione di questo sistema l’INFN, tra i fondatori della collaborazione, ha svolto e continua a svolgere un ruolo centrale all’interno dell’esperimento Muon g-2, composta da 200 scienziati provenienti da 35 istituzioni di 7 diversi paesi.

“Possiamo essere fieri del contributo che l’INFN ha saputo offrire a questa importante scoperta, sia nella fase di ideazione e costruzione dell’apparato, che ha visto attive le strutture dell’INFN di Napoli, Pisa, Roma Tor Vergata, Trieste, Udine, e dei Laboratori Nazionali di Frascati, sia in quella successiva di analisi, con contributi originali da parte di validissimi giovani ricercatori”, afferma Marco Incagli, della sezione INFN di Pisa, responsabile nazionale di Muon g-2.

 

Approfondimenti:

Precisamente anomalo
La misura del momento magnetico del muone
di Luca Trentadue
in Asimmetrie 23 Muone

Una vita da mediano
Storia della più elegante, eclettica e robusta tra le particelle
di Filippo Ceradini
in Asimmetrie 23 Muone

Un mare di antimateria
L’equazione di Dirac, dalla meccanica quantistica al modello standard
di Graziano Venanzoni
in Asimmetrie 19 Equazioni

 

Comunicato Stampa dall’Istituto Nazionale di Fisica Nucleare

I grandi carnivori riconquistano il territorio

In un nuovo studio, frutto della collaborazione fra la Sapienza Università di Roma e il Consiglio nazionale delle ricerche, è stato indagato il fenomeno di ricolonizzazione da parte di linci, lupi e orsi che sta interessando diverse aree in Europa. I risultati del lavoro, pubblicati sulla rivista Diversity and Distributions, identificano come fattori determinanti i cambiamenti della copertura del suolo, della densità della popolazione umana e l’incremento di politiche di tutela delle specie.

lupo grigio appenninico (Canis lupus italicus).Foto Flickr di Gilles PRETET, CC BY 2.0

Imbattersi in una lince, sentire l’ululato di un lupo, osservare un orso. Forse potrebbe non essere più tanto difficile e insolito in alcune aree, non ora che queste specie stanno ricolonizzando gran parte della loro storica area di distribuzione in Europa.

Dopo essere stati spinti sull’orlo dell’estinzione nel secolo scorso, negli ultimi decenni linci, lupi e orsi stanno ricolonizzando l’Europa, complici il cambiamento nell’uso del suolo e la diversa densità di popolazione, ma non la graduale espansione delle aree protette. È quanto emerge dal recente studio condotto da un gruppo internazionale di 11 Paesi coordinato da ricercatori del Dipartimento di Biologia e biotecnologie della Sapienza Università di Roma e del Consiglio nazionale delle ricerche (CNR). Questi fattori sembravano aver influenzato il ritorno dei grandi carnivori in Europa negli ultimi 24 anni, ma fino a oggi l’effettivo ruolo svolto era stato poco chiaro. I risultati del lavoro, pubblicati sulla rivista Diversity and Distributions, indicano che tra il 1992 e il 2015 la combinazione di questi elementi abbia contribuito all’aumento della presenza di queste tre specie nell’Europa orientale, nei Balcani, nella penisola iberica nord-occidentale e nella Scandinavia settentrionale, mentre tendenze contrastanti sono emerse per l’Europa occidentale e meridionale.

“È molto probabile che la coesistenza dei grandi carnivori con gli esseri umani in Europa non sia legata solo alla disponibilità di un habitat idoneo, ma anche a fattori come la tolleranza da parte dell’uomo e le politiche per diminuire la caccia di queste specie” – spiega Marta Cimatti della Sapienza, primo autore del lavoro − “e questo permette di avere nuove opportunità per riconciliare la conservazione e la gestione di queste specie con lo sviluppo socioeconomico nelle aree rurali”.

Luca Santini, ricercatore della Sapienza e del Cnr e senior author dello studio, sottolinea “sfruttare i cambiamenti socioeconomici e paesaggistici per creare nuove opportunità di recupero per le specie sarà una sfida per l’Europa, cui si dovranno affiancare una corretta educazione ambientale, norme legislative e una gestione mirata a mitigare i conflitti fra uomo e fauna selvatica nelle aree recentemente ricolonizzate dai questi grandi carnivori”.

“L’associazione tra il diverso uso del suolo, l’abbandono delle aree rurali, l’aumento delle aree protette e l’espansione dei grandi carnivori in Europa sarà importante anche nei prossimi decenni” − conclude Luigi Boitani della Sapienza, coautore e presidente della Large Carnivore Initiative for Europe − “e suggerisce che la ricolonizzazione di vaste aree europee continuerà e che dunque saranno necessari maggiori sforzi per far coesistere l’uomo e questi grandi carnivori”.

Riferimenti:

Large carnivore expansion in Europe is associated with human population density and land cover changes – Cimatti M., Ranc N., Benítez-López A., Maiorano L., Boitani L., Cagnacci F., Čengić M., Ciucci P., Huijbregts M.A.J., Krofel M., López Bao J., Selva N., Andren H., Bautista C., Cirovic D., Hemmingmoore H., Reinhardt I., Marenče M., Mertzanis Y., Pedrotti L., Trbojević I., Zetterberg A., Zwijacz-Kozica T., Santini L – Diversity and Distributions, 2021. DOI 10.1111/ddi.13219

 

Testo dalla Sapienza Università di Roma