News
Ad
Ad
Ad
Tag

Astronomy & Astrophysics

Browsing

INTELLIGENZA ARTIFICIALE: PESARE LE GALASSIE CON IL PROGETTO MELA

Gli algoritmi e le applicazioni di intelligenza artificiale fanno ormai parte della nostra vita quotidiana. La comunità scientifica, tuttavia, ne fa largo utilizzo già da diversi anni e l’Italia, in questo, è all’avanguardia. L’Istituto Nazionale di Astrofisica (INAF), per esempio, ha partecipato ad un progetto guidato da Nicola R. Napolitano, da cinque anni presso l’Università Sun Yat-sen (Cina), che per la prima volta è riuscito a dimostrare che l’intelligenza artificiale può imparare dalle simulazioni cosmologiche di formazione ed evoluzione dell’universo a misurare correttamente la massa delle galassie. Lo studio che è stato pubblicato oggi sulla rivista Astronomy & Astrophysics, descrive una nuova metodologia per stimare la massa delle galassie (incluso il loro contenuto di materia oscura) usando il machine learning.

Nicola R. Napolitano, già ricercatore INAF e ora professore ordinario presso l’Università degli Studi di Napoli Federico II, spiega che

“in questo modo, è possibile superare i problemi intrinseci alla dinamica delle galassie. I modelli dinamici, infatti, hanno bisogno di pesanti assunzioni sulla distribuzione dei moti interni delle galassie, che possono non essere totalmente corrette, e necessitano un esborso di risorse enorme per ottenere risultati sufficientemente accurati”.

Nicola R. Napolitano
Nicola R. Napolitano

L’articolo “Total and dark mass from observations of galaxy centers with Machine Learning” dimostra per la prima volta che questa metodologia funziona su cataloghi di galassie reali. Gli esperti hanno confrontato le stime del nuovo codice, denominato MELA (Mass Estimator machine Learning Algorithm), con stime di procedure dinamiche classiche verificando quindi che MELA può riprodurre con incredibile accuratezza le masse dei metodi classici, in alcuni casi molto più laboriosi e basati su dati molto più complessi (per esempio la cinematica 3D) dei dati più semplici di cui MELA ha bisogno e che saranno prodotti per milioni di galassie con i progetti di spettroscopia di nuova generazione in cui INAF è coinvolta, come WEAVE e 4MOST.

Crescenzo Tortora, ricercatore dell’INAF di Napoli che ha partecipato allo studio, aggiunge:

“Il lavoro è stato possibile grazie ad un percorso intrapreso dal nostro gruppo che negli ultimi anni ha esteso le applicazioni dell’intelligenza artificiale a diversi settori dell’analisi dati di grandi survey astronomiche. Questo è stato anche possibile grazie all’esperienza acquisita negli ultimi anni con survey a grande campo (nello specifico KiDS al telescopio VST) nella ricerca di lenti gravitazionali, l’analisi della struttura e delle popolazioni stellari delle galassie”.

Crescenzo Tortora
Crescenzo Tortora

Come in tanti altri settori, il machine learning è una realtà sempre più concreta nell’ambito dell’astrofisica, non solo nell’analisi dei dati ma anche nel loro sfruttamento scientifico. Napolitano prosegue:

“In questo lavoro abbiamo chiesto a MELA di mostrarci come otteneva i suoi risultati e quali fossero le osservabili che avessero più importanza per derivare le sue conclusioni. La cosa straordinaria è che abbiamo capito che MELA può capire la fisica delle gravità”.

L’INAF, e in particolare la sede di Napoli, vanta una storica expertise in materia di dinamica delle galassie con la partecipazione a progetti nati sul solco della tradizione delle fisica delle galassie. I ricercatori Italiani, in particolare Tortora e Napolitano, sono diventati, negli anni, specialisti a livello mondiale con collaborazioni con i gruppi di dinamica delle galassie più importanti nel contesto internazionale e con progetti, come MELA, che sono unici al mondo.

“Da questo lavoro abbiamo capito che l’intelligenza artificiale è pronta a imparare la fisica a partire dai dati”, conclude Napolitano. “Nella fattispecie abbiamo verificato che MELA può utilizzare le leggi fisiche che conoscevamo, ma presto l’intelligenza artificiale potrà ”imparare anche la Fisica che non conosciamo”.


Riferimenti bibliografici:

L’articolo “Total and dark mass from observations of galaxy centers with Machine Learning”, di   Sirui Wu, Nicola R. Napolitano, Crescenzo Tortora, Rodrigo von Marttens, Luciano Casarini, Rui Li,  Weipeng Lin, è stato pubblicato sulla rivista Astronomy & Astrophysics.

intelligenza artificiale progetto MELA pesare galassie
Il nuovo codice del progetto MELA (Mass Estimator machine Learning Algorithm) sa pesare le masse delle galassie con incredibile accuratezza

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF

TOI-5398, IL PIÙ GIOVANE SISTEMA MULTI-PLANETARIO COMPATTO

Il pianeta gigante al suo interno risulta essere il miglior candidato per studi di caratterizzazione atmosferica con il telescopio spaziale James Webb tra tutti i giganti caldi conosciuti.

TOI-5398 b dal sito della NASA: https://exoplanets.nasa.gov/exoplanet-catalog/8661/toi-5398-b/

TOI-5398, una sigla che potrebbe non dirci molto eppure nasconde un record: si tratta del più giovane sistema multi-planetario “compatto”, in cui vi è la compresenza di un piccolo pianeta vicino alla stella assieme a un compagno planetario gigante con periodo orbitale di circa 10 giorni. Questo sistema è solamente il sesto con tale caratteristica compresenza tra i più di 500 sistemi che ospitano pianeti giganti a corto periodo. I dati relativi a questa conferma sono stati pubblicati sulla rivista Astronomy & Astrophysics da un gruppo guidato dall’Istituto Nazionale di Astrofisica e dall’Università di Padova. Secondo gli autori dell’articolo, questo sistema è praticamente unico nel suo genere, potenzialmente una “pietra miliare” per lo studio e la comprensione dei pianeti giganti a corto periodo.

 Il Telescopio Nazionale Galileo (TNG) di INAF, un telescopio di 3,58 metri di diametro situato sulla sommità dell'isola di San Miguel de La Palma. Il TNG è il più importante strumento ottico della comunità astronomica italiana. Crediti: G. Mantovan/Università di Padova - INAF
Il Telescopio Nazionale Galileo (TNG) di INAF, un telescopio di 3,58 metri di diametro situato sulla sommità dell’isola di San Miguel de La Palma. Il TNG è il più importante strumento ottico della comunità astronomica italiana. Crediti: G. Mantovan/Università di Padova – INAF

Le misurazioni sono state ottenute con lo spettrografo HARPS-N al Telescopio Nazionale Galileo (TNG) di INAF alle Canarie (INAF) nell’ambito della collaborazione nazionale GAPS (Global Architecture of Planetary Systems). In questo studio, è stato inoltre fondamentale l’utilizzo di dati spaziali del Transiting Exoplanet Survey Satellite (TESS) della NASA, e del coordinamento di numerosi ricercatori ed osservatori astronomici sparsi in tutto il mondo.

TOI-5398 è di gran lunga il più giovane tra i cosiddetti sistemi “compatti”: 650 milioni di anni contro i 3-10 miliardi di anni degli altri sistemi. Un infante, si potrebbe dire. Inoltre, il pianeta maggiore nel sistema risulta il miglior candidato per studi di caratterizzazione atmosferica tramite il telescopio spaziale James Webb della NASA tra tutti i giganti caldi conosciuti. Per “giganti caldi” si intende pianeti giganti tra 10 e 100 giorni di periodo orbitale (inglese “warm giants”), da non confondere con gli “hot giants”, che possiedono periodi orbitali sotto i 10 giorni”.

TOI-5398 è costituito da un “sub-Nettuno” caldo (TOI-5398 c) orbitante internamente rispetto al suo compagno di massa simile a Saturno a corto periodo orbitale (TOI-5398 b).

“Tale studio – afferma Valerio Nascimbeni, ricercatore presso l’INAF di Padova – supporta una delle teorie di formazione dei pianeti giganti a corto periodo, la quale vede questi ultimi formarsi nelle regioni esterne del sistema e farsi spazio (in un sistema multi-planetario) tramite migrazioni ‘tranquille’, che prevengono il sovrapponimento delle orbite planetarie e della conseguente distruzione del sistema. Tale teoria risale al 1996, frutto di uno studio teorico guidato dal Prof. Lin dell’University of California, Santa Cruz, ma è da pochissimi anni che abbiamo un riscontro osservativo di simili sistemi (solo 5 su più di 500 sistemi con pianeti giganti a corto periodo mostra tale configurazione/architettura orbitale)”.

Gli altri cinque sistemi planetari con queste caratteristiche, ossia un’origine non violenta e la compresenza di piccoli pianeti assieme al pianeta gigante a corto periodo sono WASP-47, Kepler-730, WASP-132, TOI-1130, e TOI-2000. ovvero pianeti giganti tra 10 e 100 giorni di periodo orbitale (inglese “warm Jupiter”), da non confondere con gli “hot jupiter”, i quali possiedono periodi orbitali < 10 giorni.

TOI-5398, come detto, è solo il sesto sistema in questa ristrettissima cerchia e mostra una caratteristica molto particolare, perchè rispetto agli altri è giovanissimo. Giacomo Mantovan, primo autore dell’articolo e ricercatore del dipartimento di Fisica e Astronomia dell’Università di Padova nonché associato INAF, aggiunge:

“La sua formazione, infatti, anziché datare, come gli altri, fra i 3 e 10 miliardi di anni, viene misurata in circa 650 milioni di anni. Questo è l’aspetto eccezionale, perché tale sistema non si trova in una situazione congelata e definitiva come gli altri, ma è appunto giovane e quindi in evoluzione. Può offrire quindi nuove risposte rispetto all’evoluzione dei pianeti e della loro atmosfera”.

“Comprendere il processo di formazione e sviluppo dei pianeti giganti a corto periodo è di estrema importanza anche per la comprensione del Sistema solare, in quanto non esiste un corrispettivo planetario del nostro vicinato planetario. Per comprendere questa mancanza nel nostro sistema e le sue possibili implicazioni – ad esempio sulla presenza della vita – è fondamentale esaminare la storia di formazione di tali pianeti nei sistemi planetari in cui essi sono presenti”, prosegue il ricercatore.

Mantovan analizza gli sviluppi futuri di questa ricerca. “TOI-5398 è un interessante sistema in ottica futura, in quanto entrambi i pianeti del sistema sono candidati ideali per svolgere caratterizzazioni atmosferiche precise, ed anche grazie alla loro giovane età. L’unione di queste due proprietà ed alla presenza di due pianeti con differenti caratteristiche (raggio, massa, ecc), offre la rara opportunità di poter studiare i segni distintivi di differenti storie di formazione planetaria sotto l’influenza della stessa stella, solitamente inaccessibili in sistemi planetari più evoluti e vecchi”.

E conclude: “TOI-5398 potrebbe quindi potenzialmente diventare una pietra miliare per comprendere la formazione di sistemi planetari dove sono presenti giganti a breve periodo orbitale, e potrebbe diventare un punto di riferimento anche all’interno del limitatissimo sottocampione di sistemi ove sono presenti anche piccoli compagni planetari tra il gigante a corto periodo e la stella”.

 Il ricercatore Giacomo Mantovan, primo autore dell’articolo su TOI-5398 e ricercatore del dipartimento di Fisica e Astronomia dell’Università di Padova nonché associato INAF. Crediti: G. Mantovan/Università di Padova - INAF
Il ricercatore Giacomo Mantovan, primo autore dell’articolo su TOI-5398 e ricercatore del dipartimento di Fisica e Astronomia dell’Università di Padova nonché associato INAF. Crediti: G. Mantovan/Università di Padova – INAF


 

Per altre informazioni:

L’articolo “The GAPS programme at TNG XLIX. TOI-5398, the youngest compact multi-planet system composed of an inner sub-Neptune and an outer warm Saturn”, di G. Mantovan et al., è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo e immagini dagli Uffici Stampa  Istituto Nazionale di Astrofisica – INAF e Università di Padova

GRB 221009A, IL LAMPO GAMMA PIÙ LUMINOSO DI TUTTI I TEMPI

Il potente lampo di raggi gamma scoperto il 9 ottobre 2022 è un evento estremamente raro, che si verifica una volta ogni 10mila anni. Le osservazioni, realizzate da telescopi nello spazio e a terra con forte coinvolgimento italiano, saranno determinanti per comprendere le colossali esplosioni da cui hanno origine i lampi gamma. L’annuncio oggi durante una conferenza stampa presso il meeting della High Energy Astrophysics Division della American Astronomical Society, alle Hawaii, in occasione della pubblicazione dei primi risultati, che vedono la partecipazione di numerosi team di ricerca dell’Istituto Nazionale di Astrofisica, Istituto Nazionale di Fisica Nucleare e Agenzia Spaziale Italiana.

I raggi X del lampo gamma GRB 221009A sono stati rilevati per settimane come luce diffusa dalla polvere nella nostra galassia, portando alla comparsa di una serie di anelli in espansione. Questa animazione mostra le immagini catturate nel corso di 12 giorni dal telescopio a raggi X a bordo del Neil Gehrels Swift Observatory della NASA.
Crediti: NASA/Swift/A. Beardmore (University of Leicester)

Il 9 ottobre 2022, numerosi telescopi spaziali in orbita attorno alla Terra e sonde operanti in diverse aree del Sistema solare hanno rivelato un forte impulso di radiazione ad altissima energia, seguita da un’emissione prolungata su tutto lo spettro elettromagnetico. La sorgente era un lampo di raggi gamma (gamma ray burst, GRB), una delle esplosioni più potenti dell’universo, così eccezionale da guadagnarsi subito il soprannome di “BOAT” dall’inglese “Brightest Of All Time”, ovvero “il più luminoso di tutti i tempi”.

GRB 221009A, il lampo gamma più luminoso di tutti i tempi
GRB 221009A, il lampo gamma più luminoso di tutti i tempi. Il telescopio spaziale XMM-Newton dell’ESA ha registrato 20 anelli di polvere, 19 dei quali sono mostrati in questa immagine, che combina le osservazioni effettuate due e cinque giorni dopo la scoperta del GRB 221009A. Le strisce scure indicano gli spazi tra i rilevatori del telescopio. L’anello più grande visibile in questa immagine è paragonabile alle dimensioni apparenti della luna piena in cielo.
Crediti: ESA/XMM-Newton/M. Rigoselli (INAF)

Chiamato correntemente GRB 221009A, il lampo è stato rivelato per la prima volta dal Fermi Gamma-Ray Space Telescope della NASA, che vede un fondamentale contributo dell’Italia attraverso l’Agenzia spaziale italiana (ASI), l’Istituto Nazionale di Astrofisica (INAF) e l’Istituto Nazionale di Fisica Nucleare (INFN), mentre il primo a dare l’annuncio è stato il satellite Neil Gehrels Swift Observatory, sempre della NASA, anch’esso con una forte partecipazione italiana attraverso ASI e INAF. Inizialmente si riteneva che la sua sorgente potesse trovarsi nella nostra galassia, la Via Lattea, ma ulteriori dati raccolti da Swift e Fermi e dal satellite INTEGRAL dell’Agenzia Spaziale Europea (ESA) hanno indicato un’origine molto più lontana. Grazie alle osservazioni realizzate poche ore dopo con lo strumento X-Shooter sul Very Large Telescope dell’ESO, in Cile, si è potuta finalmente identificare la sorgente del GRB: una galassia a circa 2 miliardi di anni-luce da noi. Si tratta di una distanza ragguardevole dalla Via Lattea ma relativamente vicina se si considerano le immense scale cosmiche. È il GRB più intenso di cui sia mai stata misurata la luminosità, e il più luminoso mai visto dalla Terra nei 55 anni da quando i primi satelliti per lo studio dei raggi gamma sono stati messi in orbita. È inoltre uno dei più vicini mai osservati tra i GRB lunghi, quelli la cui emissione iniziale dura più di 2 secondi.

Marco Tavani, presidente dell’Istituto Nazionale di Astrofisica, dichiara: “Il lampo gamma cosmico GRB 221009A è un evento a dir poco eccezionale per vari motivi. Prima di tutto, per la sua intrinseca potenza, durata e straordinaria intensità; ma anche per il fatto che si sia verificato, in termini cosmici, relativamente vicino alla Terra. Una combinazione rara, che non ha eguali tra i lampi gamma cosmici osservati negli ultimi decenni. La radiazione X e gamma delle prime fasi di GRB 221009A, e di seguito quella radio, ottica e X nella fase di emissione ritardata, è stata rivelata da diversi telescopi da terra e dallo spazio in cui l’Istituto Nazionale di Astrofisica è fortemente coinvolto se non primo attore. I telescopi utilizzati nello studio di questo GRB sono equipaggiati con strumenti all’avanguardia per poter catturare la radiazione dalla sorgente associata a GRB 221009A, analizzarla e comprendere i dettagli della poderosa esplosione da cui ha avuto origine. Il lavoro delle nostre ricercatrici e dei nostri ricercatori, che hanno guidato diversi studi sin dalle prime fasi di GRB 221009A, è stato fondamentale per caratterizzare questo peculiare lampo gamma cosmico e coglierne a pieno le sue potenzialità per la comprensione dei fenomeni più energetici dell’Universo che portano alla formazione delle stelle di neutroni e dei buchi neri”.

L’analisi dei dati, confrontati con quelli di circa 7mila GRB osservati nei decenni passati con il telescopio spaziale Fermi e lo strumento russo Konus a bordo del satellite NASA Wind, ha permesso di stimare la frequenza con cui si verifica un evento così luminoso e relativamente vicino: una volta ogni 10mila anni. Il lampo era così luminoso che ha letteralmente accecato la maggior parte degli osservatori spaziali a raggi gamma, che non hanno potuto misurare la reale intensità dell’emissione. Dopo aver ricostruito i dati mancanti di Fermi e grazie al confronto con i risultati del team russo che lavora sui dati Konus e con i team cinesi che analizzano le osservazioni del rivelatore GECAM-C a bordo del satellite SATech-01 e degli strumenti a bordo dell’osservatorio Insight-HXMT, si è dimostrato che l’esplosione è stata 70 volte più luminosa di qualsiasi altra mai vista.

L’evento è stato così brillante che la sua radiazione residua, il cosiddetto afterglow, è ancora visibile e rimarrà tale per molto tempo. I risultati sono stati presentati oggi durante il meeting della High Energy Astrophysics Division della American Astronomical Society a Waikoloa, Hawaii. Gli articoli che presentano i risultati sono stati pubblicati in un numero speciale della rivista The Astrophysical Journal Letters e su Astronomy & Astrophysics.

Hanno osservato il GRB anche lo strumento NICER a bordo della Stazione spaziale internazionale, il telescopio spaziale NuSTAR della NASA, la sonda Voyager 1 che esplora lo spazio interstellare, il satellite italiano AGILE, realizzato dall’ASI con il contributo di INAF e INFN, e diversi satelliti dell’ESA, tutti con importanti contributi italiani: dai telescopi spaziali XMM-Newton e INTEGRAL alle sonde Solar Orbiter e BepiColombo fino al satellite Gaia. INTEGRAL, trovandosi in posizione ottimale, ne ha registrato sia l’emissione immediata sia l’afterglow con un’accuratezza senza precedenti. Gli scienziati ritengono che i GRB lunghi, come questo, derivino dal collasso del nucleo di una stella massiccia e la conseguente nascita di un buco nero, che emette getti di particelle ad altissima energia in direzioni opposte mentre ingurgita la materia circostante. Osservare l’afterglow del GRB, causato proprio da questi getti bipolari, ha permesso di testare i diversi modelli teorici che descrivono i processi fisici in atto nelle fasi iniziali dell’esplosione.

“Si tratta di una scoperta importante – commenta il presidente dell’ASI Giorgio Saccoccia – resa possibile anche grazie al contribuito di tutte le sonde come Fermi, Swift, INTEGRAL, AGILE, NuSTAR, IXPE, XMM, Solar Orbiter, Bepi Colombo, Gaia e CSES. Satelliti in orbita a cui ASI ha dato il suo contributo. Il merito va anche al nostro Space Science Data Center (SSDC) che mette da diverso tempo a fattor comune i dati scientifici provenienti da tutte queste missioni che hanno a bordo strumentazioni fornite da ASI. Questa visione multidisciplinare della scienza spaziale rappresenta il percorso vincente per aumentare le competenze italiane nello studio dell’Universo. Si tratta di una forte capacità dell’ASI che, da sempre, lavora insieme all’intera comunità scientifica, per lo sviluppo di tecnologie all’avanguardia, che consentono di avere una visione dell’Universo più completa”.

Dopo aver viaggiato attraverso lo spazio intergalattico, la radiazione proveniente dal GRB 221009A si è imbattuta nelle nubi di polvere presenti nel mezzo interstellare che permea la nostra galassia, la Via Lattea. Quando i raggi X incontrano la polvere, una parte di essi viene dispersa, creando anelli concentrici che sembrano espandersi verso l’esterno: una sorta di eco luminosa del lampo mentre attraversa la galassia. Il telescopio spaziale XMM-Newton ha fornito un’immagine profonda e dettagliata di 20 anelli, osservando in diversi giorni dopo la scoperta del GRB, mentre il satellite Swift ne ha monitorato l’evoluzione nel tempo. L’anello più distante è sorto dall’impatto con una nube di polvere situata a 61mila anni luce di distanza, dall’altro lato della Via Lattea, mentre il più vicino, visto solo da Swift, si è formato a circa 700 anni luce da noi. Il modo in cui una nube di polvere diffonde i raggi X dipende dalla sua distanza, dalle dimensioni dei granelli di polvere e dall’energia dei raggi X: l’analisi degli anelli creati dal GRB ha permesso di ricostruire parte della sua emissione iniziale a raggi X ma anche la distribuzione e composizione delle nubi di polvere nella nostra galassia. I dati indicano che i granelli di polvere sono composti principalmente da grafite, una forma cristallina del carbonio.

Gli anelli di polvere sono stati rivelati anche dall’osservatorio spaziale IXPE, una collaborazione tra NASA e ASI con un importante contributo di INAF e INFN, che osserva la polarizzazione dei raggi X. Il piccolo grado di polarizzazione misurato da IXPE nella fase di afterglow conferma che uno dei due getti è stato osservato in direzione quasi frontale. Da questo tipo di GRB, gli scienziati si aspettano di osservare anche una supernova poche settimane dopo, che però non è stata rivelata. Uno dei possibili motivi della mancata osservazione potrebbe essere l’attenuazione da parte di spesse nubi di polvere nel piano della Via Lattea. Tuttavia, non ha sortito successo nemmeno la ricerca nell’infrarosso effettuata con il telescopio spaziale James Webb, che ha osservato l’afterglow in contemporanea con il Telescopio Nazionale Galileo (TNG) dell’INAF. Può darsi che la stella fosse così massiccia che, dopo l’esplosione iniziale, abbia immediatamente formato un buco nero che ha inghiottito tutto il materiale circostante, impedendo la formazione di una nube di gas, il cosiddetto resto di supernova.

“Un evento davvero unico per la sua intensità e vicinanza cosmica – spiega Marco Pallavicini, vicepresidente dell’Istituto Nazionale di Fisica Nucleare – che conferma il potere diagnostico delle misure di polarizzazione offerte da IXPE e dallo strumento innovativo che INFN ha sviluppato e messo a disposizione della missione, il quale si innesta in una ormai consolidata tradizione di successi ottenuti nell’ambito della realizzazione di rivelatori spaziali di sempre maggiore efficacia e capacità risolutive. Risultati certificati anche dai contributi forniti a molti degli osservatori spaziali, tra cui Fermi e AGILE, protagonisti della caratterizzazione di questo GRB senza precedenti.”

Anche sulla Terra il GRB 221009A ha fatto sentire i suoi effetti, rilasciando nei pochi minuti della sua durata circa un gigawatt di potenza nella porzione superiore della nostra atmosfera, ionizzando fortemente la parte alta della ionosfera su una larga regione geografica centrata sull’India e che ha interessato anche Europa e Asia. L’aumento del flusso di elettroni correlato con il GRB è stato misurato dal rivelatore di particelle cariche HEPP-L a bordo del China Seismo-Electromagnetic Satellite (CSES-01), che vede la partecipazione di ASI e INFN, il quale stava orbitando sopra l’Europa al momento dell’arrivo del GRB.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

JWST CATTURA LE GALASSIE CHE HANNO REIONIZZATO L’UNIVERSO

Un team internazionale di ricercatrici e ricercatori guidato dall’Istituto Nazionale di Astrofisica (INAF) ha studiato 29 galassie ai primordi dell’universo, stimando per la prima volta la frazione di luce da esse rilasciata in grado di ionizzare il gas circostante. Questo lavoro è stato reso possibile grazie al telescopio spaziale JWST e l’aiuto di un massiccio ammasso di galassie che, come una lente, ha amplificato la luce proveniente dalle galassie ancora più distanti.

Le prime stelle e galassie nella storia dell’universo, nate oltre tredici miliardi di anni fa, quando il cosmo aveva solo poche centinaia di milioni di anni d’età, si sono formate a partire da una miscela di gas neutro, costituito principalmente da atomi di idrogeno. La radiazione energetica proveniente da queste prime stelle e galassie ha poi contribuito, nelle centinaia di milioni di anni seguenti, a trasformare questo gas e ionizzarlo, cioè scinderlo in elettroni e protoni. Gli astronomi la chiamano “reionizzazione” poiché durante questa fase il mezzo intergalattico che pervade l’universo, da neutro, torna a essere ionizzato come lo era nel cosmo primordiale. Non è però ancora chiaro quali galassie abbiano contribuito maggiormente a reionizzare il mezzo intergalattico nei primi stadi di questo processo, né quale percentuale di fotoni – le particelle di luce – con energie sufficienti a ionizzare il gas circostante sia fuoriuscita dai diversi tipi di galassie presenti all’epoca.

JWST CATTURA LE GALASSIE CHE HANNO REIONIZZATO L’UNIVERSO
JWST cattura le galassie che hanno reionizzato l’universo. JWST-Abell-2744: L’ammasso di galassie Abell 2744, chiamato anche Ammasso di Pandora, osservato con il telescopio spaziale Webb. L’ammasso agisce da lente gravitazionale, amplificando la luce proveniente da sorgenti più distanti e permettendo di rilevare galassie tra le prime a formarsi nella storia dell’universo. Crediti: NASA, ESA, CSA, I. Labbe (Swinburne University of Technology), R. Bezanson (University of Pittsburgh), A. Pagan (STScI)

Con il suo specchio dal diametro di 6,5 metri e la sensibilità osservativa nella banda infrarossa, il James Webb Space Telescope (JWST), osservatorio spaziale della NASA in collaborazione con ESA e CSA, può spingersi indietro nel tempo fino alle galassie più distanti, tra le prime a formarsi nella storia dell’universo. Il progetto GLASS, una collaborazione internazionale di ricercatrici e ricercatori in 24 istituti di ricerca e università tra Italia, Stati Uniti, Giappone, Danimarca, Australia, Cina e Slovenia, che utilizza JWST per cercare risposta ai quesiti ancora aperti sulla reionizzazione cosmica, ha recentemente pubblicato un nuovo articolo a guida italiana sulla rivista Astronomy & Astrophysics.

“Abbiamo studiato, tramite osservazioni spettroscopiche e fotometriche ottenute con JWST, 29 galassie lontane e siamo riuscite a misurare in maniera indiretta le loro capacità ionizzanti, dato che a distanze così elevate non è possibile osservare direttamente i fotoni di così alta energia che sono quelli che hanno portato alla reionizzazione del mezzo intergalattico”, spiega la prima autrice del nuovo articolo Sara Mascia, dottoranda in Astronomy, Astrophysics and Space Science all’Università di Roma Tor Vergata, che porta avanti la sua ricerca presso l’Istituto Nazionale di Astrofisica (INAF). “Questo studio dimostra la capacità di JWST non solo di trovare le galassie più distanti ma anche di svelarne le proprietà fisiche.”

La luce proveniente da queste galassie, catturata con gli strumenti NIRCam e NIRSPec a bordo di JWST, è stata emessa quando l’universo aveva un’età compresa tra circa 650 milioni e 1,3 miliardi di anni. Prima di queste osservazioni, le proprietà ionizzanti di queste lontanissime galassie erano ignote, soprattutto per quanto riguarda le galassie di piccola massa, molto difficili da studiare.

“Abbiamo stimato per la prima volta la capacità ionizzante delle galassie nell’epoca della reionizzazione: in particolare, siamo riusciti a stimare quanti fotoni ionizzanti fuoriescono dalle galassie di piccola massa grazie all’effetto di lente gravitazionale da parte di Abell 2744, un ammasso di galassie che si trova tra noi e le galassie distanti e amplifica il loro segnale”,

aggiunge Laura Pentericci, ricercatrice INAF a Roma e co-autrice del nuovo lavoro.

“I nostri risultati indicano che oltre l’80 percento delle galassie osservate contribuisce in maniera significativa alla reionizzazione.”

Nuove osservazioni che saranno realizzate prossimamente con JWST estenderanno questa analisi a campioni più grandi di galassie, includendo quelle con masse più elevate o più distanti. Lo scopo è di determinare se la maggior parte dei fotoni che hanno contribuito a reionizzare l’universo sia stata fornita da galassie più massicce e luminose di quelle osservate oppure se, come ritenuto dai principali modelli attuali, il contributo maggiore sia dovuto alle galassie più deboli, molto più numerose.


 

Per ulteriori informazioni:

L’articolo “Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program”, di S. Mascia, L. Pentericci, A. Calabrò, T. Treu, P. Santini, L. Yang, L. Napolitano, G. Roberts-Borsani, P. Bergamini, C. Grillo, P. Rosati, B. Vulcani, M. Castellano, K. Boyett, A. Fontana, K. Glazebrook, A. Henry, C. Mason, E. Merlin, T. Morishita, T. Nanayakkara, D. Paris, N. Roy, H. Williams, X. Wang, G. Brammer, M. Bradac, W. Chen, P. L. Kelly, A. M. Koekemoer, M. Trenti, R. A. Windhorst, è stato pubblicato online sulla rivista Astronomy & Astrophysics.

 

Allo studio hanno partecipato anche ricercatori delle università di Ferrara e Statale di Milano.

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

SCOPERTE DUE ESO-TERRE POTENZIALMENTE ABITABILI A 16 ANNI LUCE DA NOI

Un team internazionale di ricercatori, tra cui alcuni dell’Istituto Nazionale di Astrofisica (INAF), ha scoperto la presenza di due pianeti di massa comparabile a quella della Terra in orbita attorno alla stella GJ 1002, una nana rossa distante 16 anni luce da noi. Entrambi i pianeti orbitano all’interno della zona del sistema considerata potenzialmente abitabile.

SCOPERTE DUE ESO-TERRE POTENZIALMENTE ABITABILI A 16 ANNI LUCE DA NOI
Scoperte due eso-terre potenzialmente abitabili a 16 anni luce da noi. Rappresentazione artistica del sistema esoplanetario attorno alla stella GJ 1002. Crediti: Alejandro Suárez Mascareño e Inés Bonet Márquez

I nuovi pianeti individuati orbitano attorno alla vicina stella GJ 1002, situata a meno di 16 anni luce di distanza dal Sistema solare, in direzione della costellazione della Balena. Entrambi hanno una massa simile a quella della Terra e orbitano a una distanza dalla loro stella ideale per mantenere l’acqua allo stato liquido, condizione considerata fondamentale per ospitare forme di vita. Un anno su GJ 1002 b, il pianeta più interno, dura solo 10 giorni: tanto, infatti, il pianeta impiega per completare un’orbita attorno alla sua stella. Il secondo corpo celeste del sistema, GJ 1002 c, più distante, percorre interamente la sua orbita in 21 giorni.

“La natura sembra determinata a dimostrare che gli esopianeti simili alla Terra sono molto comuni. Con questi due, ne conosciamo già 7 in sistemi vicini”, spiega Alejandro Suárez Mascareño, ricercatore dell’Instituto de Astrofísica de Canarias (IAC), primo autore dell’articolo che riporta la scoperta accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

“La stella centrale è un astro di bassa luminosità, con solo il 12% della massa del nostro Sole. È una sorella gemella di Proxima Centauri, la stella a noi più vicina, e per questo la regione di abitabilità del sistema è situata nelle sue immediate vicinanze”, spiega Alessandro Sozzetti, coautore dell’articolo e primo ricercatore presso l’INAF di Torino.

Scoperte due eso-terre potenzialmente abitabili a 16 anni luce da noi: infografica che mette a confronto le dimensioni dei pianeti del nostro Sistema solare con le due eso-terre scoperte attorno alla stella GJ 1002, denominate “GJ 1002 b” e “GJ 1002 c”. Crediti: Alejandro Suárez Mascareño / NASA

La vicinanza della stella al nostro sistema solare rende entrambi i pianeti, GJ 1002 c in particolare, ottimi candidati per la caratterizzazione atmosferica attraverso lo studio della loro luce riflessa o dell’emissione termica.

“Ci aspettiamo di poter investigare la presenza di un’atmosfera attorno a GJ 1002 c, alla ricerca di ossigeno in particolare, utilizzando lo spettrografo ANDES, strumento la cui progettazione è a guida italiana, in cui INAF e fortemente coinvolto e che opererà in futuro sull’Extremely Large Telescope dell’ESO, il più grande telescopio al mondo con il suo specchio principale di ben 39 metri di diametro, in costruzione nel deserto cileno”, spiega Sozzetti.

Inoltre, entrambi i pianeti hanno le caratteristiche giuste per diventare obiettivi primari di futuri ambiziosi progetti di missioni spaziali in grado di ottenerne immagini dirette, quali LUVEx, recentemente raccomandato a NASA da un comitato di esperti americani, o LIFE, al momento oggetto di studio in Europa nel contesto del programma di lungo termine Voyage 2050 dell’ESA.

Questa scoperta è stata possibile solo grazie alle osservazioni combinate degli strumenti ESPRESSO e CARMENES. GJ 1002 è stata osservata da CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs), lo spettroscopio installato al telescopio da 3,5 metri di diametro dell’Osservatorio Calar Alto, in Spagna, tra il 2017 e il 2019. Successivamente, tra il 2019 e il 2021, la stella è stata osservata anche con lo spettrografo ESPRESSO (Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations installato al Very Large Telescope dell’ESO, sulle Ande cilene. La combinazione di ESPRESSO e della grande superficie di raccolta della luce messa a disposizione dagli specchi principali del VLT, ciascuno del diametro di 8 metri, ha permesso di ottenere misure di velocità radiali con una precisione di 30 centimetri al secondo, un risultato fuori dalla portata di quasi ogni altro strumento al mondo. “L’individuazione dei segnali dovuti ai due pianeti nei dati di CARMENES ed ESPRESSO separatamente era tutt’altro che chiara. La loro effettiva combinazione è stata la chiave di volta che ci ha permesso di stabilirne la presenza senza ombra di dubbio. Possiamo ben affermare che in questo caso, grazie all’efficace collaborazione tra gruppi diversi, l’unione fa la forza!”, conclude Alessandro Sozzetti.

Per ulteriori informazioni:

La scoperta è in corso di pubblicazione sulla rivista Astronomy & Astrophysics nell’articolo Twotemperate Earth-mass planets orbiting the nearby star GJ 1002 di A. Suárez Mascareño, E. González–Álvarez, M. R. Zapatero Osorio, J. Lillo-Box, J. P. Faria, V. M. Passegger, J. I. González Hernández, P. Figueira, A. Sozzetti, R. Rebolo, F. Pepe,N. C. Santos, S. Cristiani, C. Lovis, A. M. Silva, I. Ribas, P. J. Amado, J. A. Caballero, A. Quirrenbach, A. Reiners, M. Zechmeister, V. Adibekyan, Y. Alibert, V. J. S. Béjar, S. Benatti, V. D’Odorico, M. Damasso, J. -B. Delisle, P. Di Marcantonio, S. Dreizler, D. Ehrenreich, A. P. Hatzes, N. Hara, Th. Henning, A. Kaminski, M. J. López–González, C. J. A. P. Martin, G. Micela, D. Montes, E. Pallé, S. Pedraz, E. Rodríguez, C. Rodríguez–López, L. Tal–Or, S. Sousa e S. Udry.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza
Istituto Nazionale di Astrofisica – INAF

TOI-1807B, IL PIÙ GIOVANE ESOPIANETA CON ORBITA ULTRA-BREVE

La sua orbita attorno alla stella madre dura solo 13 ore ed è il più giovane pianeta ultra-short period (USP – periodo orbitale ultra-breve) scoperto finora. Parliamo dell’esopianeta TOI-1807b, scoperto nel 2020 con il telescopio NASA TESS (Transiting Exoplanet Survey Satellite) e conosciuto come uno dei pochi pianeti ad avere un periodo di rivoluzione attorno alla propria stella inferiore a un giorno. Questo e molti altri dettagli sono stati descritti in un articolo in via di pubblicazione sulla rivista Astronomy & Astrophysics firmato da un gruppo internazionale guidato da ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università degli studi di Padova. I nuovi dati sono stati ottenuti con lo spettrografo HARPS-N installato sul Telescopio Nazionale Galileo (TNG) dell’INAF alle Canarie. Per fare un confronto nel Sistema solare, l’orbita di Mercurio – cioè il pianeta più vicino al Sole – dura 88 giorni, mentre un anno sulla Terra dura 365 giorni.

Confronto di TOI-1807B con la terra
Confronto di TOI-1807B con la terra
TOI-1807B orbita
Orbita di TOI-1807B
Confronto di TOI-1807B con Mercurio
Confronto di TOI-1807B con Mercurio

“Nel caso del target oggetto del nostro studio – spiega il primo autore del paper, Domenico Nardiello, assegnista di ricerca presso l’INAF di Padova – un anno su questo pianeta dura appena 13 ore terrestri. Il pianeta è interessante per una serie di aspetti: è il più giovane USP mai osservato finora, con un’età di appena 300 milioni di anni, e ha una densità simil terrestre. Inoltre grazie ai dati TESS e soprattutto grazie ai dati HARPS-N abbiamo calcolato con estrema precisione sia il raggio del pianeta che la massa”.

BD+39 2643 è la stella (di tipo spettrale K più fredda del Sole) al centro di questo sistema planetario ed è essa stessa molto giovane: circa 300 milioni di anni. Probabilmente, in questo “breve” lasso di tempo un’eventuale atmosfera costituita da idrogeno e elio, tipica di pianeti molto giovani, potrebbe già essere stata spazzata via tramite fotoevaporazione a causa dell’estrema vicinanza stella-pianeta, lasciando scoperto il nucleo roccioso del pianeta stesso. La distanza tra i due oggetti è circa un centesimo della distanza Terra-Sole e circa 1/30 della distanza che separa Mercurio dal Sole. Nel paper, i ricercatori affermano che è molto verosimile che l’atmosfera dei pianeti USP evapori in circa 100 milioni di anni.

I pianeti USP conosciuti finora hanno tutti età superiori al miliardo di anni. Pianeti simili, sebbene siano facilmente identificabili grazie al periodo orbitale molto corto, sono al contempo molto rari. Il co-autore Luca Malavolta, del Dipartimento di Fisica e Astronomia “Galileo Galilei” – Università di Padova, sottolinea:

“Il gran quantitativo di dati (di altissima qualità) raccolti da HARPS-N ha permesso che questo lavoro riuscisse. Abbiamo usato quasi 170 spettri della stella ottenuti nell’arco di due anni con una strategia osservativa ad-hoc per questo tipo di pianeti. La stella, essendo giovane, è molto attiva, e questo risulta essere un problema quando si tenta di identificare un pianeta nelle serie di velocità radiali. Abbiamo quindi utilizzato tecniche all’avanguardia sviluppate negli ultimi anni per separare il segnale relativo all’attività stellare dal segnale del pianeta. Senza l’utilizzo di queste tecniche, è praticamente impossibile identificare il pianeta, poiché il suo segnale è estremamente debole”.

I dati descritti nell’articolo non solo forniscono una misura di massa estremamente accurata del pianeta, ma anche la più precisa nell’ambito dei pianeti con periodo orbitale ultra-breve, con un errore sulla massa di appena il 15%, grazie ai dati HARPS-N presi al TNG sotto la collaborazione italiana GAPS.

“Siccome il pianeta transita (anche molte volte visto il periodo orbitale corto), abbiamo calcolato anche il raggio del pianeta, che unito alla massa, ci ha dato una misura estremamente precisa della densità del pianeta, e ci ha permesso di affermare che la densità del pianeta è rocciosa e quindi di tipo terrestre (un raggio pari a 1.5 volte il raggio terrestre e una massa pari a 2.5 volte quella terrestre)”, continua Malavolta.

L’obiettivo del team era quello di studiare TOI-1807b per derivare la sua massa e capire se avesse o meno un’atmosfera estesa, simile a quella osservata in alcuni pianeti più giovani ma più lontani dalla stella ospite. Analizzando i dati TESS per studiare i transiti del pianeta e ricavare il raggio del pianeta, i ricercatori hanno scoperto che l’oggetto ha un nucleo composto dal 25% di ferro e nessuna atmosfera estesa.

Nardiello conclude: “Fino a qualche anno fa non potevamo minimamente immaginare che potessero esistere pianeti così vicini alla propria stella ospite. Oggi, grazie al progredire della tecnologia, non solo siamo in grado di identificarli, bensì anche di conoscere con estrema precisione la loro età, tutte le caratteristiche fisiche, se hanno o meno un’atmosfera e come questa si sia evoluta nel tempo. Ciò favorirà molto la comprensione di come i pianeti (inclusa la Terra) si siano formati e quali condizioni permettano la nascita della vita”.

Per ulteriori informazioni:

L’articolo “The GAPS Programme at TNG. XXXVII. A precise density measurement of the young ultra-short period planet TOI-1807 b”, di D. Nardiello, L. Malavolta, S. Desidera, M. Baratella, V. D’Orazi, S. Messina, K. Biazzo, S. Benatti, R. Capuzzo Dolcetta, M. Mallonn, A. Bignamini, A. S. Bonomo, F. Borsa, I. Carleo, R. Claudi, E. Covino, M. Damasso, et al. è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

 

Testo e foto dall’Università degli Studi di Padova

Andromeda a 6.6 GHz: un’immagine unica della galassia sorella della Via Lattea 

galassia di Andromeda immagine
Image credits, Radio:WSRT/R. Braun (https://www.astron.nl/); Microwave:SRT/S.Fatigoni et al. (http://www.srt.inaf.it/); Infrared:NASA/Spitzer/K. Gordon (https://www.spitzer.caltech.edu/); Visible: Robert Gendler (http://www.robgendlerastropics.com/); Ultraviolet: NASA/GALEX (http://www.galex.caltech.edu/); X-ray: ESA/XMM/W. Pietsch (https://www.cosmos.esa.int/web/xmm-newton)

L’immagine ottenuta a tale frequenza, oltre a essere senza precedenti, ha permesso di definire nel dettaglio la morfologia della galassia e in particolare di individuare le regioni dove nascono le nuove stelle.

galassia di Andromeda immagine
Image credits, Radio:WSRT/R. Braun (https://www.astron.nl/); Microwave:SRT/S.Fatigoni et al. (http://www.srt.inaf.it/); Infrared:NASA/Spitzer/K. Gordon (https://www.spitzer.caltech.edu/); Visible: Robert Gendler (http://www.robgendlerastropics.com/); Ultraviolet: NASA/GALEX (http://www.galex.caltech.edu/); X-ray: ESA/XMM/W. Pietsch (https://www.cosmos.esa.int/web/xmm-newton)

I risultati dello studio, frutto della collaborazione fra la Sapienza e l’lstituto Nazionale di Astrofisica sono stati pubblicati sulla rivista Astronomy & Astrophysics.

Andromeda è una delle galassie più studiate di tutti i tempi e probabilmente anche la più conosciuta al grande pubblico per la sua prossimità e somiglianza con la nostra galassia, la Via Lattea. Infatti, una conoscenza della natura dei processi fisici che avvengono al suo interno permetterebbe di capire meglio cosa avviene nella nostra galassia, come se la guardassimo dall’esterno.

Paradossalmente, proprio ciò che finora ha ostacolato una osservazione approfondita di Andromeda nelle microonde è la sua stessa conformazione. Infatti, a causa delle sua prossimità alla Via Lattea questa ha una dimensione angolare di diversi gradi in cielo, il che la mette fuori dalla portata degli interferometri costituiti da schiere di antenne di piccola taglia. Per poter osservare Andromeda a frequenze di 6.6 GHz e superiori è indispensabile disporre di un unico radiotelescopio a disco singolo dotato di una grande area efficace.

Oggi, una collaborazione scientifica fra la Sapienza Università di Roma e l’Istituto Nazionale di Astrofisica – INAF, ha permesso di ottenere con il Sardinia Radio Telescope una immagine della galassia di Andromeda completamente nuova, a 6.6 GHz, una frequenza mai sondata prima d’ora.

L’ottima risoluzione angolare del telescopio ha permesso di definire nel dettaglio la morfologia e di ampliare così le conoscenze finora disponibili su questa galassia.

I risultati dello studio, realizzato con la partecipazione anche di numerosi enti e università internazionali come la University of British Columbia, l’Instituto de Radioastronomia y Astrofisica – UNAM in Messico, l’Instituto de Astrofisica de Canarias, l’Infrared Processing Analysis Center – IPAC in California, sono stati pubblicati sulla rivista Astronomy & Astrophysics. 

A questa frequenza (6.6 GHz) l’emissione della galassia è vicina al suo minimo, complicando la possibilità di ottenere una immagine così definita. Nonostante ciò, grazie alle 66 ore di osservazione con il Sardinia Radio Telescope e a un consistente lavoro di elaborazione dei dati, i ricercatori sono riusciti a mappare la galassia con alta sensibilità.

“Il Sardinia Radio Telescope è una grande antenna a disco singolo in grado di operare ad alte frequenze radio – sottolinea Matteo Murgia dell’INAF di Cagliari- e di produrre dati di elevatissima importanza scientifica e immagini di assoluta qualità”.

 “Combinando questa nuova immagine con quelle precedentemente acquisite – aggiunge Elia Battistelli del Dipartimento di Fisica della Sapienza e coordinatore dello studio – abbiamo fatto significativi passi in avanti nel chiarire la natura della emissione di microonde di Andromeda, distinguendo i processi fisici che avvengono in diverse regioni della galassia”

Andromeda galassia immagine

“In particolare siamo riusciti a determinare la frazione di emissione dovuta ai processi termici legati alle prime fasi della formazione di nuove stelle, e la frazione di segnale radio imputabile ai meccanismi non-termici dovuti a raggi cosmici che spiraleggiano nel campo magnetico presente nel mezzo interstellare” concludono Federico Radiconi del Dipartimento di Fisica della Sapienza e Sofia Fatigoni della Università della British Columbia.

Andromeda galassia immagine

Con i dati ottenuti, per i ricercatori è stato possibile così stimare il ritmo di formazione stellare di Andromeda e produrre una mappa dettagliata che ha messo in evidenza il disco della galassia come regione d’elezione per la nascita di nuove stelle.

Per ottenere questa immagine unica di Andromeda il team ha sviluppato e implementato dei software ad hoc che hanno permesso, tra le altre cose, di testare nuovi algoritmi per la identificazione di sorgenti a più bassa emissione nel campo di vista attorno ad Andromeda, il più vasto mai esaminato a una frequenza di 6.6 GHz: in questo modo i ricercatori hanno estratto dalla mappa un catalogo di circa un centinaio di sorgenti puntiformi, ovvero stelle, galassie e altri oggetti, sullo sfondo di Andromeda.

Andromeda galassia immagine

Riferimenti:

Study of the thermal and non-thermal emission components in M31: the Sardinia Radio Telescope view at 6.6 GHz – S. Fatigoni, F. Radiconi, E.S. Battistelli, M. Murgia, E. Carretti, P. Castangia, R. Concu, P. de Bernardis, J. Fritz, R. Genova-Santos, F. Govoni, F. Guidi, L. Lamagna, S. Masi, A. Melis, R. Paladini, F.M. Perez-Toledo, F. Piacentini, S. Poppi, R. Rebolo, J.A. Rubino-Martin, G. Surcis, A. Tarchi, V. Vacca – Astronomy & Astrophysics 2021

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

PUBBLICATE LE PRIME SCOPERTE DI CHEOPS, LA MISSIONE DELL’ESA A CUI HANNO PARTECIPATO OLTRE 100 SCIENZIATI E 11 PAESI EUROPEI

 Rivelati i dettagli su WASP-189b, uno degli esopianeti più estremi tra quelli conosciuti. Tra i membri del progetto anche Davide Gandolfi, docente del Dipartimento di Fisica dell’Università di Torino

CHEOPS WASP-189b
CHEOPS at WASP-189b by Frederik Peeters

 

Lunedì 28 settembre, sulla rivista scientifica Astronomy & Astrophysics, è stato pubblicato uno studio che presenta i primi risultati ottenuti dalla missione spaziale CHEOPS. Il CHaracterising ExOPlanet Satellite (CHEOPS) è il primo telescopio spaziale dell‘Agenzia Spaziale Europea (ESA) dedicato alla caratterizzazione di esopianeti  conosciuti che orbitano attorno a stelle brillanti. Gli esopianeti, detti anche pianeti extrasolari, sono pianeti che si trovano al di fuori del nostro sistema solare e che orbitano altre stelle diverse dal Sole. Il primo esopianeta è stato scoperto nel 1995 da Michel Mayor e Didier Queloz, due astronomi svizzeri che proprio per tale scoperta hanno vinto nel 2019 il Premio Nobel per la fisica.

CHEOPS è una missione sviluppata grazie alla sinergia tra l’ESA e un consorzio di oltre cento scienziati e ingegneri provenienti da 11 Paesi europei guidato dall’Università di Berna. Tra gli scienziati coinvolti c’è anche Davide Gandolfi, docente del Dipartimento di Fisica dell’Università di Torino che da più di 5 anni fa parte del science team del progetto. Usando i dati raccolti da CHEOPS, gli scienziati hanno di recente portato avanti studi dettagliati sull’esopianeta WASP-189b, un pianeta che orbita la stella WASP-189, una delle stelle più calde ad oggi conosciute attorno a cui è stato scoperto un sistema planetario.

“La stella WASP-189 è lontana 322 anni luce dalla Terra e si trova nella costellazione della Bilancia”, spiega Monika Lendl dell’Università di Ginevra e prima autrice dello studio. “Il pianeta WASP-189b è particolarmente interessante perchè è un gigante gassoso che orbita molto vicino alla sua stella. Il pianeta impiega meno di tre giorni a compiere una rivoluzione attorno alla sua stella ed è 20 volte più vicino a questa di quanto la Terra sia vicina al Sole“, continua Lendl, spiegando come il pianeta sia grande più di una volta e mezzo Giove, il più grande tra i pianeti del sistema solare. A causa degli effetti mareali, un lato di WASP-189b è costantemente illuminato dalla luce della stella. Di conseguenza, la parte opposta è sempre al buio. Ciò implica che il clima è completamente diverso dagli altri giganti gassosi del nostro sistema solare, come Giove e Saturno. “In base alle osservazioni fatte grazie a CHEOPS, stimiamo che la temperatura di WASP-189b si aggiri attorno ai 3.200 gradi Celsius. Pianeti come questo sono chiamati “gioviani super-caldi”. A tali temperature il  ferro non solo si scioglie, ma addirittura diventa gassoso. Si tratta di uno dei pianeti più estremi mai conosciuti finora”, conclude Lendl.

 “Misurando la diminuzione di luce osservata durante l’occultazione del pianeta, quando WASP-189b si nasconde dietro la sua stella, CHEOPS ci ha permesso di stabilire che questo gigante gassoso assorbe gran parte della luce che riceve dalla stella e che molto probabilmente è privo di nubi”, afferma Davide Gandolfi. CHEOPS ha anche osservato due  transiti del pianeta, quando WASP-189b passa di fronte alla sua stella. Grazie alla precisione con cui CHEOPS misura le variazioni di flusso abbiamo dimostrato che la stella ha una forma non sferica a causa dell’elevata velocità con cui questa ruota attorno al suo asse. Abbiamo inoltre confermato che l’orbita del pianeta non è allineata con il piano equatoriale della stella. Questo suggerisce che WASP-189b si sia avvicinato così tanto alla sua stella a causa di violente interazioni gravitazionali con altri pianeti. La qualità di queste misure dimostra che CHEOPS ci permetterà di effettuare studi dettagliati dei pianeti extrasolari e delle stelle attorno a cui questi orbitano”, conclude Gandolfi.


Testo e immagine dall’Università degli Studi di Torino