News
Ad
Ad
Ad
Tag

Astronomy & Astrophysics

Browsing

LUCE SUI TITANI DELL’ALBA COSMICA: I PRIMI QUASAR SFIDANO I LIMITI DELLA FISICA PER CRESCERE
Scoperte nuove evidenze che spiegano come si siano formati i buchi neri supermassicci nel primo miliardo di anni di vita dell’Universo. Lo studio, condotto dai ricercatori dell’INAF, analizza 21 quasar distanti e rivela che questi oggetti si trovano in una fase di accrescimento super veloce, offrendo preziose informazioni sulla loro formazione ed evoluzione, in parallelo con quella delle galassie ospitanti.

In un articolo pubblicato oggi sulla rivista Astronomy & Astrophysics emergono nuove indicazioni che suggeriscono come i buchi neri supermassicci, con masse pari ad alcuni miliardi di volte quella del nostro Sole, si siano formati così rapidamente in meno di un miliardo di anni dopo il Big Bang. Lo studio, guidato dai ricercatori dell’Istituto Nazionale di Astrofisica (INAF), analizza un campione di 21 quasar, tra i più distanti scoperti finora, osservati nei raggi X dai telescopi spaziali XMM-Newton e Chandra. I risultati suggeriscono che i buchi neri supermassicci al centro di questi titanici quasar, i primi a essersi formati durante l’alba cosmica, potrebbero aver raggiunto le loro straordinarie masse grazie a un accrescimento molto rapido e intenso, fornendo così una spiegazione plausibile alla loro esistenza nelle prime fasi dell’Universo.

I quasar sono galassie attive, alimentate da buchi neri supermassicci al loro centro (chiamati nuclei galattici attivi), che emettono enormi quantità di energia mentre attraggono materia. Sono estremamente luminosi e lontani da noi. Nello specifico, i quasar esaminati in questo studio sono tra gli oggetti più distanti mai osservati e risalgono a un’epoca in cui l’Universo aveva meno di un miliardo di anni.

In questo lavoro, l’analisi delle emissioni nei raggi X di tali oggetti ha rivelato un comportamento completamente inaspettato dei buchi neri supermassicci al loro centro: è emerso un legame tra la forma dell’emissione in banda X e la velocità dei venti di materia lanciati dai quasar. Questa relazione associa la velocità dei venti, che può raggiungere migliaia di chilometri al secondo, alla temperatura del gas nella corona, la zona che emette raggi X più prossima al buco nero, legata a sua volta ai potenti meccanismi di accrescimento del buco nero stesso. I quasar con emissione X a bassa energia, quindi con una minore temperatura del gas nella corona, mostrano venti più veloci. Ciò è indice di una fase di crescita estremamente rapida che valica un limite fisico di accrescimento di materia denominato limite di Eddington, per questo motivo tale fase viene chiamata ‘super Eddington’. Viceversa, i quasar con emissioni più energetiche nei raggi X tendono a presentare venti più lenti.

“Il nostro lavoro suggerisce che i buchi neri supermassicci al centro dei primi quasar che si sono formati nel primo miliardo di anni di vita dell’Universo possano effettivamente aver aumentato la loro massa molto velocemente, sfidando i limiti della fisica”, afferma Alessia Tortosa, prima autrice del lavoro e ricercatrice presso l’INAF di Roma. “La scoperta di questo legame tra emissione X e venti è cruciale per comprendere come buchi neri così grandi si siano formati in così poco tempo, offrendo in tal modo un’indicazione concreta per risolvere uno dei più grandi misteri dell’astrofisica moderna”.

Il risultato è stato raggiunto soprattutto grazie all’analisi di dati raccolti con il telescopio spaziale XMM-Newton dell’Agenzia Spaziale Europea (ESA) che ha permesso di osservare i quasar per circa 700 ore, fornendo dati senza precedenti sulla loro natura energetica. La maggior parte dei dati, raccolti tra il 2021 e 2023 nell’ambito del Multi-Year XMM-Newton Heritage Programme, sotto la direzione di Luca Zappacosta, ricercatore dell’INAF di Roma, fa parte del progetto HYPERION, che si propone di studiare i quasar iperluminosi all’alba cosmica dell’Universo. L’estesa campagna di osservazioni è stata guidata da un team di scienziati italiani e ha ricevuto il sostegno cruciale dell’INAF, che ha finanziato il programma, sostenendo così una ricerca di avanguardia sulle dinamiche evolutive delle prime strutture dell’Universo.

“Per il programma HYPERION abbiamo puntato su due fattori chiave: da una parte l’accurata scelta dei quasar da osservare, selezionando i titani, cioè quelli che avevano accumulato la maggior massa possibile, e dall’altra lo studio approfondito delle loro proprietà nei raggi X, mai tentato finora su così tanti oggetti all’alba cosmica”, sostiene Zappacosta. “Direi proprio che abbiamo fatto bingo! I risultati che stiamo ottenendo sono davvero inaspettati e puntano tutti su un meccanismo di crescita dei buchi neri di tipo super Eddington”.

Questo studio fornisce indicazioni importanti per le future missioni in banda X, come ATHENA (ESA), AXIS e Lynx (NASA), il cui lancio è previsto tra il 2030 e il 2040. Infatti, i risultati ottenuti saranno utili per il perfezionamento degli strumenti di osservazione di nuova generazione e per la definizione di migliori strategie di indagine dei buchi neri e dei nuclei galattici nei raggi X a epoche cosmiche più remote, elementi essenziali per comprendere la formazione delle prime strutture galattiche nell’Universo primordiale.

Rappresentazione artistica generata tramite intelligenza artificiale, basata su un’immagine NASA (https://photojournal.jpl.nasa.gov/catalog/PIA16695), che mostra un buco nero supermassiccio in accrescimento, circondato da gas che spiraleggiano verso l'orizzonte degli eventi e emettono potenti venti di materia. Crediti: Emanuela Tortosa
Rappresentazione artistica generata tramite intelligenza artificiale, basata su un’immagine NASA (https://photojournal.jpl.nasa.gov/catalog/PIA16695), che mostra un buco nero supermassiccio in accrescimento, circondato da gas che spiraleggiano verso l’orizzonte degli eventi e emettono potenti venti di materia. Crediti: Emanuela Tortosa

Riferimenti bibliografici:

L’articolo “HYPERION. Shedding light on the first luminous quasars: A correlation between UV disc winds and X-ray continuum”, di Tortosa A. et al. 2024, è stato pubblicato online sulla rivista Astronomy & Astrophysics.

 

Testo e immagini dall’Ufficio Stampa dell’Istituto Nazionale di Astrofisica – INAF

AT 2021hdr, NUBE DI GAS DISTRUTTA DA UNA COPPIA DI BUCHI NERI SUPERMASSICCI AFFAMATI

Caotici e voraci, caratteristiche che potrebbero descrivere perfettamente due buchi neri mostruosi scoperti con l’Osservatorio Neil Gehrels Swift della NASA, satellite con una importante partecipazione italiana dell’Agenzia Spaziale Italiana (ASI) e dell’Istituto Nazionale di Astrofisica (INAF). Un gruppo di ricerca ha infatti rilevato, pubblicando i risultati oggi sulla rivista Astronomy and Astrophysics, per la prima volta un evento transiente di distruzione mareale in cui una coppia di buchi neri supermassivi sta interagendo con una nube di gas nel centro di una galassia distante. Il segnale di questo fenomeno, noto come AT 2021hdr, si ripete periodicamente, offrendo agli astronomi un’opportunità unica di studiare il comportamento di questi oggetti cosmici estremi. Tra gli enti di ricerca coinvolti nello studio c’è anche l’Istituto Nazionale di Astrofisica (INAF).

“È un evento molto strano, chiamato AT 2021hdr, che si ripete ogni pochi mesi”, spiega Lorena Hernández-García, ricercatrice presso il Millennium Institute of Astrophysics e il Millennium Nucleus for Transversal Research and Technology to explore Supermassive Black Holes, prima autrice dello studio e leader del team di ricerca. “Crediamo che una nube di gas abbia inghiottito i buchi neri; mentre orbitano l’uno attorno all’altro, i buchi neri interagiscono con la nube, perturbando e consumando il suo gas. Questo produce oscillazioni che si osservano nella luce del sistema”.

AT 2021hdr è stato scoperto grazie all’ALeRCE broker e osservato per la prima volta nel 2021 con lo ZTF (Zwicky Transient Facility) presso l’Osservatorio Palomar in California.

Rappresentazione artistica in cui si vede una coppia di buchi neri supermassivi che vortica in una nube di gas. L’evento si chiama AT 2021hdr, un brillamento ricorrente studiato dal Neil Gehrels Swift Observatory della NASA e dal ZTF Transient Facility presso l'Osservatorio Palomar in California. Crediti: NASA/Aurore Simonnet (Sonoma State University)
Rappresentazione artistica in cui si vede una coppia di buchi neri supermassivi che vortica in una nube di gas. L’evento si chiama AT 2021hdr, un brillamento ricorrente studiato dal Neil Gehrels Swift Observatory della NASA e dal ZTF Transient Facility presso l’Osservatorio Palomar in California. Crediti: NASA/Aurore Simonnet (Sonoma State University)

Cosa provoca questo fenomeno? Dopo aver esaminato diversi modelli per spiegare ciò che vedevano nei dati, i ricercatori hanno dapprima considerato l’ipotesi di un evento di distruzione mareale (in inglese tidal disruption event), vale a dire la distruzione di una stella che si era avvicinata troppo a uno dei buchi neri, per poi convergere su un’altra possibilità: la distruzione mareale di una nube di gas, più grande del binario stesso. Analizzando i dati raccolti, la dinamica è apparsa subito chiara: quando la nube si è scontrata con i due buchi neri, la loro forza di attrazione gravitazionale l’ha fatta a pezzi, formando filamenti attorno alla coppia. La nube si è poi riscaldata per attrito, il gas è diventato particolarmente denso e caldo vicino ai buchi neri, mentre la complessa interazione di forze ha fatto sì che parte del gas venisse espulso dal sistema a ogni rotazione.

ZTF ha rilevato esplosioni da AT 2021hdr ogni 60-90 giorni dal primo brillamento. Il gruppo di Hernández-García ha osservato la sorgente con Swift da novembre 2022. Il satellite americano Swift li ha aiutati a determinare che la coppia di buchi neri produce oscillazioni nella luce ultravioletta e nei raggi X simultaneamente a quelle viste nella luce visibile.

“È la prima volta che si osserva un evento di distruzione mareale di una nube di gas da parte di una coppia di buchi neri supermassivi”, afferma Gabriele Bruni, ricercatore presso l’INAF di Roma. “In particolare, l’oscillazione periodica misurata in banda ottica, ultravioletta, e raggi X ha una durata mai osservata in precedenza per un evento di distruzione mareale. Grazie al monitoraggio costante di ZTF è stato possibile scoprire questo peculiare sistema, e avviare osservazioni in diverse bande. La survey dello ZTF infatti copre il cielo intero ogni 3 giorni, permettendo per la prima volta di scoprire un grande numero di questi fenomeni astrofisici transitori”.

“I fenomeni transienti permettono di studiare ‘in diretta’ l’evoluzione dei sistemi di accrescimento su buchi neri supermassicci, dove la gravità e il campo magnetico si trovano a un regime energetico estremo. Sono quindi laboratori che non riusciremo mai a riprodurre sulla terra, dove testare nuove leggi della fisica”, sostiene Francesca Panessa, ricercatrice presso l’INAF di Roma.

I due buchi neri protagonisti della scoperta si trovano nel centro di una galassia chiamata 2MASX J21240027+3409114, situata a 1 miliardo di anni luce di distanza in direzione della costellazione del Cigno. I due buchi neri sono separati da circa 26 miliardi di chilometri e insieme contengono 40 milioni di volte la massa del Sole. Gli scienziati stimano che i buchi neri completino un’orbita ogni 130 giorni e che si fonderanno tra circa 70 mila anni.

Bruni sottolinea che “finora sono pochi i fenomeni transienti osservati che presentano un oscillazione nella curva di luce come questo”. E conclude: “Le coppie di buchi neri supermassicci sono ancora un fenomeno raramente osservato, e ne vedremo molti di più con la prossima generazione di antenne gravitazionali a bassa frequenza (come LISA – Laser Interferometer Space Antenna). Inoltre, si aspettiamo di scoprire altri casi come questo nei prossimi anni, anche con l’accensione del Vera Rubin Telescope, che sarà in grado di scrutare ancora più a fondo l’universo”.

 Da sinistra: Francesca Panessa (INAF Roma), Lorena Hernández-García (Millennium Institute of Astrophysics), Gabriele Bruni (INAF Roma). Crediti: L. Sidoli / INAF
Da sinistra: Francesca Panessa (INAF Roma), Lorena Hernández-García (Millennium Institute of Astrophysics), Gabriele Bruni (INAF Roma). Crediti: L. Sidoli / INAF

 

Riferimenti bibliografici:

L’articolo “AT 2021hdr: A candidate tidal disruption of a gas cloud by a binary super massive black hole system”, di L. Hernández-García et al., è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo,  video e immagini dall’Ufficio Stampa INAF, Istituto Nazionale di Astrofisica,

LA PRIMA ANALISI 3D SULLA FORMAZIONE ED EVOLUZIONE DEGLI AMMASSI GLOBULARI

Uno studio pubblicato oggi sulla rivista Astronomy & Astrophysics apre nuove prospettive sulla nostra comprensione della formazione ed evoluzione dinamica delle popolazioni stellari multiple negli ammassi globulari, agglomerati di stelle di forma sferica, molto compatti, formati tipicamente da 1-2 milioni di stelle. Un gruppo di ricercatori, dell’Istituto Nazionale di Astrofisica (INAF), dell’Università degli Studi di Bologna e dell’Università dell’Indiana negli USA, ha infatti condotto la prima analisi cinematica 3D (tridimensionale) delle popolazioni stellari multiple per un campione rappresentativo di 16 ammassi globulari nella nostra Galassia, fornendo una descrizione osservativa pionieristica del modo in cui le stelle si muovono al loro interno e della loro evoluzione dall’epoca di formazione fino allo stato presente.

Galleria di immagini dei 16 ammassi globulari analizzati in ordine di differenza delle proprietà cinematiche osservate tra le popolazioni stellari multiple. Crediti: ESA/Hubble - ESO - SDSS
Galleria di immagini dei 16 ammassi globulari analizzati in ordine di differenza delle proprietà cinematiche osservate tra le popolazioni stellari multiple. Crediti: ESA/Hubble – ESO – SDSS

Emanuele Dalessandro, ricercatore presso l’INAF di Bologna, primo autore dell’articolo e coordinatore del gruppo di lavoro spiega:

“La comprensione dei processi fisici alla base della formazione ed evoluzione iniziale degli ammassi globulari è una delle più affascinanti e discusse domande astrofisiche degli ultimi 20-25 anni. I risultati del nostro studio forniscono la prima evidenza concreta che gli ammassi globulari si siano generati attraverso molteplici eventi di formazione stellare e pongono vincoli fondamentali sul percorso dinamico seguito dagli ammassi nel corso della loro evoluzione. Questi risultati sono stati possibili grazie a un approccio multi-diagnostico e alla combinazione di osservazioni e simulazioni dinamiche allo stato dell’arte”.

Lo studio evidenzia che le differenze cinematiche tra le popolazioni multiple sono estremamente utili per comprendere i meccanismi di formazione ed evoluzione di queste antiche strutture.

Con età che possono arrivare a 12-13 miliardi di anni (quindi fino all’alba del Cosmo), gli ammassi globulari sono tra i primi sistemi a essersi formati nell’Universo e rappresentano una popolazione tipica di tutte le galassie.  Sono sistemi compatti – con masse di alcune centinaia di migliaia di masse solari e dimensioni di pochi parsec –  e osservabili anche in galassie lontane.

“La loro rilevanza astrofisica è enorme – afferma Dalessandro – perché non solo ci aiutano a verificare i modelli cosmologici della formazione dell’Universo grazie alla loro età, ma ci offrono anche laboratori naturali per studiare la formazione, l’evoluzione e l’arricchimento chimico delle galassie”.

Nonostante gli ammassi stellari siano stati studiati per oltre un secolo, risultati osservativi recenti dimostrano che la loro conoscenza è ancora incompleta.

“Risultati ottenuti negli ultimi due decenni, hanno inaspettatamente dimostrato che gli ammassi globulari sono composti da più di una popolazione di stelle: una primordiale, con proprietà chimiche simili a quelle di altre stelle nella Galassia, e una con abbondanze chimiche anomale di elementi leggeri quali elio, ossigeno, sodio, azoto”,

dice Mario Cadelano, ricercatore al Dipartimento di Fisica e Astronomia dell’Università di Bologna e associato INAF, tra gli autori dello studio.

“Nonostante il gran numero di osservazioni e modelli teorici finalizzati a caratterizzare le proprietà di queste popolazioni, i meccanismi che regolano la loro formazione non sono tutt’ora compresi”.

Il satellite Gaia dell’ESA che mappa le stelle della Via Lattea. Crediti: ESA/ATG medialab; background: ESO/S. Brunier
Il satellite Gaia dell’ESA che mappa le stelle della Via Lattea. Crediti: ESA/ATG medialab; background: ESO/S. Brunier

Lo studio si basa sulla misura delle velocità nelle tre dimensioni, ovvero sulla combinazione di moti propri e velocità radiali, ottenuti dal telescopio dell’ESA Gaia e da dati ottenuti tra gli altri con il telescopio VLT dell’ESO principalmente nell’ambito della survey MIKiS (Multi Instrument Kinematic Survey), una survey spettroscopica specificamente indirizzata all’esplorazione della cinematica interna degli ammassi globulari. L’utilizzo di questi telescopi, dallo spazio e da terra, ha garantito una visione 3D senza precedenti della distribuzione di velocità delle stelle negli ammassi globulari selezionati.

Il Very Large Telescope (VLT) dell'ESO durante alcune osservazioni. Crediti: ESO/S. Brunier
Il Very Large Telescope (VLT) dell’ESO durante alcune osservazioni. Crediti: ESO/S. Brunier

Dalle analisi emerge che le stelle con differenti abbondanze di elementi leggeri sono caratterizzate da proprietà cinematiche differenti, come la velocità di rotazione e la distribuzione delle orbite.

“In questo lavoro abbiamo analizzato nel dettaglio come si muovono all’interno di ogni ammasso migliaia di stelle”, aggiunge Alessandro Della Croce, studente di dottorato presso l’INAF di Bologna. “È risultato subito chiaro che stelle appartenenti a diverse popolazioni sono caratterizzate da proprietà cinematiche differenti: le stelle con composizione chimica anomala tendenzialmente ruotano all’interno dell’ammasso più velocemente delle altre e si diffondono progressivamente dalle regioni centrali verso quelle più esterne”.

L’intensità di queste differenze cinematiche dipende all’età dinamica degli ammassi globulari.

“Questi risultati sono compatibili con l’evoluzione dinamica a ‘lungo termine’ di sistemi stellari in cui le stelle con abbondanze chimiche anomale si formano più centralmente concentrate e più rapidamente rotanti di quelle standard. Ciò di conseguenza suggerisce che gli ammassi globulari si siano generati attraverso eventi multipli di formazione stellare e fornisce un tassello importante nella definizione dei processi fisici e dei tempi-scala alla base della formazione ed evoluzione di ammassi stellari massicci”, sottolinea Dalessandro.

Questa nuova visione tridimensionale del moto delle stelle all’interno degli ammassi globulari fornisce un quadro inedito e affascinante sulla formazione ed evoluzione dinamica di questi sistemi, contribuendo a chiarire alcuni dei misteri più complessi riguardanti l’origine di queste antichissime strutture.


 

Riferimenti Bibliografici:

L’articolo “A 3D view of multiple populations kinematics in Galactic globular clusters”, di  E. Dalessandro, M. Cadelano, A. Della Croce, F. I. Aros, E. B. White, E. Vesperini, C. Fanelli, F. R. Ferraro, B. Lanzoni, S. Leanza, L. Origlia, è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo e immagini dagli Uffici Stampa INAF – Istituto Nazionale di Astrofisica e Alma Mater Studiorum – Università degli Studi di Bologna

Scienziati scoprono Barnard b, un pianeta in orbita intorno alla stella di Barnard, la stella singola più vicina al Sole

This artist’s impression shows Barnard b, a sub-Earth-mass planet that was discovered orbiting Barnard’s star. Its signal was detected with the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), and astronomers were able to confirm it with data from other instruments. An earlier promising detection in 2018 around the same star could not be confirmed by these data. On this newly discovered exoplanet, which has at least half the mass of Venus but is too hot to support liquid water, a year lasts just over three Earth days.Crediti: ESO/M. Kornmesser
Impressione artistica del pianeta Barnard b.
Crediti: ESO/M. Kornmesser

Utilizzando il VLT (Very Large Telescope) dell’ESO (Osservatorio Europeo Australe), alcuni astronomi hanno scoperto un esopianeta in orbita intorno alla stella di Barnard, la stella singola più vicina al Sole. Su questo esopianeta appena scoperto, che ha una massa pari ad almeno la metà di quella di Venere, un anno dura poco più di tre giorni terrestri. Le osservazioni dell’équipe suggeriscono anche l’esistenza di altri tre candidati esopianeti, in orbite diverse intorno alla stella.

Situata a soli sei anni luce di distanza, la stella di Barnard è il secondo sistema stellare, dopo il gruppo di tre stelle di Alpha Centauri, e la stella singola più vicina a noi. Grazie alla sua vicinanza, è un obiettivo primario nella ricerca di esopianeti simili alla Terra. Nonostante una promettente riveazione nel 2018, finora nessun pianeta era stato confermato in orbita intorno alla stella di Barnard.

Rappresentazione grafica delle distanze relative tra le stelle più vicine e il Sole.
Crediti: IEEC/Science-Wave – Guillem Ramisa
Il grafico mostra la costellazione di Ofiuco (o Serpentario), a cavallo dell'equatore celeste. È indicata la posizione della stella di Barnard, così come l'ubicazione della maggior parte delle stelle visibili a occhio nudo in una notte buia e serena. Crediti: ESO, IAU and Sky & Telescope
Il grafico mostra la costellazione di Ofiuco (o Serpentario), a cavallo dell’equatore celeste. È indicata la posizione della stella di Barnard, così come l’ubicazione della maggior parte delle stelle visibili a occhio nudo in una notte buia e serena.
Crediti: ESO, IAU and Sky & Telescope

La scoperta di questo nuovo esopianeta, annunciata in un articolo pubblicato oggi sulla rivista Astronomy & Astrophysics, è il risultato di osservazioni effettuate negli ultimi cinque anni con il VLT dell’ESO, situato presso l’Osservatorio del Paranal in Cile.

Anche se ci è voluto molto tempo, siamo sempre stati fiduciosi di poter trovare qualcosa“,

afferma Jonay González Hernández, ricercatore presso l’Instituto de Astrofísica de Canarias in Spagna e autore principale dell’articolo. L’équipe stava cercando segnali da possibili esopianeti all’interno della zona abitabile o temperata della stella di Barnard, l’intervallo in cui l’acqua può essere liquida sulla superficie del pianeta. Le nane rosse come la stella di Barnard sono spesso considerate dagli astronomi poiché lì i pianeti rocciosi di piccola massa sono più facili da rilevare che intorno a stelle più grandi, simili al Sole. [1]

Barnard b [2], come viene chiamato l’esopianeta appena scoperto, è venti volte più vicino alla stella di Barnard di quanto Mercurio lo sia al Sole. Orbita intorno alla stella in 3,15 giorni terrestri e ha una temperatura superficiale di circa 125 °C.

Barnard b è uno degli esopianeti di massa più piccola trovati finora e uno dei pochi noti con una massa inferiore a quella della Terra. Ma il pianeta è troppo vicino alla stella ospite, più vicino rispetto alla zona abitabile“, spiega González Hernández. “Anche se la stella è circa 2500 gradi più fredda del Sole, in quella posizione fa troppo caldo perchè si possa mantenere acqua liquida sulla superficie“.

Per le osservazioni, il gruppo di lavoro ha utilizzato ESPRESSO, uno strumento molto preciso progettato per misurare l’oscillazione di una stella causata dall’attrazione gravitazionale di uno o più pianeti in orbita intorno ad essa. I risultati ottenuti da queste osservazioni sono stati confermati dai dati di altri strumenti specializzati nella caccia agli esopianeti: HARPS presso l’Osservatorio di La Silla dell’ESO, HARPS-N e CARMENES. I nuovi dati, tuttavia, non supportano l’esistenza dell’esopianeta segnalato nel 2018.

Oltre al pianeta confermato, l’équipe internazionale ha anche trovato indizi di altri tre candidati esopianeti in orbita intorno alla stessa stella. Serviranno ulteriori osservazioni con ESPRESSO per la conferma.

Ora dobbiamo continuare a osservare questa stella per confermare gli altri segnali candidati“, afferma Alejandro Suárez Mascareño, anch’egli ricercatore presso l’Instituto de Astrofísica de Canarias e coautore dello studio. “Ma la scoperta di questo pianeta, insieme con altre scoperte precedenti come Proxima b e d, dimostra che il nostro angolino cosmico è pieno di pianeti di piccola massa“.

L’Extremely Large Telescope (ELT) dell’ESO, attualmente in costruzione, è destinato a trasformare il campo della ricerca sugli esopianeti. Lo strumento ANDES dell’ELT consentirà di rivelare un numero sempre maggiore di questi piccoli pianeti rocciosi nella zona temperata intorno a stelle vicine, oltre la portata degli attuali telescopi, e di studiarne la composizione dell’atmosfera.

La panoramica mostra i dintorni della nana rossa nota come stella di Barnard, nella costellazione dell'Ofiuco. L'immagine è stata prodotta a partire dai dati della DSS2 (Digitized Sky Survey 2). Nel centro dell'immagine si trova la stella di Barnard, catturata in tre diverse esposizioni. La stella è la più veloce nel cielo notturno e il suo grande moto proprio - lo spostamento apparente sulla volta celeste - viene evidenziato dal fatto che la posizione cambi tra osservazioni successive - mostrate in rosso, giallo e blu. Crediti: ESO/Digitized Sky Survey 2 Acknowledgement: Davide De Martin E — Red Dots
La panoramica mostra i dintorni della nana rossa nota come stella di Barnard, nella costellazione dell’Ofiuco. L’immagine è stata prodotta a partire dai dati della DSS2 (Digitized Sky Survey 2). Nel centro dell’immagine si trova la stella di Barnard, catturata in tre diverse esposizioni. La stella è la più veloce nel cielo notturno e il suo grande moto proprio – lo spostamento apparente sulla volta celeste – viene evidenziato dal fatto che la posizione cambi tra osservazioni successive – mostrate in rosso, giallo e blu.
Crediti:
ESO/Digitized Sky Survey 2 Acknowledgement: Davide De Martin
E — Red Dots

Note

[1] Gli astronomi osservano preferenzialmente le stelle fredde, come le nane rosse, perché la loro zona temperata è molto più vicina alla stella rispetto alle stelle più calde, come il Sole. Ciò significa che i pianeti che orbitano all’interno della zona temperata hanno periodi orbitali più brevi, consentendo agli astronomi di monitorarli per diversi giorni o settimane, anziché anni. Inoltre, le nane rosse sono molto meno massicce del Sole, quindi sono più facilmente disturbate dall’attrazione gravitazionale dei loro pianeti  e quindi oscillano maggiormente.
[2] È pratica comune nella scienza dare agli esopianeti il nome della stella ospite seguito da una lettera minuscola: “b” indica il primo pianeta identificato, “c” il successivo e così via. Il nome Barnard b è stato quindi dato anche a un candidato pianeta precedentemente identificato, ma non confermato, intorno alla stella di Barnard.

Ulteriori Informazioni

Questo risultato è stato presentato nell’articolo “A sub-Earth-mass planet orbiting Barnard’s star” pubblicato su Astronomy & Astrophysics. (https://www.aanda.org/10.1051/0004-6361/202451311)

L’équipe è composta da J. I. González Hernández (Instituto de Astrofísica de Canarias, Spagna [IAC] e Departamento de Astrofísica, Universidad de La Laguna, Spagna [IAC-ULL]), A. Suárez Mascareño (IAC e IAC-ULL), A. M. Silva (Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portogallo [IA-CAUP] e Departamento de Física e Astronomia Faculdade de Ciências, Universidade do Porto, Portogallo [FCUP]), A. K. Stefanov (IAC e IAC-ULL), J. P. Faria (Observatoire de Genève, Université de Genève, Svizzera [UNIGE]; IA-CAUP e FCUP), H. M. Tabernero (Departamento de Física de la Tierra y Astrofísica & Instituto de Física de Partículas y del Cosmos, Universidad Complutense de Madrid, Spagna), A. Sozzetti (INAF – Osservatorio Astrofisico di Torino, Italia [INAF-OATo]), R. Rebolo (IAC; IAC-ULL e Consejo Superior de Investigaciones Científicas, Spagna [CSIC]), F. Pepe (UNIGE), N. C. Santos (IA-CAUP; FCUP), S. Cristiani (INAF – Osservatorio Astronomico di Trieste, Italia [INAF-OAT] e Institute for Fundamental Physics of the Universe, Trieste, Italia [IFPU]), C. Lovis (UNIGE), X. Dumusque (UNIGE), P. Figueira (UNIGE e IA-CAUP), J. Lillo-Box (Centro de Astrobiología, CSIC-INTA, Madrid, Spagna [CAB]), N. Nari (IAC; Light Bridges S. L., Canarias, Spagna e IAC-ULL), S. Benatti (INAF – Osservatorio Astronomico di Palermo, Italia [INAF-OAPa]), M. J. Hobson (UNIGE), A. Castro-González (CAB), R. Allart (Institut Trottier de Recherche sur les Exoplanètes, Université de Montréal, Canada e UNIGE), V. M. Passegger (National Astronomical Observatory of Japan, Hilo, USA; IAC; IAC-ULL e Hamburger Sternwarte, Hamburg, Germania), M.-R. Zapatero Osorio (CAB), V. Adibekyan (IA-CAUP e FCUP), Y. Alibert (Center for Space and Habitability, University of Bern, Svizzera e Weltraumforschung und Planetologie, Physikalisches Institut, University of Bern, Svizzera), C. Allende Prieto (IAC e IAC-ULL), F. Bouchy (UNIGE), M. Damasso (INAF-OATo), V. D’Odorico (INAF-OAT e IFPU), P. Di Marcantonio (INAF-OAT), D. Ehrenreich (UNIGE), G. Lo Curto (European Southern Observatory, Santiago, Cile [ESO Chile]), R. Génova Santos (IAC e IAC-ULL), C. J. A. P. Martins (IA-CAUP e Centro de Astrofísica da Universidade do Porto, Portogallo), A. Mehner (ESO Chile), G. Micela (INAF-OAPa), P. Molaro (INAF-OAT), N. Nunes (Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Portogallo), E. Palle (IAC e IAC-ULL), S. G. Sousa (IA-CAUP e FCUP), e S. Udry (UNIGE).

L’ESO (European Southern Observatory o Osservatorio Europeo Australe) consente agli scienziati di tutto il mondo di scoprire i segreti dell’Universo a beneficio di tutti. Progettiamo, costruiamo e gestiamo da terra osservatori di livello mondiale – che gli astronomi utilizzano per affrontare temi interessanti e diffondere il fascino dell’astronomia – e promuoviamo la collaborazione internazionale per l’astronomia. Fondato come organizzazione intergovernativa nel 1962, oggi l’ESO è sostenuto da 16 Stati membri (Austria, Belgio, Danimarca, Francia, Finlandia, Germania, Irlanda, Italia, Paesi Bassi, Polonia, Portogallo, Regno Unito, Repubblica Ceca, Spagna, Svezia e Svizzera), insime con il paese che ospita l’ESO, il Cile, e l’Australia come partner strategico. Il quartier generale dell’ESO e il Planetario e Centro Visite Supernova dell’ESO si trovano vicino a Monaco, in Germania, mentre il deserto cileno di Atacama, un luogo meraviglioso con condizioni uniche per osservare il cielo, ospita i nostri telescopi. L’ESO gestisce tre siti osservativi: La Silla, Paranal e Chajnantor. Sul Paranal, l’ESO gestisce il VLT (Very Large Telescope) e il VLTI (Very Large Telescope Interferometer), così come due telescopi per survey, VISTA, che lavora nell’infrarosso, e VST (VLT Survey Telescope) in luce visibile. Sempre a Paranal l’ESO ospiterà e gestirà la schiera meridionale di telescopi di CTA, il Cherenkov Telescope Array Sud, il più grande e sensibile osservatorio di raggi gamma del mondo. Insieme con partner internazionali, l’ESO gestisce APEX e ALMA a Chajnantor, due strutture che osservano il cielo nella banda millimetrica e submillimetrica. A Cerro Armazones, vicino a Paranal, stiamo costruendo “il più grande occhio del mondo rivolto al cielo” – l’ELT (Extremely Large Telescope, che significa Telescopio Estremamente Grande) dell’ESO. Dai nostri uffici di Santiago, in Cile, sosteniamo le operazioni nel paese e collaboriamo con i nostri partner e la società cileni.

La traduzione dall’inglese dei comunicati stampa dell’ESO è un servizio dalla Rete di Divulgazione Scientifica dell’ESO (ESON: ESO Science Outreach Network) composta da ricercatori e divulgatori scientifici da tutti gli Stati Membri dell’ESO e altri paesi. Il nodo italiano della rete ESON è gestito da Anna Wolter.

Testo, video e immagini dall’Osservatorio Europeo Australe – ESO.

UNA “RAPINA COSMICA” NELL’AMMASSO DI GALASSIE DELL’IDRA

Un team internazionale guidato dall’Istituto Nazionale di Astrofisica (INAF) ha realizzato una nuova immagine dell’ammasso di galassie dell’Idra con il telescopio italiano VST gestito da INAF in Cile, svelando il gas e le stelle “rubate” alle galassie, segno di un’evoluzione ancora in corso.

L'ammasso di galassie dell'Idra immortalato con il telescopio italiano VST (VLT Survey Telescope) in Cile. Nell'immagine spicca la galassia NGC 3312, nella parte inferiore sulla sinistra.
L’ammasso di galassie dell’Idra immortalato con il telescopio italiano VST (VLT Survey Telescope) in Cile. Nell’immagine spicca la galassia NGC 3312, nella parte inferiore sulla sinistra. Crediti: ESO/INAF/M. Spavone, E. Iodice

Gli ammassi galattici, formati da centinaia di galassie oltre a enormi quantità di plasma caldissimo e della invisibile materia oscura, sono le strutture cosmiche più grandi tenute insieme dalla gravità. Si trovano nei nodi più densi della “ragnatela cosmica” che pervade l’Universo e sono luoghi tutt’altro che tranquilli: al loro interno, le galassie si scontrano e interagiscono tra di loro, spesso in maniera turbolenta, regalando immagini spettacolari ai telescopi che scrutano le profondità del cielo.

È il caso dell’ammasso di galassie dell’Idra (Hydra I), a oltre 160 milioni di anni luce da noi, nel quale un team internazionale guidato da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) ha svelato deboli strutture mai viste prima nella luce diffusa che permea lo spazio tra le galassie. Questi dettagli permettono di ricostruire la travolgente storia dell’ammasso. Il lavoro è stato possibile grazie a immagini profonde e ad alta risoluzione ottenute con il telescopio italiano VST (VLT Survey Telescope), situato presso l’Osservatorio di Paranal dello European Southern Observatory (ESO) sulle Ande cilene e gestito dal 2022 interamente da INAF.

Dettaglio sulla galassia a spirale NGC 3312, ripresa dal telescopio italiano VST (VLT Survey Telescope) in Cile. La forma della galassia, simile a quella di una medusa, tradisce il fenomeno di ram pressure stripping, attraverso il quale il gas freddo delle regioni periferiche della galassia fuoriesce a causa della frizione con il gas, più caldo, che pervade l'ammasso.
Dettaglio sulla galassia a spirale NGC 3312, ripresa dal telescopio italiano VST (VLT Survey Telescope) in Cile. La forma della galassia, simile a quella di una medusa, tradisce il fenomeno di ram pressure stripping, attraverso il quale il gas freddo delle regioni periferiche della galassia fuoriesce a causa della frizione con il gas, più caldo, che pervade l’ammasso. Crediti: ESO/INAF/M. Spavone, E. Iodice

Nell’immagine realizzata dal VST spicca NGC 3312, la più grande galassia a spirale dell’ammasso dell’Idra, nella parte bassa dell’immagine. La sua forma, che ricorda vagamente quella di una medusa con una serie di tentacoli, segnala un “furto cosmico” in atto: l’ammasso sta letteralmente “rubando” il gas dalle regioni più esterne della galassia. Questo fenomeno avviene quando una galassia attraversa un fluido denso, come il gas caldo sparso tra le galassie di un ammasso: la frizione del gas caldo contro quello più freddo alla periferia della galassia provoca la fuoriuscita di quest’ultimo, che va ad aggiungersi al materiale.

Il nuovo studio ha analizzato in dettaglio le strutture più fioche all’interno dell’ammasso, in particolare nella cosiddetta luce intra-ammasso (in inglese, intracluster light), una componente diffusa che pervade lo spazio intergalattico, prodotta da stelle che sono state anche in questo caso “sottratte” ad alcune delle galassie dell’ammasso mentre interagivano con le loro compagne. I risultati sono in corso di pubblicazione sulla rivista Astronomy and Astrophysics.

“La nostra analisi fotometrica dell’ammasso di galassie dell’Idra permette di ricostruire la sua storia di formazione ed evoluzione e di capire quale dei possibili scenari di formazione abbia formato la luce diffusa in questo particolare ammasso” spiega Marilena Spavone, ricercatrice INAF a Napoli e prima autrice del lavoro. “Le simulazioni forniscono diverse previsioni per spiegare la formazione della luce intra-ammasso negli ambienti densi degli ammassi di galassie, e per collegare la quantità di luce diffusa osservata alla fase evolutiva di un ammasso”.

Per determinare in che fase evolutiva si trova l’ammasso, il team ha analizzato la distribuzione di luce di tutte le sue galassie per poter “isolare” la luce diffusa. In questo modo, è stato possibile stimare la quantità di luce intra-ammasso e studiare le strutture dovute alle interazioni tra galassie, come ad esempio le code mareali o i tentacoli di medusa osservati nella galassia NGC 3312.

“Secondo la nostra analisi, l’ammasso dell’Idra presenta tre diverse regioni che mostrano sovradensità di galassie, e diverse strutture nel mezzo diffuso, oltre a grandi aloni stellari intorno alle galassie più brillanti”, aggiunge la coautrice Enrichetta Iodice, ricercatrice INAF a Napoli e responsabile del Centro italiano di coordinamento per VST. “Tutti questi indizi mostrano che si tratta di un ammasso ancora in fase di evoluzione”.

Le osservazioni dell’ammasso sono state raccolte nell’ambito del progetto VEGAS (VST Early-Type Galaxy Survey), un censimento cosmico ottimizzato per studiare le galassie sfruttando il grande campo di vista e la risoluzione di OmegaCam, la potente fotocamera del VST. Questa fotocamera è un vero e proprio “grandangolo cosmico” in grado di osservare una porzione di cielo di un grado quadrato, pari a circa quattro volte l’area apparente della Luna piena. Questi dati offrono un’anteprima delle osservazioni che saranno realizzate, con profondità e una risoluzione comparabili ma su porzioni del cielo ancora più grandi, dal satellite ESA Euclid, lanciato lo scorso anno, e dalla Legacy Survey of Space and Time (LSST) dell’osservatorio Vera C. Rubin, attualmente in costruzione in Cile.


 

Riferimenti bibliografici:

L’articolo “Galaxy populations in the Hydra I cluster from the VEGAS survey III. The realm of low surface brightness features and intra-cluster light”, di Marilena Spavone, Enrichetta Iodice, Felipe S. Lohmann, Magda Arnaboldi, Michael Hilker, Antonio La Marca, Rosa Calvi, Michele Cantiello, Enrico M. Corsini, Giuseppe D’Ago, Duncan A. Forbes, Marco Mirabile e Marina Rejkuba, è stato pubblicato online sulla rivista Astronomy & Astrophysics.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF).

JWST CATTURA IL QUASAR DEL SISTEMA PJ308–21 E GALASSIE IN RAPIDA CRESCITA NELL’UNIVERSO LONTANO

Un gruppo internazionale di ricerca guidato dall’Istituto Nazionale di Astrofisica (INAF) ha utilizzato lo spettrografo nel vicino infrarosso NIRSpec a bordo del James Webb Space Telescope (JWST di NASA, ESA e CSA) per osservare la drammatica interazione tra un quasar all’interno del sistema PJ308–21 e due galassie satelliti massicce nell’universo lontano. Le osservazioni, realizzate a settembre 2022, hanno rivelato dettagli senza precedenti fornendo nuove informazioni sulla crescita delle galassie nell’universo primordiale. I risultati sono stati riportati in un recente articolo in pubblicazione sulla rivista Astronomy & Astrophysics e presentati oggi durante il meeting della Società Astronomica Europea (European Astronomical Society – EAS) a Padova.

Il quasar in questione (già descritto dagli stessi autori in un altro studio pubblicato lo scorso maggio), uno dei primi osservati con il Near Infrared Spectrograph (NIRSpec) quando l’universo aveva meno di un miliardo di anni (redshift z = 6,2342), ha rivelato dati di una qualità sensazionale: lo strumento ha “catturato” il suo spettro con un’incertezza inferiore all’1% per pixel. La galassia ospite del quasar PJ308–21 mostra un’alta metallicità e condizioni di fotoionizzazione tipiche di un nucleo galattico attivo (AGN), mentre una delle galassie satelliti presenta una bassa metallicità e fotoionizzazione indotta dalla formazione stellare; la seconda galassia satellite è caratterizzata invece da una metallicità più elevata ed è parzialmente fotoionizzata dal quasar. Per metallicità si intende l’abbondanza di elementi chimici più pesanti di idrogeno ed elio. La scoperta ha permesso di determinare la massa del buco nero supermassiccio al centro del sistema (circa 2 miliardi di masse solari) e di confermare che sia il quasar che le galassie circostanti sono altamente evolute, in termini di massa e di arricchimento metallico, e in costante crescita.

 Mappa delle emissioni di riga dell'idrogeno (in rosso e blu) e ossigeno (in verde), nel sistema PJ308-21, mostrato dopo aver mascherato la luce del quasar centrale ("QSO"). I diversi colori della galassia ospite del quasar e delle galassie compagne in questa mappa rivelano condizioni e proprietà fisiche del gas al loro interno. Crediti: Decarli et. al / INAF / A&A 2024
Mappa delle emissioni di riga dell’idrogeno (in rosso e blu) e ossigeno (in verde), nel sistema PJ308-21, mostrato dopo aver mascherato la luce del quasar centrale (“QSO”). I diversi colori della galassia ospite del quasar e delle galassie compagne in questa mappa rivelano condizioni e proprietà fisiche del gas al loro interno. Crediti: Decarli et. al / INAF / A&A 2024

Roberto Decarli, ricercatore presso l’INAF di Bologna e primo autore dell’articolo, spiega:

“Il nostro studio rivela che sia i buchi neri al centro di quasar ad alto redshift, sia le galassie che li ospitano, attraversano una crescita estremamente efficiente e tumultuosa già nel primo miliardo di anni di storia cosmica, coadiuvata dal ricco ambiente galattico in cui queste sorgenti si formano”.

I dati sono stati ottenuti a settembre 2022 nell’ambito del Programma 1554, uno dei nove progetti a guida italiana del primo ciclo osservativo di JWST. Decarli è alla guida di questo programma che ha come obiettivo osservare proprio la fusione fra la galassia che ospita il quasar (PJ308-21) e due sue galassie satelliti.

Le osservazioni sono state realizzate in modalità di spettroscopia a campo integrale: per ogni pixel dell’immagine si ottiene l’intero spettro della banda ottica nel sistema di riferimento delle sorgenti osservate, che a causa dell’espansione dell’universo viene osservato nell’infrarosso. Ciò consente di studiare vari traccianti del gas (righe di emissione) con un approccio 3D. Grazie a questa tecnica il team (formato da 34 istituti di ricerca e università di tutto il mondo) ha rilevato emissioni spazialmente estese di diverse righe di emissione, che sono state utilizzate per studiare le proprietà del mezzo interstellare ionizzato, comprese la fonte e la durezza del campo di radiazione fotoionizzante, la metallicità, l’oscuramento della polvere, la densità elettronica e la temperatura, e il tasso di formazione stellare. Inoltre, è stata rilevata marginalmente l’emissione di luce stellare continua associata alle sorgenti compagne.

Federica Loiacono, astrofisica, assegnista di ricerca in forze all’INAF di Bologna, commenta entusiasta i risultati:

“Grazie a NIRSpec, possiamo per la prima volta studiare, nel sistema PJ308-21, la banda ottica ricca di preziosi dati diagnostici sulle proprietà del gas vicino al buco nero nella galassia che ospita il quasar e nelle galassie circostanti. Possiamo vedere, per esempio, l’emissione degli atomi di idrogeno e confrontarla con quella degli elementi chimici prodotti dalle stelle, per stabilire quanto sia ricco di metalli il gas nelle galassie. L’esperienza ottenuta nella riduzione e calibrazione di questi dati, alcuni dei primi collezionati con NIRSpec in modalità di spettroscopia a campo integrale, ha assicurato un vantaggio strategico per la comunità italiana rispetto alla gestione di dati simili”.

Loiacono è la referente italiana per la riduzione dei dati NIRSpec al JWST Support Centre dell’INAF, che assiste la comunità astronomica italiana nell’uso dei dati provenienti dal potente osservatorio spaziale.

Loiacono aggiunge: “Grazie alla sensibilità del James Webb Space Telescope nel vicino e medio infrarosso, è stato possibile studiare lo spettro del quasar e delle galassie compagne con una precisione senza precedenti nell’universo lontano. Solo l’eccellente ‘vista’ offerta da JWST è in grado di assicurare queste osservazioni”. Il lavoro ha rappresentato un vero e proprio “rollercoaster emotivo”, continua Decarli, “con la necessità di sviluppare soluzioni innovative per superare le difficoltà iniziali nella riduzione dei dati”.

Decarli conclude sottolineando la straordinaria importanza degli strumenti a bordo del telescopio Webb:

“Fino a un paio di anni fa, dati sull’arricchimento dei metalli (indispensabile per capire l’evoluzione chimica delle galassie) erano quasi al di là della nostra portata, soprattutto a queste distanze. Ora possiamo mappare in dettaglio con poche ore di osservazione anche in galassie osservate quando l’universo era agli albori”.


 

Riferimenti bibliografici:

L’articolo “A quasar-galaxy merger at z ∼ 6.2: rapid host growth via accretion of two massive satellite galaxies“, di Roberto Decarli, Federica Loiacono, Emanuele Paolo Farina, Massimo Dotti, Alessandro Lupi, Romain A. Meyer, Marco Mignoli, Antonio Pensabene, Michael A. Strauss, Bram Venemans, Jinyi Yang, Fabian Walter, Julien Wolf, Eduardo Bañados, Laura Blecha, Sarah Bosman, Chris L. Carilli, Andrea Comastri, Thomas Connor, Tiago Costa, Anna-Christina Eilers, Xiaohui Fan, Roberto Gilli, Hyunsung D. Jun, Weizhe Liu, Madeline A. Marshall, Chiara Mazzucchelli, Marcel Neeleman, Masafusa Onoue, Roderik Overzier, Maria Anne Pudoka, Dominik A. Riechers, Hans-Walter Rix, Jan-Torge Schindler, Benny Trakhtenbrot, Maxime Trebitsch, Marianne Vestergaard, Marta Volonteri, Feige Wang, Huanian Zhang, Siwei Zou, in pubblicazione sulla rivista Astronomy & Astrophysics.

 

 

Testo, video e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica – INAF.

INTELLIGENZA ARTIFICIALE: PESARE LE GALASSIE CON IL PROGETTO MELA

Gli algoritmi e le applicazioni di intelligenza artificiale fanno ormai parte della nostra vita quotidiana. La comunità scientifica, tuttavia, ne fa largo utilizzo già da diversi anni e l’Italia, in questo, è all’avanguardia. L’Istituto Nazionale di Astrofisica (INAF), per esempio, ha partecipato ad un progetto guidato da Nicola R. Napolitano, da cinque anni presso l’Università Sun Yat-sen (Cina), che per la prima volta è riuscito a dimostrare che l’intelligenza artificiale può imparare dalle simulazioni cosmologiche di formazione ed evoluzione dell’universo a misurare correttamente la massa delle galassie. Lo studio che è stato pubblicato oggi sulla rivista Astronomy & Astrophysics, descrive una nuova metodologia per stimare la massa delle galassie (incluso il loro contenuto di materia oscura) usando il machine learning.

Nicola R. Napolitano, già ricercatore INAF e ora professore ordinario presso l’Università degli Studi di Napoli Federico II, spiega che

“in questo modo, è possibile superare i problemi intrinseci alla dinamica delle galassie. I modelli dinamici, infatti, hanno bisogno di pesanti assunzioni sulla distribuzione dei moti interni delle galassie, che possono non essere totalmente corrette, e necessitano un esborso di risorse enorme per ottenere risultati sufficientemente accurati”.

Nicola R. Napolitano
Nicola R. Napolitano

L’articolo “Total and dark mass from observations of galaxy centers with Machine Learning” dimostra per la prima volta che questa metodologia funziona su cataloghi di galassie reali. Gli esperti hanno confrontato le stime del nuovo codice, denominato MELA (Mass Estimator machine Learning Algorithm), con stime di procedure dinamiche classiche verificando quindi che MELA può riprodurre con incredibile accuratezza le masse dei metodi classici, in alcuni casi molto più laboriosi e basati su dati molto più complessi (per esempio la cinematica 3D) dei dati più semplici di cui MELA ha bisogno e che saranno prodotti per milioni di galassie con i progetti di spettroscopia di nuova generazione in cui INAF è coinvolta, come WEAVE e 4MOST.

Crescenzo Tortora, ricercatore dell’INAF di Napoli che ha partecipato allo studio, aggiunge:

“Il lavoro è stato possibile grazie ad un percorso intrapreso dal nostro gruppo che negli ultimi anni ha esteso le applicazioni dell’intelligenza artificiale a diversi settori dell’analisi dati di grandi survey astronomiche. Questo è stato anche possibile grazie all’esperienza acquisita negli ultimi anni con survey a grande campo (nello specifico KiDS al telescopio VST) nella ricerca di lenti gravitazionali, l’analisi della struttura e delle popolazioni stellari delle galassie”.

Crescenzo Tortora
Crescenzo Tortora

Come in tanti altri settori, il machine learning è una realtà sempre più concreta nell’ambito dell’astrofisica, non solo nell’analisi dei dati ma anche nel loro sfruttamento scientifico. Napolitano prosegue:

“In questo lavoro abbiamo chiesto a MELA di mostrarci come otteneva i suoi risultati e quali fossero le osservabili che avessero più importanza per derivare le sue conclusioni. La cosa straordinaria è che abbiamo capito che MELA può capire la fisica delle gravità”.

L’INAF, e in particolare la sede di Napoli, vanta una storica expertise in materia di dinamica delle galassie con la partecipazione a progetti nati sul solco della tradizione delle fisica delle galassie. I ricercatori Italiani, in particolare Tortora e Napolitano, sono diventati, negli anni, specialisti a livello mondiale con collaborazioni con i gruppi di dinamica delle galassie più importanti nel contesto internazionale e con progetti, come MELA, che sono unici al mondo.

“Da questo lavoro abbiamo capito che l’intelligenza artificiale è pronta a imparare la fisica a partire dai dati”, conclude Napolitano. “Nella fattispecie abbiamo verificato che MELA può utilizzare le leggi fisiche che conoscevamo, ma presto l’intelligenza artificiale potrà ”imparare anche la Fisica che non conosciamo”.


Riferimenti bibliografici:

L’articolo “Total and dark mass from observations of galaxy centers with Machine Learning”, di   Sirui Wu, Nicola R. Napolitano, Crescenzo Tortora, Rodrigo von Marttens, Luciano Casarini, Rui Li,  Weipeng Lin, è stato pubblicato sulla rivista Astronomy & Astrophysics.

intelligenza artificiale progetto MELA pesare galassie
Il nuovo codice del progetto MELA (Mass Estimator machine Learning Algorithm) sa pesare le masse delle galassie con incredibile accuratezza

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF

TOI-5398, IL PIÙ GIOVANE SISTEMA MULTI-PLANETARIO COMPATTO

Il pianeta gigante al suo interno risulta essere il miglior candidato per studi di caratterizzazione atmosferica con il telescopio spaziale James Webb tra tutti i giganti caldi conosciuti.

TOI-5398 b dal sito della NASA: https://exoplanets.nasa.gov/exoplanet-catalog/8661/toi-5398-b/

TOI-5398, una sigla che potrebbe non dirci molto eppure nasconde un record: si tratta del più giovane sistema multi-planetario “compatto”, in cui vi è la compresenza di un piccolo pianeta vicino alla stella assieme a un compagno planetario gigante con periodo orbitale di circa 10 giorni. Questo sistema è solamente il sesto con tale caratteristica compresenza tra i più di 500 sistemi che ospitano pianeti giganti a corto periodo. I dati relativi a questa conferma sono stati pubblicati sulla rivista Astronomy & Astrophysics da un gruppo guidato dall’Istituto Nazionale di Astrofisica e dall’Università di Padova. Secondo gli autori dell’articolo, questo sistema è praticamente unico nel suo genere, potenzialmente una “pietra miliare” per lo studio e la comprensione dei pianeti giganti a corto periodo.

 Il Telescopio Nazionale Galileo (TNG) di INAF, un telescopio di 3,58 metri di diametro situato sulla sommità dell'isola di San Miguel de La Palma. Il TNG è il più importante strumento ottico della comunità astronomica italiana. Crediti: G. Mantovan/Università di Padova - INAF
Il Telescopio Nazionale Galileo (TNG) di INAF, un telescopio di 3,58 metri di diametro situato sulla sommità dell’isola di San Miguel de La Palma. Il TNG è il più importante strumento ottico della comunità astronomica italiana. Crediti: G. Mantovan/Università di Padova – INAF

Le misurazioni sono state ottenute con lo spettrografo HARPS-N al Telescopio Nazionale Galileo (TNG) di INAF alle Canarie (INAF) nell’ambito della collaborazione nazionale GAPS (Global Architecture of Planetary Systems). In questo studio, è stato inoltre fondamentale l’utilizzo di dati spaziali del Transiting Exoplanet Survey Satellite (TESS) della NASA, e del coordinamento di numerosi ricercatori ed osservatori astronomici sparsi in tutto il mondo.

TOI-5398 è di gran lunga il più giovane tra i cosiddetti sistemi “compatti”: 650 milioni di anni contro i 3-10 miliardi di anni degli altri sistemi. Un infante, si potrebbe dire. Inoltre, il pianeta maggiore nel sistema risulta il miglior candidato per studi di caratterizzazione atmosferica tramite il telescopio spaziale James Webb della NASA tra tutti i giganti caldi conosciuti. Per “giganti caldi” si intende pianeti giganti tra 10 e 100 giorni di periodo orbitale (inglese “warm giants”), da non confondere con gli “hot giants”, che possiedono periodi orbitali sotto i 10 giorni”.

TOI-5398 è costituito da un “sub-Nettuno” caldo (TOI-5398 c) orbitante internamente rispetto al suo compagno di massa simile a Saturno a corto periodo orbitale (TOI-5398 b).

“Tale studio – afferma Valerio Nascimbeni, ricercatore presso l’INAF di Padova – supporta una delle teorie di formazione dei pianeti giganti a corto periodo, la quale vede questi ultimi formarsi nelle regioni esterne del sistema e farsi spazio (in un sistema multi-planetario) tramite migrazioni ‘tranquille’, che prevengono il sovrapponimento delle orbite planetarie e della conseguente distruzione del sistema. Tale teoria risale al 1996, frutto di uno studio teorico guidato dal Prof. Lin dell’University of California, Santa Cruz, ma è da pochissimi anni che abbiamo un riscontro osservativo di simili sistemi (solo 5 su più di 500 sistemi con pianeti giganti a corto periodo mostra tale configurazione/architettura orbitale)”.

Gli altri cinque sistemi planetari con queste caratteristiche, ossia un’origine non violenta e la compresenza di piccoli pianeti assieme al pianeta gigante a corto periodo sono WASP-47, Kepler-730, WASP-132, TOI-1130, e TOI-2000. ovvero pianeti giganti tra 10 e 100 giorni di periodo orbitale (inglese “warm Jupiter”), da non confondere con gli “hot jupiter”, i quali possiedono periodi orbitali < 10 giorni.

TOI-5398, come detto, è solo il sesto sistema in questa ristrettissima cerchia e mostra una caratteristica molto particolare, perchè rispetto agli altri è giovanissimo. Giacomo Mantovan, primo autore dell’articolo e ricercatore del dipartimento di Fisica e Astronomia dell’Università di Padova nonché associato INAF, aggiunge:

“La sua formazione, infatti, anziché datare, come gli altri, fra i 3 e 10 miliardi di anni, viene misurata in circa 650 milioni di anni. Questo è l’aspetto eccezionale, perché tale sistema non si trova in una situazione congelata e definitiva come gli altri, ma è appunto giovane e quindi in evoluzione. Può offrire quindi nuove risposte rispetto all’evoluzione dei pianeti e della loro atmosfera”.

“Comprendere il processo di formazione e sviluppo dei pianeti giganti a corto periodo è di estrema importanza anche per la comprensione del Sistema solare, in quanto non esiste un corrispettivo planetario del nostro vicinato planetario. Per comprendere questa mancanza nel nostro sistema e le sue possibili implicazioni – ad esempio sulla presenza della vita – è fondamentale esaminare la storia di formazione di tali pianeti nei sistemi planetari in cui essi sono presenti”, prosegue il ricercatore.

Mantovan analizza gli sviluppi futuri di questa ricerca. “TOI-5398 è un interessante sistema in ottica futura, in quanto entrambi i pianeti del sistema sono candidati ideali per svolgere caratterizzazioni atmosferiche precise, ed anche grazie alla loro giovane età. L’unione di queste due proprietà ed alla presenza di due pianeti con differenti caratteristiche (raggio, massa, ecc), offre la rara opportunità di poter studiare i segni distintivi di differenti storie di formazione planetaria sotto l’influenza della stessa stella, solitamente inaccessibili in sistemi planetari più evoluti e vecchi”.

E conclude: “TOI-5398 potrebbe quindi potenzialmente diventare una pietra miliare per comprendere la formazione di sistemi planetari dove sono presenti giganti a breve periodo orbitale, e potrebbe diventare un punto di riferimento anche all’interno del limitatissimo sottocampione di sistemi ove sono presenti anche piccoli compagni planetari tra il gigante a corto periodo e la stella”.

 Il ricercatore Giacomo Mantovan, primo autore dell’articolo su TOI-5398 e ricercatore del dipartimento di Fisica e Astronomia dell’Università di Padova nonché associato INAF. Crediti: G. Mantovan/Università di Padova - INAF
Il ricercatore Giacomo Mantovan, primo autore dell’articolo su TOI-5398 e ricercatore del dipartimento di Fisica e Astronomia dell’Università di Padova nonché associato INAF. Crediti: G. Mantovan/Università di Padova – INAF


 

Per altre informazioni:

L’articolo “The GAPS programme at TNG XLIX. TOI-5398, the youngest compact multi-planet system composed of an inner sub-Neptune and an outer warm Saturn”, di G. Mantovan et al., è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo e immagini dagli Uffici Stampa  Istituto Nazionale di Astrofisica – INAF e Università di Padova

GRB 221009A, IL LAMPO GAMMA PIÙ LUMINOSO DI TUTTI I TEMPI

Il potente lampo di raggi gamma scoperto il 9 ottobre 2022 è un evento estremamente raro, che si verifica una volta ogni 10mila anni. Le osservazioni, realizzate da telescopi nello spazio e a terra con forte coinvolgimento italiano, saranno determinanti per comprendere le colossali esplosioni da cui hanno origine i lampi gamma. L’annuncio oggi durante una conferenza stampa presso il meeting della High Energy Astrophysics Division della American Astronomical Society, alle Hawaii, in occasione della pubblicazione dei primi risultati, che vedono la partecipazione di numerosi team di ricerca dell’Istituto Nazionale di Astrofisica, Istituto Nazionale di Fisica Nucleare e Agenzia Spaziale Italiana.

I raggi X del lampo gamma GRB 221009A sono stati rilevati per settimane come luce diffusa dalla polvere nella nostra galassia, portando alla comparsa di una serie di anelli in espansione. Questa animazione mostra le immagini catturate nel corso di 12 giorni dal telescopio a raggi X a bordo del Neil Gehrels Swift Observatory della NASA.
Crediti: NASA/Swift/A. Beardmore (University of Leicester)

Il 9 ottobre 2022, numerosi telescopi spaziali in orbita attorno alla Terra e sonde operanti in diverse aree del Sistema solare hanno rivelato un forte impulso di radiazione ad altissima energia, seguita da un’emissione prolungata su tutto lo spettro elettromagnetico. La sorgente era un lampo di raggi gamma (gamma ray burst, GRB), una delle esplosioni più potenti dell’universo, così eccezionale da guadagnarsi subito il soprannome di “BOAT” dall’inglese “Brightest Of All Time”, ovvero “il più luminoso di tutti i tempi”.

GRB 221009A, il lampo gamma più luminoso di tutti i tempi
GRB 221009A, il lampo gamma più luminoso di tutti i tempi. Il telescopio spaziale XMM-Newton dell’ESA ha registrato 20 anelli di polvere, 19 dei quali sono mostrati in questa immagine, che combina le osservazioni effettuate due e cinque giorni dopo la scoperta del GRB 221009A. Le strisce scure indicano gli spazi tra i rilevatori del telescopio. L’anello più grande visibile in questa immagine è paragonabile alle dimensioni apparenti della luna piena in cielo.
Crediti: ESA/XMM-Newton/M. Rigoselli (INAF)

Chiamato correntemente GRB 221009A, il lampo è stato rivelato per la prima volta dal Fermi Gamma-Ray Space Telescope della NASA, che vede un fondamentale contributo dell’Italia attraverso l’Agenzia spaziale italiana (ASI), l’Istituto Nazionale di Astrofisica (INAF) e l’Istituto Nazionale di Fisica Nucleare (INFN), mentre il primo a dare l’annuncio è stato il satellite Neil Gehrels Swift Observatory, sempre della NASA, anch’esso con una forte partecipazione italiana attraverso ASI e INAF. Inizialmente si riteneva che la sua sorgente potesse trovarsi nella nostra galassia, la Via Lattea, ma ulteriori dati raccolti da Swift e Fermi e dal satellite INTEGRAL dell’Agenzia Spaziale Europea (ESA) hanno indicato un’origine molto più lontana. Grazie alle osservazioni realizzate poche ore dopo con lo strumento X-Shooter sul Very Large Telescope dell’ESO, in Cile, si è potuta finalmente identificare la sorgente del GRB: una galassia a circa 2 miliardi di anni-luce da noi. Si tratta di una distanza ragguardevole dalla Via Lattea ma relativamente vicina se si considerano le immense scale cosmiche. È il GRB più intenso di cui sia mai stata misurata la luminosità, e il più luminoso mai visto dalla Terra nei 55 anni da quando i primi satelliti per lo studio dei raggi gamma sono stati messi in orbita. È inoltre uno dei più vicini mai osservati tra i GRB lunghi, quelli la cui emissione iniziale dura più di 2 secondi.

Marco Tavani, presidente dell’Istituto Nazionale di Astrofisica, dichiara: “Il lampo gamma cosmico GRB 221009A è un evento a dir poco eccezionale per vari motivi. Prima di tutto, per la sua intrinseca potenza, durata e straordinaria intensità; ma anche per il fatto che si sia verificato, in termini cosmici, relativamente vicino alla Terra. Una combinazione rara, che non ha eguali tra i lampi gamma cosmici osservati negli ultimi decenni. La radiazione X e gamma delle prime fasi di GRB 221009A, e di seguito quella radio, ottica e X nella fase di emissione ritardata, è stata rivelata da diversi telescopi da terra e dallo spazio in cui l’Istituto Nazionale di Astrofisica è fortemente coinvolto se non primo attore. I telescopi utilizzati nello studio di questo GRB sono equipaggiati con strumenti all’avanguardia per poter catturare la radiazione dalla sorgente associata a GRB 221009A, analizzarla e comprendere i dettagli della poderosa esplosione da cui ha avuto origine. Il lavoro delle nostre ricercatrici e dei nostri ricercatori, che hanno guidato diversi studi sin dalle prime fasi di GRB 221009A, è stato fondamentale per caratterizzare questo peculiare lampo gamma cosmico e coglierne a pieno le sue potenzialità per la comprensione dei fenomeni più energetici dell’Universo che portano alla formazione delle stelle di neutroni e dei buchi neri”.

L’analisi dei dati, confrontati con quelli di circa 7mila GRB osservati nei decenni passati con il telescopio spaziale Fermi e lo strumento russo Konus a bordo del satellite NASA Wind, ha permesso di stimare la frequenza con cui si verifica un evento così luminoso e relativamente vicino: una volta ogni 10mila anni. Il lampo era così luminoso che ha letteralmente accecato la maggior parte degli osservatori spaziali a raggi gamma, che non hanno potuto misurare la reale intensità dell’emissione. Dopo aver ricostruito i dati mancanti di Fermi e grazie al confronto con i risultati del team russo che lavora sui dati Konus e con i team cinesi che analizzano le osservazioni del rivelatore GECAM-C a bordo del satellite SATech-01 e degli strumenti a bordo dell’osservatorio Insight-HXMT, si è dimostrato che l’esplosione è stata 70 volte più luminosa di qualsiasi altra mai vista.

L’evento è stato così brillante che la sua radiazione residua, il cosiddetto afterglow, è ancora visibile e rimarrà tale per molto tempo. I risultati sono stati presentati oggi durante il meeting della High Energy Astrophysics Division della American Astronomical Society a Waikoloa, Hawaii. Gli articoli che presentano i risultati sono stati pubblicati in un numero speciale della rivista The Astrophysical Journal Letters e su Astronomy & Astrophysics.

Hanno osservato il GRB anche lo strumento NICER a bordo della Stazione spaziale internazionale, il telescopio spaziale NuSTAR della NASA, la sonda Voyager 1 che esplora lo spazio interstellare, il satellite italiano AGILE, realizzato dall’ASI con il contributo di INAF e INFN, e diversi satelliti dell’ESA, tutti con importanti contributi italiani: dai telescopi spaziali XMM-Newton e INTEGRAL alle sonde Solar Orbiter e BepiColombo fino al satellite Gaia. INTEGRAL, trovandosi in posizione ottimale, ne ha registrato sia l’emissione immediata sia l’afterglow con un’accuratezza senza precedenti. Gli scienziati ritengono che i GRB lunghi, come questo, derivino dal collasso del nucleo di una stella massiccia e la conseguente nascita di un buco nero, che emette getti di particelle ad altissima energia in direzioni opposte mentre ingurgita la materia circostante. Osservare l’afterglow del GRB, causato proprio da questi getti bipolari, ha permesso di testare i diversi modelli teorici che descrivono i processi fisici in atto nelle fasi iniziali dell’esplosione.

“Si tratta di una scoperta importante – commenta il presidente dell’ASI Giorgio Saccoccia – resa possibile anche grazie al contribuito di tutte le sonde come Fermi, Swift, INTEGRAL, AGILE, NuSTAR, IXPE, XMM, Solar Orbiter, Bepi Colombo, Gaia e CSES. Satelliti in orbita a cui ASI ha dato il suo contributo. Il merito va anche al nostro Space Science Data Center (SSDC) che mette da diverso tempo a fattor comune i dati scientifici provenienti da tutte queste missioni che hanno a bordo strumentazioni fornite da ASI. Questa visione multidisciplinare della scienza spaziale rappresenta il percorso vincente per aumentare le competenze italiane nello studio dell’Universo. Si tratta di una forte capacità dell’ASI che, da sempre, lavora insieme all’intera comunità scientifica, per lo sviluppo di tecnologie all’avanguardia, che consentono di avere una visione dell’Universo più completa”.

Dopo aver viaggiato attraverso lo spazio intergalattico, la radiazione proveniente dal GRB 221009A si è imbattuta nelle nubi di polvere presenti nel mezzo interstellare che permea la nostra galassia, la Via Lattea. Quando i raggi X incontrano la polvere, una parte di essi viene dispersa, creando anelli concentrici che sembrano espandersi verso l’esterno: una sorta di eco luminosa del lampo mentre attraversa la galassia. Il telescopio spaziale XMM-Newton ha fornito un’immagine profonda e dettagliata di 20 anelli, osservando in diversi giorni dopo la scoperta del GRB, mentre il satellite Swift ne ha monitorato l’evoluzione nel tempo. L’anello più distante è sorto dall’impatto con una nube di polvere situata a 61mila anni luce di distanza, dall’altro lato della Via Lattea, mentre il più vicino, visto solo da Swift, si è formato a circa 700 anni luce da noi. Il modo in cui una nube di polvere diffonde i raggi X dipende dalla sua distanza, dalle dimensioni dei granelli di polvere e dall’energia dei raggi X: l’analisi degli anelli creati dal GRB ha permesso di ricostruire parte della sua emissione iniziale a raggi X ma anche la distribuzione e composizione delle nubi di polvere nella nostra galassia. I dati indicano che i granelli di polvere sono composti principalmente da grafite, una forma cristallina del carbonio.

Gli anelli di polvere sono stati rivelati anche dall’osservatorio spaziale IXPE, una collaborazione tra NASA e ASI con un importante contributo di INAF e INFN, che osserva la polarizzazione dei raggi X. Il piccolo grado di polarizzazione misurato da IXPE nella fase di afterglow conferma che uno dei due getti è stato osservato in direzione quasi frontale. Da questo tipo di GRB, gli scienziati si aspettano di osservare anche una supernova poche settimane dopo, che però non è stata rivelata. Uno dei possibili motivi della mancata osservazione potrebbe essere l’attenuazione da parte di spesse nubi di polvere nel piano della Via Lattea. Tuttavia, non ha sortito successo nemmeno la ricerca nell’infrarosso effettuata con il telescopio spaziale James Webb, che ha osservato l’afterglow in contemporanea con il Telescopio Nazionale Galileo (TNG) dell’INAF. Può darsi che la stella fosse così massiccia che, dopo l’esplosione iniziale, abbia immediatamente formato un buco nero che ha inghiottito tutto il materiale circostante, impedendo la formazione di una nube di gas, il cosiddetto resto di supernova.

“Un evento davvero unico per la sua intensità e vicinanza cosmica – spiega Marco Pallavicini, vicepresidente dell’Istituto Nazionale di Fisica Nucleare – che conferma il potere diagnostico delle misure di polarizzazione offerte da IXPE e dallo strumento innovativo che INFN ha sviluppato e messo a disposizione della missione, il quale si innesta in una ormai consolidata tradizione di successi ottenuti nell’ambito della realizzazione di rivelatori spaziali di sempre maggiore efficacia e capacità risolutive. Risultati certificati anche dai contributi forniti a molti degli osservatori spaziali, tra cui Fermi e AGILE, protagonisti della caratterizzazione di questo GRB senza precedenti.”

Anche sulla Terra il GRB 221009A ha fatto sentire i suoi effetti, rilasciando nei pochi minuti della sua durata circa un gigawatt di potenza nella porzione superiore della nostra atmosfera, ionizzando fortemente la parte alta della ionosfera su una larga regione geografica centrata sull’India e che ha interessato anche Europa e Asia. L’aumento del flusso di elettroni correlato con il GRB è stato misurato dal rivelatore di particelle cariche HEPP-L a bordo del China Seismo-Electromagnetic Satellite (CSES-01), che vede la partecipazione di ASI e INFN, il quale stava orbitando sopra l’Europa al momento dell’arrivo del GRB.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

JWST CATTURA LE GALASSIE CHE HANNO REIONIZZATO L’UNIVERSO

Un team internazionale di ricercatrici e ricercatori guidato dall’Istituto Nazionale di Astrofisica (INAF) ha studiato 29 galassie ai primordi dell’universo, stimando per la prima volta la frazione di luce da esse rilasciata in grado di ionizzare il gas circostante. Questo lavoro è stato reso possibile grazie al telescopio spaziale JWST e l’aiuto di un massiccio ammasso di galassie che, come una lente, ha amplificato la luce proveniente dalle galassie ancora più distanti.

Le prime stelle e galassie nella storia dell’universo, nate oltre tredici miliardi di anni fa, quando il cosmo aveva solo poche centinaia di milioni di anni d’età, si sono formate a partire da una miscela di gas neutro, costituito principalmente da atomi di idrogeno. La radiazione energetica proveniente da queste prime stelle e galassie ha poi contribuito, nelle centinaia di milioni di anni seguenti, a trasformare questo gas e ionizzarlo, cioè scinderlo in elettroni e protoni. Gli astronomi la chiamano “reionizzazione” poiché durante questa fase il mezzo intergalattico che pervade l’universo, da neutro, torna a essere ionizzato come lo era nel cosmo primordiale. Non è però ancora chiaro quali galassie abbiano contribuito maggiormente a reionizzare il mezzo intergalattico nei primi stadi di questo processo, né quale percentuale di fotoni – le particelle di luce – con energie sufficienti a ionizzare il gas circostante sia fuoriuscita dai diversi tipi di galassie presenti all’epoca.

JWST CATTURA LE GALASSIE CHE HANNO REIONIZZATO L’UNIVERSO
JWST cattura le galassie che hanno reionizzato l’universo. JWST-Abell-2744: L’ammasso di galassie Abell 2744, chiamato anche Ammasso di Pandora, osservato con il telescopio spaziale Webb. L’ammasso agisce da lente gravitazionale, amplificando la luce proveniente da sorgenti più distanti e permettendo di rilevare galassie tra le prime a formarsi nella storia dell’universo. Crediti: NASA, ESA, CSA, I. Labbe (Swinburne University of Technology), R. Bezanson (University of Pittsburgh), A. Pagan (STScI)

Con il suo specchio dal diametro di 6,5 metri e la sensibilità osservativa nella banda infrarossa, il James Webb Space Telescope (JWST), osservatorio spaziale della NASA in collaborazione con ESA e CSA, può spingersi indietro nel tempo fino alle galassie più distanti, tra le prime a formarsi nella storia dell’universo. Il progetto GLASS, una collaborazione internazionale di ricercatrici e ricercatori in 24 istituti di ricerca e università tra Italia, Stati Uniti, Giappone, Danimarca, Australia, Cina e Slovenia, che utilizza JWST per cercare risposta ai quesiti ancora aperti sulla reionizzazione cosmica, ha recentemente pubblicato un nuovo articolo a guida italiana sulla rivista Astronomy & Astrophysics.

“Abbiamo studiato, tramite osservazioni spettroscopiche e fotometriche ottenute con JWST, 29 galassie lontane e siamo riuscite a misurare in maniera indiretta le loro capacità ionizzanti, dato che a distanze così elevate non è possibile osservare direttamente i fotoni di così alta energia che sono quelli che hanno portato alla reionizzazione del mezzo intergalattico”, spiega la prima autrice del nuovo articolo Sara Mascia, dottoranda in Astronomy, Astrophysics and Space Science all’Università di Roma Tor Vergata, che porta avanti la sua ricerca presso l’Istituto Nazionale di Astrofisica (INAF). “Questo studio dimostra la capacità di JWST non solo di trovare le galassie più distanti ma anche di svelarne le proprietà fisiche.”

La luce proveniente da queste galassie, catturata con gli strumenti NIRCam e NIRSPec a bordo di JWST, è stata emessa quando l’universo aveva un’età compresa tra circa 650 milioni e 1,3 miliardi di anni. Prima di queste osservazioni, le proprietà ionizzanti di queste lontanissime galassie erano ignote, soprattutto per quanto riguarda le galassie di piccola massa, molto difficili da studiare.

“Abbiamo stimato per la prima volta la capacità ionizzante delle galassie nell’epoca della reionizzazione: in particolare, siamo riusciti a stimare quanti fotoni ionizzanti fuoriescono dalle galassie di piccola massa grazie all’effetto di lente gravitazionale da parte di Abell 2744, un ammasso di galassie che si trova tra noi e le galassie distanti e amplifica il loro segnale”,

aggiunge Laura Pentericci, ricercatrice INAF a Roma e co-autrice del nuovo lavoro.

“I nostri risultati indicano che oltre l’80 percento delle galassie osservate contribuisce in maniera significativa alla reionizzazione.”

Nuove osservazioni che saranno realizzate prossimamente con JWST estenderanno questa analisi a campioni più grandi di galassie, includendo quelle con masse più elevate o più distanti. Lo scopo è di determinare se la maggior parte dei fotoni che hanno contribuito a reionizzare l’universo sia stata fornita da galassie più massicce e luminose di quelle osservate oppure se, come ritenuto dai principali modelli attuali, il contributo maggiore sia dovuto alle galassie più deboli, molto più numerose.


 

Per ulteriori informazioni:

L’articolo “Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program”, di S. Mascia, L. Pentericci, A. Calabrò, T. Treu, P. Santini, L. Yang, L. Napolitano, G. Roberts-Borsani, P. Bergamini, C. Grillo, P. Rosati, B. Vulcani, M. Castellano, K. Boyett, A. Fontana, K. Glazebrook, A. Henry, C. Mason, E. Merlin, T. Morishita, T. Nanayakkara, D. Paris, N. Roy, H. Williams, X. Wang, G. Brammer, M. Bradac, W. Chen, P. L. Kelly, A. M. Koekemoer, M. Trenti, R. A. Windhorst, è stato pubblicato online sulla rivista Astronomy & Astrophysics.

 

Allo studio hanno partecipato anche ricercatori delle università di Ferrara e Statale di Milano.

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)