News
Ad
Ad
Ad
Tag

Astronomy & Astrophysics

Browsing

ERUZIONI? NO, ESPLOSIONI DI STELLE – SVELATA LA NATURA DI TRANSIENTI ROSSI A LUMINOSITÀ INTERMEDIA

Un team internazionale coordinato da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) ha osservato quattro transienti rossi a luminosità intermedia (in inglese intermediate-luminosityred transients o ILRT), ovvero enigmatiche sorgenti variabili nel tempo di cui finora era incerta l’origine. Le accurate indagini svolte, pubblicate in due articoli sulla rivista Astronomy & Astrophysics, indicano che questi transienti sono con ogni probabilità delle vere esplosioni di stelle, e non delle semplici eruzioni.

ell’immagine la galassia NGC 300 (nota anche come C 70) in direzione della costellazione dello Scultore e nel riquadro rosso al centro l’evento transiente NGC300OT. Nell'inserto in alto a destra viene mostrata - con dati del telescopio Spitzer della NASA - l'evoluzione negli anni di questo transiente, dal progenitore (nel 2003) fino alla completa sparizione sotto la soglia di rilevamento del telescopio" (nel 2019). Le immagini di Spitzer sono nell'infrarosso, mentre l'immagine della galassia è nella luce visibile. Crediti: INAF/G. Valerin
nell’immagine la galassia NGC 300 (nota anche come C 70) in direzione della costellazione dello Scultore e nel riquadro rosso al centro l’evento transiente NGC300OT. Nell’inserto in alto a destra viene mostrata – con dati del telescopio Spitzer della NASA – l’evoluzione negli anni di questo transiente, dal progenitore (nel 2003) fino alla completa sparizione sotto la soglia di rilevamento del telescopio” (nel 2019). Le immagini di Spitzer sono nell’infrarosso, mentre l’immagine della galassia è nella luce visibile. Crediti: INAF/G. Valerin

Il cielo si accende e si spegne continuamente, in ogni direzione, con segnali che possono durare da pochi millesimi di secondo fino a settimane, mesi o anni prima di non essere più rilevabili dai nostri strumenti. Analisi e studi negli ultimi anni hanno permesso di comprendere la natura di molti di essi, mentre altri sono ancora di origine ignota.

Il team di ricerca ha monitorato l’evoluzione dei quattro transienti ILRT, con l’obiettivo di determinare il meccanismo che genera questi fenomeni: sono forse delle violente eruzioni, a cui però la stella sopravvive, oppure sono vere e proprie esplosioni terminali, significativamente più deboli rispetto alle “classiche” esplosioni che già conosciamo? La luminosità di queste particolari sorgenti transienti si trova a metà strada tra due fenomeni ben noti: le nove, violente eruzioni stellari a cui la stella sopravvive, e le supernove, brillanti esplosioni dove la stella viene definitivamente distrutta, lasciando dietro di sé una stella di neutroni o un buco nero.

“In seguito alla scoperta di tre nuovi ILRT nel 2019, abbiamo colto la possibilità di studiare e capire meglio questi fenomeni”, commenta Giorgio Valerin, ricercatore postdoc INAF e primo autore dei due articoli su queste sorgenti appena pubblicati sulla rivista Astronomy & Astrophysics. “Abbiamo quindi raccolto dati per anni attraverso telescopi sparsi in tutto il mondo (la Palma, la Silla, las Campanas, Asiago, solo per citare l’ubicazione dei telescopi più usati) e perfino diversi telescopi in orbita (SWIFT, Spitzer, WISE, JWST). Abbiamo anche ripreso la campagna osservativa di NGC 300 OT, l’ILRT più vicino mai osservato, ad ‘appena’ sei milioni e mezzo di anni luce da noi”.

E aggiunge: “Le prime immagini di NGC 300 OT risalgono al 2008, e in questo lavoro l’abbiamo osservato nuovamente per studiarne l’evoluzione dopo più di dieci anni. L’analisi delle immagini e degli spettri raccolti durante queste campagne osservative ci ha consentito di monitorare l’evoluzione nel tempo dei nostri target, ottenendo informazioni come la luminosità, la temperatura, la composizione chimica e le velocità del gas associate a ogni ILRT che abbiamo studiato”.

 Immagine della Galassia Vortice (M51) ottenuta con il James Webb Space Telescope. In basso, nello zoom, viene evidenziata la posizione di AT 2019abn, uno dei transienti analizzati. Crediti: INAF/G. Valerin, A. Rigutti
transienti rossi a luminosità intermedia sono con ogni probabilità delle vere esplosioni di stelle, e non delle semplici eruzioni. Immagine della Galassia Vortice (M51) ottenuta con il James Webb Space Telescope. In basso, nello zoom, viene evidenziata la posizione di AT 2019abn, uno dei transienti analizzati. Crediti: INAF/G. Valerin, A. Rigutti

L’osservazione di oggetti come NGC 300 OT sul lungo periodo ha permesso di ottenere un indizio fondamentale per rispondere alla domanda su cosa siano esattamente questi transienti. In particolare, le immagini dell’oggetto ottenute con il telescopio spaziale Spitzer mostrano come questo sia diventato fino a dieci volte più debole della stella progenitrice nel corso di sette anni, per poi sparire sotto alla soglia di rilevamento del telescopio. E non sarebbe l’unico caso fra quelli analizzati dagli autori. Un simile destino sembra attendere anche la sorgente denominata AT 2019abn: grazie a osservazioni effettuate con il James Webb Space Telescope, a cinque anni dalla sua scoperta si è visto che anche questo transiente è diventato più debole della sua stella progenitrice, e il suo costante declino in luminosità non sembra volersi arrestare.

Ai ricercatori la conclusione sembra dunque chiara: vere e proprie esplosioni di stelle, e non delle semplici eruzioni. Le stelle che danno loro origine, in gergo le progenitrici, sono circondate da uno spesso strato di gas e polvere, che vengono improvvisamente scaldati a temperature intorno ai 6000 kelvin nel corso dei pochi giorni che vanno dalla scoperta dell’evento al momento di massima luminosità osservato. Contemporaneamente, il gas viene accelerato a velocità che possono raggiungere i 700 chilometri al secondo.

“Questa velocità è decisamente inferiore a quella di una supernova in esplosione, che raggiunge spesso anche i 10 mila chilometri al secondo”, commenta Leonardo Tartaglia, ricercatore INAF e coautore degli articoli. “Eppure, riteniamo che la stella possa essere davvero esplosa, lanciando materiale a migliaia di chilometri al secondo in ogni direzione, ma che questa esplosione sia stata parzialmente soffocata dalla densa coltre di gas e polvere circumstellare, che si scalda come conseguenza del violento urto”.

Un’ipotesi, questa, che troverebbe conferma proprio nella diminuzione di luminosità degli ILRT sul lungo periodo. Non solo. Date queste premesse gli autori sono riusciti a dare un nome e un cognome a questo fenomeno osservativo: supernova a cattura elettronica (in inglese electron capture supernovae), un tipo di supernova previsto dalla teoria ma di cui c’è carenza di controparti osservative. Si tratta di particolari esplosioni stellari che hanno origine da stelle con massa tra 8 e 10 masse solari.

Nonostante le teorie di evoluzione stellare ne prevedano l’esistenza, l’osservazione delle supernovae a cattura elettronica è stata difficile. Alcuni oggetti sono stati interpretati come tali, ma studi recenti suggeriscono l’esistenza di un’intera classe associata a queste sorgenti. Secondo l’evoluzione stellare, le stelle con massa superiore a 10 masse solari esploderanno come supernove “classiche”, mentre quelle con meno di 8 masse solari finiranno come nane bianche.

Le supernovae a cattura elettronica sono quindi particolarmente interessanti, poiché segnano il confine tra queste due categorie.

“Stiamo finalmente osservando quegli eventi che separano le stelle destinate a esplodere come classiche supernove dalle stelle che si spegneranno lentamente come nane bianche”, conclude Valerin.


 

Per ulteriori informazioni:

Gli articoli sono stati pubblicati su Astronomy & Astrophysics:
“A study in scarlet I. Photometric properties of a sample of intermediate-luminosity red transients”, di G. Valerin et al.

“A study in scarlet II. Spectroscopic properties of a sample of intermediate-luminosity red transients”, di G. Valerin et al.

 

Testo e immagini dall’Ufficio Stampa dell’Istituto Nazionale di Astrofisica – INAF

PROGETTO ALMAGAL: COSÌ SI FORMANO E SI ACCENDONO LE STELLE, OSSERVANDO OLTRE 1000 REGIONI DI FORMAZIONE STELLARE, CON UN LIVELLO DI DETTAGLIO SENZA PRECEDENTI

Arrivano i primi risultati del progetto ALMAGAL, il più esteso censimento finora realizzato con ALMA delle regioni di formazione stellare, guidato dall’Istituto Nazionale di Astrofisica. Le prime analisi, in pubblicazione sulla rivista Astronomy & Astrophysics, rivelano che le stelle si formano più numerose e più grandi in aree delle nebulose con una maggiore concentrazione di materiale.

Il progetto ALMAGAL inizia a fornire nuove e decisive informazioni su come si formano le stelle nella nostra Galassia, osservando più di 1000 regioni di formazione stellare con un livello di dettaglio senza precedenti. Grazie alla potenza del radiotelescopio ALMA (Atacama Large Millimeter/Submillimeter Array) situato sull’altopiano di Chajnantor, nel deserto di Atacama in Cile, il team di ALMAGAL è riuscito a esplorare queste enormi “fucine” cosmiche in maniera completamente nuova, offrendo una visione impareggiabile dei processi che portano alla nascita delle stelle. Il progetto ALMAGAL, una collaborazione internazionale guidata dall’Istituto Nazionale di Astrofisica, insieme all’Università di Colonia, l’Università del Connecticut e all’Academia Sinica, è nato per gettare nuova luce sui processi che portano le nubi molecolari a frammentarsi nei nuclei elementari da cui poi si formano le singole stelle.

“ALMAGAL rappresenta un salto quantico rispetto ad altri progetti che studiano la nascita di nuovi ammassi stellari” dice Sergio Molinari, responsabile italiano del progetto e ricercatore dell’INAF di Roma. “Osservando più di 1000 di queste regioni, ALMAGAL da solo è 4 volte più grande di tutti gli altri programmi simili messi insieme permettendo per la prima volta studi quantitativi statisticamente significativi”.

Collage di alcune fra le più di 1000 regioni di formazione stellare osservate in ALMAGAL. Le immagini rappresentano l'emissione termica della polvere fredda nel continuo alla lunghezza d'onda di 1.38mmCrediti: ESO/ALMA/ALMAGAL. Creato da C. Mininni
Collage di alcune fra le più di 1000 regioni di formazione stellare osservate in ALMAGAL. Le immagini rappresentano l’emissione termica della polvere fredda nel continuo alla lunghezza d’onda di 1.38mm
Crediti: ESO/ALMA/ALMAGAL. Creato da C. Mininni

Le nubi molecolari – enormi agglomerati di gas e polveri presenti nello spazio interstellare – sono le fucine in cui si generano le stelle. Da decenni i ricercatori che studiano la formazione stellare stanno cercando di comprendere perché le nebulose, pur utilizzando elementi costitutivi simili – per lo più idrogeno, elio e piccole quantità di elementi più pesanti – producono stelle con masse molto diverse da caso a caso. Il radiotelescopio ALMA osserva la radiazione cosmica a lunghezze d’onda millimetriche e submillimetriche molto più lunghe di quella visibile. Questo lo rende perfetto per osservare oggetti celesti freddi, proprio come la polvere e il gas delle nubi molecolari, che emettono proprio a quelle lunghezze d’onda. Inoltre, poiché ALMA combina la luce di 66 antenne situate anche a chilometri di distanza l’una dall’altra, è in grado di distinguere dettagli in questa finestra osservativa come nessun altro strumento oggi operativo.

All’interno delle nubi molecolari, polvere e gas si addensano per creare strutture più piccole chiamate “grumi” (clumps in inglese), di dimensioni fino a qualche anno-luce. Questi grumi si frazionano ulteriormente in ammassi di oggetti più piccoli chiamati “nuclei” (o cores), densi agglomerati in cui si formano le stelle singole. Oltre alla gravità, si pensa che diversi processi come la turbolenza nel gas o i campi magnetici controllino il modo in cui le nebulose si frammentano in grumi e nuclei.

ALMAGAL è progettato per capire meglio come tutto ciò avviene: è il primo censimento completo che ha osservato grumi di tutte le età, masse e ubicazioni in tutti i quartieri della nostra Galassia, fornendo un quadro imparziale. I risultati iniziali basati sull’analisi di 800 grumi e più di 6000 nuclei, evidenziano che non tutte le regioni di formazione stellare sono uguali. Le analisi presentate in questi primi articoli suggeriscono che i grumi più densi tendono a produrre un numero maggiore di nuclei, e quindi di stelle. Curiosamente è la maggiore concentrazione di materiale presente in un grumo, e non solo la sua quantità, che determina una sua maggiore capacità di formare nuove stelle. I nuclei hanno bisogno del materiale dei loro grumi iniziali per crescere, ed i grumi più densi e massicci sono in grado di produrre un maggior numero di nuclei che sono anche più ricchi di massa.

“La vastità del campione di strutture analizzato ci ha permesso di rivelare e di descrivere con un livello di dettaglio mai raggiunto prima la varietà delle caratteristiche fisiche (oltre che statistiche) di questi nuclei, ad esempio in termini di massa, dimensioni e densità” spiega Alessandro Coletta, dottorando dell’INAF di Roma. “Inoltre, è stato possibile indagare se, ed in quale misura, tali caratteristiche siano legate alle proprietà dei grumi ospitanti: ciò ci ha consentito di interpretare i risultati ricavati dalle osservazioni nel più ampio contesto del processo di formazione stellare, formulando dei primi scenari coerenti per arrivare a spiegarne i meccanismi”.

Osservando infatti regioni di età diverse, ALMAGAL ha scoperto che queste fucine si trasformano nel tempo. La maggior parte dei grumi più giovani mostrano solo pochissimi nuclei, e con il procedere del tempo la frammentazione ne produce un numero sempre crescente, che si distribuiscono nel modo più vario: da strutture circolari a distribuzioni filamentari, sviluppando geometrie più intricate.

“Questo è solo l’inizio” continua Sergio Molinari. “Per comprendere davvero quali siano i meccanismi fisici dominanti che giustifichino questi risultati è di fondamentale importanza il confronto con predizioni teoriche. Con il progetto Rosetta Stone sviluppato all’interno del progetto ERC Synergy ECOGAL (di cui ALMAGAL è parte) siamo pronti per il confronto delle immagini ALMAGAL con un’ampia gamma di simulazioni numeriche in cui i processi di frammentazione e formazione stellare vengono riprodotti al computer”.


 

Riferimenti bibliografici:

L’articolo “ALMAGAL I. The ALMA evolutionary study of high mass protocluster formation in the Galaxy. Presentation of the survey and early results”, di Molinari, S., et al. è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

L’articolo “ALMAGAL II. The ALMA evolutionary study of high-mass protocluster formation in the Galaxy. ALMA data processing and pipeline”, di Sánchez-Monge, Á., et al. è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

L’articolo “ALMAGAL III. Compact source catalog: fragmentation statistics and physical evolution of the core population”, di Coletta, A., et al. è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

 

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica – INAF.

EPPUR SI MUOVONO, RUOTANDO: IL PROGETTO LEWIS MOSTRA INASPETTATE PROPRIETÀ SULLE GALASSIE ULTRA DIFFUSE: MOTI DI ROTAZIONE DELLE STELLE INTORNO AL CENTRO DELLE STESSE UDG

Il progetto LEWIS a guida INAF ha permesso per la prima volta di mappare i moti delle stelle che compongono 30 galassie ultra diffuse, scoprendo che esse ruotano attorno al loro centro: un risultato inatteso che mette in crisi le attuali teorie riguardanti questa particolare classe di galassie. I risultati presentati nei due articoli appena pubblicati sulla rivista Astronomy & Astrophysics potrebbero cambiare la nostra comprensione dell’evoluzione delle UDG e del loro legame con la materia oscura.

Immagine delle galassie NGC3314 e UDG32 acquisite con la OmegaCAM installata al telescopio VST. Crediti: ESO/INAF - E. Iodice
Immagine delle galassie NGC3314 e UDG32 acquisite con la OmegaCAM installata al telescopio VST. Crediti: ESO/INAF – E. Iodice

Nuovi dettagli sulle galassie ultra diffuse, le cosiddette Ultra-Diffuse Galaxies (UDG), sono stati svelati grazie a due studi recentemente pubblicati sulla rivista Astronomy & Astrophysics. I lavori, realizzati con un contributo fondamentale di ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica, hanno mappato per la prima volta la cinematica stellare di circa 30 UDG nell’ammasso galattico dell’Idra, distante oltre 160 milioni di anni luce da noi.

La scoperta inattesa di moti di rotazione delle stelle intorno al centro di queste elusive e deboli galassie potrebbe cambiare radicalmente la nostra comprensione della loro storia di formazione ed evoluzione. Questo studio è stato reso possibile grazie al progetto internazionale “Looking into the faintEst WIth MUSE” (LEWIS), guidato dalla ricercatrice INAF Enrichetta Iodice, che ha utilizzato il potente spettrografo a campo integrale MUSE, installato al Very Large Telescope (VLT) dell’ESO in Cile.

Le galassie ultra diffuse, scoperte di recente grazie ai progressi tecnologici in astronomia, sono galassie poco luminose ma molto estese e di bassa luminosità. Identificate per la prima volta in grandi quantità nel 2015, la loro natura e il loro processo di formazione sono ancora oggetto di intensa ricerca. Le nuove analisi spettroscopiche con il progetto LEWIS hanno rivelato che queste galassie si trovano in ambienti estremamente variabili, mostrando una sorprendente varietà nelle loro proprietà fisiche, come la cinematica delle stelle che le compongono e la quantità di materia oscura presente.

Rappresentazione artistica di una galassia ultra diffusa in fase di rotazione. Crediti: C. Butitta/INAF
Progetto LEWIS: scoperta inattesa di moti di rotazione delle stelle intorno al centro di queste elusive e deboli galassie ultra diffuse. Rappresentazione artistica di una galassia ultra diffusa in fase di rotazione. Crediti: C. Butitta/INAF

Uno dei risultati più significativi ed inaspettati del progetto LEWIS è l’identificazione di diverse classi cinematiche di UDG nell’ammasso dell’Idra. Quasi la metà delle galassie esaminate mostra segni evidenti di rotazione nelle stelle che le compongono. Una scoperta che contrasta con una convinzione precedente, secondo cui queste galassie non dovrebbero mostrare questo tipo di moti. Questo risultato potrebbe essere fondamentale per comprendere meglio la struttura di queste galassie e il loro legame con la materia oscura.

“I risultati che abbiamo ottenuto hanno avuto una duplice soddisfazione”, dice Chiara Buttitta, ricercatrice postdoc  INAF e prima autrice di uno dei due articoli pubblicati su Astronomy & Astrophysics. “Non solo siamo stati in grado di ricavare i moti stellari in queste galassie estremamente deboli, ma abbiamo trovato qualcosa che non ci aspettavamo di osservare”.

Le osservazioni hanno permesso in particolare di realizzare un’analisi dettagliata di UDG32, una galassia ultra diffusa che è stata scoperta all’estremità dei filamenti della galassia a spirale NGC3314A. La UDG32 è appena visibile, ed appare come una debole macchia giallastra nelle immagini. Una delle possibili origini proposte per le UDG è la formazione da nubi di gas nei filamenti di galassie come la NGC3314A. Questa è rimasta solo un’ipotesi fino a quando è stata scoperta la UDG32. In particolare, una nube di gas presente nei filamenti, se raggiunge la densità critica, sotto l’azione della forza gravitazionale può collassare e formare stelle, diventando un nuovo sistema originatosi dal materiale rilasciato dalla galassia madre. L’analisi dei dati LEWIS ha confermato che la UDG32 è associata alla coda di filamenti della galassia NGC3314A: quindi non è solo un effetto di proiezione che localizza casualmente la UDG32 nella coda di NGC3314A. Inoltre, i nuovi dati hanno mostrato che la UDG32 è caratterizzata da una popolazione stellare ricca di metalli e di età intermedia, più giovane delle altre UDG osservate nell’ammasso dell’Idra, consistente con l’ipotesi che questa galassia potrebbe essersi formata da materiale pre-arricchito nel gruppo sud-est dell’ammasso dell’Idra e quindi liberato da una galassia più massiccia.

LEWIS è il primo grande progetto dell’ESO, guidato da INAF, interamente dedicato allo studio delle UDG. Questo programma ha raddoppiato il numero di galassie ultra diffuse analizzate spettroscopicamente, fornendo per la prima volta una visione globale delle loro proprietà all’interno di un ammasso di galassie ancora in fase di formazione.

“Il progetto LEWIS è stata una sfida. Quando questo programma è stato accettato dall’ESO abbiamo realizzato che fosse una miniera di dati da esplorare. E tale si è rivelato” afferma Enrichetta Iodice, ricercatrice INAF e responsabile scientifica del progetto. “La ‘forza’ di LEWIS, grazie alla spettroscopia integrale dello strumento usato, risiede nel poter studiare contemporaneamente, per ogni singola galassia, non solo i moti delle stelle, ma anche la popolazione stellare media e, quindi, avere indicazioni sull’età di formazione e le proprietà degli ammassi globulari, traccianti fondamentali anche per il contenuto di materia oscura. Mettendo insieme i singoli risultati, come in un puzzle, si ricostruisce la storia di formazione di questi sistemi”.

Per ulteriori informazioni:

L’articolo “Looking into the faintEst WIth MUSE (LEWIS): Exploring the nature of ultra-diffuse galaxies in the Hydra-I cluster”, di Buttita C. Iodice E. et al. è stato pubblicato online sulla rivista Astronomy & Astrophysics.

L’articolo “Looking into the faintEst WIth MUSE (LEWIS): Exploring the nature of ultra-diffuse galaxies in the Hydra I cluster”, di Hartke J., Iodice E., et al. è stato pubblicato online sulla rivista Astronomy & Astrophysics.

La pagina web del progetto LEWIS: https://sites.google.com/inaf.it/lewis/home

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica – INAF.

DUE STUDI ATTORNO AGLI AMMASSI GLOBULARI DELLE GALASSIE NGC 3640, NGC 3641, NGC 5018

Nelle osservazioni di gruppi di galassie realizzate con il telescopio italiano VST in Cile, tra cui una nuova immagine del gruppo dominato dalla galassia NGC 3640, gli ammassi globulari tracciano la storia e le dinamiche galattiche. Scoperte anche 17 nuove galassie nane nel gruppo.

Gli ammassi globulari non sono solo semplici agglomerati di stelle: sono vere e proprie macchine del tempo cosmiche che permettono di tuffarsi nella storia di formazione ed evoluzione delle galassie. Con centinaia di migliaia di stelle raccolte in un unico sistema, questi antichissimi agglomerati stellari raccontano storie segrete di fusioni galattiche e di eventi cosmici che hanno scolpito l’Universo come lo conosciamo oggi. Lo ribadiscono le immagini dei gruppi di galassie NGC 3640 e NGC 5018, realizzate con il telescopio italiano VST (VLT Survey Telescope) in Cile e analizzate in due studi guidati da giovani dottorandi dall’Istituto Nazionale di Astrofisica (INAF), pubblicati recentemente su Astronomy & Astrophysics.

Uno dei due lavori si focalizza sul gruppo di galassie NGC 3640, dominato dall’omonima galassia ellittica, a circa 88 milioni di anni luce da noi. Si tratta di una galassia dalla forma curiosa e perturbata, che reca i segni di passate interazioni con le vicine galassie. La nuova immagine ottenuta con il VST e pubblicata oggi svela per la prima volta la distribuzione degli ammassi globulari nella regione, visibili come puntini luminosi nei pressi delle galassie: questi non si limitano a orbitare intorno alle singole galassie, ma si estendono anche nello spazio intergalattico. La loro disposizione è il risultato di una lunga storia di interazioni e fusioni galattiche che hanno “strappato via” non solo singole stelle ma anche interi ammassi stellari dai loro sistemi originali.

“Il nostro studio offre una comprensione più approfondita dell’evoluzione e delle interazioni delle galassie nel corso della loro storia, arricchendo le conoscenze sui processi fondamentali che hanno modellato l’universo”, spiega Marco Mirabile, dottorando presso il Gran Sasso Science Institute (GSSI) con una borsa supportata da INAF d’Abruzzo e primo autore di uno dei due articoli. “Abbiamo studiato per la prima volta le proprietà degli ammassi globulari delle galassie NGC 3640 e NGC 3641 utilizzando immagini a grande campo e multi-banda, identificando un possibile nuovo modello di interazione tra le due galassie e scoprendo inoltre 17 nuove galassie nane che non erano note precedentemente in questo campo”.

Gli ammassi globulari analizzati nel lavoro, contrariamente alle aspettative, mostrano la loro massima concentrazione non intorno a NGC 3640, la galassia più massiccia del gruppo, ma intorno alla sua vicina, NGC 3641, che spicca nella metà inferiore dell’immagine. La distribuzione degli ammassi risulta peraltro allineata con la cosiddetta luce intragruppo (in inglese: intra-group light, IGL). Si tratta di una luminosità diffusa dovuta a stelle che sono state sottratte alle varie galassie durante fenomeni di merging, già studiata in questo sistema proprio grazie ai dati del VST in un lavoro guidato dalla ricercatrice INAF Rossella Ragusa nel 2023. Tutti questi indizi suggeriscono che la fusione tra queste due galassie sia ancora in corso.

Il secondo studio si concentra invece sul gruppo di galassie NGC 5018, anch’esso dominato dalla galassia ellittica che porta lo stesso nome e che si trova a circa 120 milioni di anni luce da noi. Anche NGC 5018 è ricca di segni di interazioni cosmiche: concentrazioni di stelle disposte in forma di gusci concentrici, code mareali e flussi di gas. Nelle immagini del VST, già studiate sin dal 2018, è stato ora possibile identificare, per la prima volta, una popolazione di ammassi globulari distribuita, anche in questo caso, lungo la luce intragruppo: questo evidenzia come la mutua gravità delle galassie abbia scolpito il sistema durante passate fusioni e interazioni.

“Il nostro studio suggerisce che le interazioni gravitazionali tra le galassie del gruppo NGC 5018 abbiano disperso gli ammassi globulari lungo l’asse di interazione”, nota il Pratik Lonare, dottorando presso l’Università di Roma Tor Vergata con una borsa supportata da INAF d’Abruzzo e primo autore del secondo articolo. “Questa ricerca dimostra che gli ammassi globulari non sono solo fossili della formazione iniziale delle galassie, ma vengono rimodellati dinamicamente da interazioni, fusioni e processi di accrescimento nel tempo”.

Inoltre, il team ha individuato una possibile nuova galassia nana ultra-diffusa (in inglese: ultra-diffuse galaxy, UDG) mai osservata prima in questo gruppo galattico.

I due nuovi lavori fanno parte del progetto VEGAS-SSS (VST Early-type GAlaxy Survey – Small Stellar Systems), un censimento di galassie guidato dall’INAF con il VST dedicato ai sistemi stellari più piccoli delle galassie, come ammassi globulari e galassie nane, per esplorare i processi di formazione galattica su scale cosmiche. Il telescopio VST, gestito da INAF presso l’Osservatorio ESO di Paranal, è lo strumento ideale per questo tipo di studi grazie al suo grande campo di vista di un grado quadrato, pari a circa quattro volte l’area della luna piena nel cielo. Questo permette di osservare in dettaglio non solo le galassie ma anche l’ambiente circostante, spianando la strada a progetti futuri come l’Osservatorio Vera C. Rubin, che sarà inaugurato prossimamente, sempre in Cile, per realizzare survey astronomiche con un campo di vista ancora più grande.


 

Per ulteriori informazioni:

Gli articoli “VEGAS-SSS: Tracing Globular Cluster Populations in the Interacting NGC 3640 Galaxy Group“, di Marco Mirabile, Michele Cantiello, Pratik Lonare, Rossella Ragusa, Maurizio Paolillo, Nandini Hazra, Antonio La Marca, Enrichetta Iodice, Marilena Spavone, Steffen Mieske, Marina Rejkuba, Michael Hilker, Gabriele Riccio, Rebecca A. Habas, Enzo Brocato, Pietro Schipani, Aniello Grado e Luca Limatola, e “VEGAS-SSS: An intra-group component in the globular cluster system of NGC 5018 group of galaxies using VST data“, di Pratik Lonare, Michele Cantiello, Marco Mirabile, Marilena Spavone, Marina Rejkuba, Michael Hilker, Rebecca Habas, Enrichetta Iodice, Nandini Hazra e Gabriele Riccio sono stati pubblicati sulla rivista Astronomy & Astrophysics.

17 febbraio 2025

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF.

UN ANELLO PERFETTO PER LA MISSIONE EUCLID: NGC 65o5 È LA PRIMA LENTE GRAVITAZIONALE FORTE

La missione Euclid dell’Agenzia Spaziale Europea (ESA) ha scoperto la sua prima lente gravitazionale forte: l’immagine di una galassia lontana che appare sotto forma di anello, grazie alla forza di gravità di una galassia molto più vicina a noi (NGC 6505) che si trova, casualmente, sulla stessa linea di vista. I risultati dello studio, guidato da una collaborazione internazionale a cui partecipano ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF), dell’Università di Bologna, dell’Istituto Nazionale di Fisica Nucleare (INFN) e di molti atenei italiani, sono stati pubblicati oggi su Astronomy & Astrophysics.

Immagine della galassia NGC 6505: l'anello di Einstein creato da questa lente gravitazionale si può vedere al centro dell'immagine
Immagine della galassia NGC 6505: l’anello di Einstein creato da questa lente gravitazionale si può vedere al centro dell’immagine. Crediti: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, T. Li 

Lanciata nel luglio del 2023, Euclid sta scansionando il cielo in profondità per costruire la più precisa mappa 3D mai realizzata dell’Universo, spingendosi fino a 10 miliardi di anni fa per studiare la storia cosmica e indagare i misteri delle enigmatiche materia oscura ed energia oscura. La missione, che vede un forte contributo italiano attraverso l’Agenzia Spaziale Italiana (ASI), l’INAF, l’INFN e numerosi atenei, deve raccogliere una enorme mole di dati per raggiungere i suoi ambiziosi obiettivi scientifici. E tra questi dati si nascondono moltissime sorprese.

Una delle prime sorprese è la galassia NGC 6505, nota sin dalla fine dell’Ottocento e relativamente vicina a noi – la sua luce è partita “appena” 590 milioni di anni fa. Grazie a Euclid si è scoperto che questa galassia agisce come lente gravitazionale, deviando la luce proveniente da un’altra galassia molto più lontana, la cui luce è partita ben 4,42 miliardi di anni fa. Il risultato è un’immagine distorta di quest’ultima galassia: distorta al punto giusto da formare un anello perfetto. La ricerca è guidata da Conor O’Riordan dell’Istituto Max Plack per l’Astrofisica (Max Planck Institute for Astrophysics) di Monaco di Baviera, Germania.

Secondo la teoria della relatività generale di Einstein, i corpi dotati di massa “piegano” il tessuto dello spaziotempo che pervade l’Universo, deflettendo il percorso di qualsiasi altro oggetto nelle vicinanze, compresa la luce. Questo fenomeno, chiamato lensing gravitazionale, produce immagini distorte dei corpi celesti, proprio come quelle create da una comune lente d’ingrandimento. La missione Euclid userà il lensing gravitazionale nella sua forma “debole” per studiare l’invisibile materia oscura attraverso la sua influenza sulle immagini leggermente deformate di miliardi di galassie. In rari casi, per esempio quando galassie a diverse distanze da noi si trovano fortuitamente allineate, il lensing gravitazionale si manifesta nella sua forma più eclatante, detta “forte”, dando luogo a immagini multiple di una stessa galassia o eccezionalmente a un intero anello, detto anello di Einstein.

Dettagli dell'anello di Einstein, immagine distorta di una galassia lontana creata dalla lente gravitazionale NGC 6505.Crediti: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, T. Li
NGC 6505 è la prima lente gravitazionale forte scoperta dalla missione Euclid, lo studio è stato pubblicato su Astronomy & Astrophysics. Dettagli dell’anello di Einstein, immagine distorta di una galassia lontana creata dalla lente gravitazionale NGC 6505.
Crediti: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, T. Li

“Questa prima lente gravitazionale forte scoperta da Euclid ha caratteristiche uniche”, spiega Massimo Meneghetti, ricercatore dell’Istituto Nazionale di Astrofisica, associato all’Istituto Nazionale di Fisica Nucleare, tra gli autori del nuovo studio. “È veramente raro poter trovare una galassia relativamente prossima a noi, come questa che si trova nel catalogo NGC (New galaxy catalog, uno dei cataloghi di galassie vicine), che agisca da lente gravitazionale forte. Galassie così vicine infatti non sono generalmente in grado di focalizzare la luce di sorgenti retrostanti e formare immagini multiple, a meno che non contengano enormi quantità di materia nelle loro regioni centrali. La formazione di anelli di Einstein completi come quello di NGC 6505 è un evento ancora più raro, perché richiede che la galassia lente e quella sorgente siano perfettamente allineate con il nostro telescopio. Per questi motivi, non ci aspettiamo che Euclid osserverà molte lenti come NGC 6505. Anche considerando la vasta area di cielo che verrà coperta nel corso della missione, ci aspettiamo di poter scoprire al massimo 20 lenti come questa”.

Questa lente gravitazionale è stata scoperta per caso, in una delle prime zone di cielo osservate da Euclid, analizzando i dati della fase di verifica della missione appena due mesi dopo il lancio, dall’astronomo Bruno Altieri dell’ESA: per questo il gruppo di ricerca l’ha soprannominata “lente di Altieri”. Benché la galassia NGC 6505 sia stata osservata per la prima volta nel 1884, l’anello di Einstein scoperto con Euclid non era mai stato notato prima, dimostrando le straordinarie capacità di scoperta della missione.

La distorsione indotta dal lensing gravitazionale dipende dalla distribuzione e dalla densità di materia della galassia che agisce da lente. Per questo motivo, analizzando la distorsione è possibile misurare la sua massa sia in termini di stelle che di materia oscura. In questo caso, inoltre, visto che l’anello di Einstein della lente di Altieri ha un raggio più piccolo rispetto a quello di NGC 6505, è stato possibile studiare accuratamente la composizione e la struttura delle regioni centrali, dove la materia oscura è meno prominente, e dove la galassia è dominata dalle stelle.

“Dato che il lensing gravitazionale è il metodo più preciso per misurare la massa, combinando il modello dell’anello di Einstein e della distribuzione di stelle della galassia, abbiamo potuto misurare che la frazione di massa composta da materia oscura al centro della lente è soltanto l’11 per cento”, spiega la co-autrice Giulia Despali, ricercatrice al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna, associata dell’INAF e dell’INFN. “Ricordiamo che la materia oscura costituisce circa l’85 per cento della materia totale del nostro Universo, quindi le regioni centrali delle galassie sono veramente particolari. Abbiamo infatti misurato le proprietà della galassia con estrema precisione, scoprendo una struttura complessa che varia con la distanza dal centro e stimando la funzione di massa iniziale, e cioè la proporzione di stelle di piccola e grande massa. Le nuove osservazioni di Euclid ci aiutano quindi a capire di più sia sull’Universo oscuro che sui processi di formazione ed evoluzione delle galassie”.

Se questa scoperta è avvenuta per caso, all’interno della collaborazione Euclid c’è un vasto gruppo dedicato alla ricerca di lenti gravitazionali, e ci si aspetta di trovarne oltre centomila nei 14mila gradi quadrati di cielo che saranno osservati nel corso della missione. Queste indagini sfruttano, da un lato, strumenti sofisticati come l’intelligenza artificiale, e dall’altro anche la citizen science, coinvolgendo il pubblico non esperto nell’ispezione visuale delle immagini, in collaborazione con la piattaforma Zooniverse. L’obiettivo è quello di realizzare una mappa dettagliata della distribuzione della materia, sia quella visibile che quella oscura, nelle galassie e negli ammassi di galassie a varie distanze dall’Universo locale per poter così studiare la natura e l’evoluzione nel tempo della materia oscura e dell’energia oscura.

Testo e immagini dagli Uffici Stampa Istituto Nazionale di Astrofisica – INAF, Alma Mater Studiorum – Università di Bologna

L’INATTESO BRILLAMENTO NEL GETTO DI M87 OSSERVATO DALLE ONDE RADIO AI RAGGI GAMMA

Curva di luce del brillamento a raggi gamma (in basso) e raccolta di immagini quasi-simulatneee del getto di M87 (in alto) a varie scale ottenute in radio e raggi X durante la campagna del 2018. Lo strumento, la lunghezza d'onda di osservazione e la scala sono mostrati in alto a sinistra di ogni immagine. Crediti: EHT Collaboration, Fermi-LAT Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration
Curva di luce del brillamento a raggi gamma (in basso) e raccolta di immagini quasi-simulatneee del getto di M87 (in alto) a varie scale ottenute in radio e raggi X durante la campagna del 2018. Lo strumento, la lunghezza d’onda di osservazione e la scala sono mostrati in alto a sinistra di ogni immagine. Crediti: EHT Collaboration, Fermi-LAT Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration

È il primo episodio registrato dal 2010. I dati sono stati raccolti dalla collaborazione Event Horizon Telescope (EHT) nel corso di una campagna osservativa a diverse lunghezze d’onda del 2018 sfruttando numerosi telescopi in orbita come Fermi, HST, NuSTAR, Chandra, Swift della NASA, insieme ai tre più grandi telescopi Cherenkov sulla Terra: H.E.S.S., MAGIC e VERITAS.

Gli osservatori e i telescopi che hanno partecipato alla campagna multibanda del 2018 per la rilevazione del brillamento di raggi gamma ad alte energie dal buco nero M87*. Crediti: EHT Collaboration, Fermi-LAT Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration
Gli osservatori e i telescopi che hanno partecipato alla campagna multibanda del 2018 per la rilevazione del brillamento di raggi gamma ad alte energie dal buco nero M87*. Crediti: EHT Collaboration, Fermi-LAT Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration

La collaborazione scientifica internazionale Event Horizon Telescope (EHT), che nel 2019 aveva pubblicato la prima “foto” di un buco nero, quello supermassiccio al centro della galassia Messier 87 (denominato M87*), ha recentemente osservato e studiato a diverse lunghezze d’onda uno spettacolare brillamento (flare in inglese) proveniente dal potente getto relativistico al centro della stessa galassia, la più luminosa dell’ammasso della Vergine. Lo studio, coordinato dal gruppo di ricerca EHT-MWL che include anche l’Università degli studi di Trieste, l’Istituto Nazionale di Astrofisica (INAF), l’Istituto Nazionale di Fisica Nucleare (INFN) e l’Agenzia Spaziale Italiana (ASI), presenta i dati della seconda campagna osservativa di EHT realizzata nell’aprile del 2018 che ha coinvolto oltre 25 telescopi terrestri e in orbita. Nello studio gli autori riportano la prima osservazione in oltre un decennio di un brillamento di raggi gamma ad altissime energie – fino a migliaia di miliardi di elettronvolt – da M87* dopo aver ottenuto quasi in simultanea gli spettri della galassia con il più ampio intervallo di lunghezze d’onda finora raccolti. L’articolo è stato pubblicato sulla rivista Astronomy & Astrophysics.

“Siamo stati fortunati a rilevare un brillamento di raggi gamma da M87* durante la campagna multi-lunghezza d’onda dell’Event Horizon Telescope. Questo è il primo episodio di brillamento di raggi gamma in questa sorgente dal 2010. Le osservazioni, comprese quelle eseguite con un’infrastruttura più sensibile nel 2021 e 2022, così come quelle pianificate per i prossimi anni, ci offriranno ulteriori approfondimenti e un’incredibile opportunità per investigare la fisica attorno al buco nero supermassiccio M87*, spiegando la connessione tra il disco di accrescimento e il getto emesso, nonché l’origine e i meccanismi responsabili dell’emissione di fotoni di raggi gamma”, commenta Giacomo Principe, responsabile del progetto, ricercatore dell’Università degli studi di Trieste, associato INAF e INFN.

Il brillamento energetico, durato circa tre giorni, ha rivelato che l’emissione era sbilanciata verso energie più elevate di quelle tipiche emesse dal buco nero di M87.

“Insieme alle osservazioni sub-millimetriche dell’EHT, i nuovi dati raccolti in molteplici bande di radiazione offrono un’opportunità unica per comprendere le proprietà della regione di emissione di raggi gamma, collegarla a potenziali cambiamenti nel getto di M87 e consentire test più sensibili sulla relatività generale”, sottolinea Principe.

Spingendo materiale ad altissima energia al di fuori della galassia ospite, il getto relativistico esaminato dai ricercatori e dalle ricercatrici ha un’estensione sorprendente arrivando a dimensioni che superano quelle dell’orizzonte degli eventi del buco nero per decine di milioni di volte: come dire la differenza che c’è in termini di dimensioni tra un batterio e la più grande balenottera azzurra conosciuta.

Tra i telescopi coinvolti nella campagna troviamo Fermi (con lo strumento LAT), NuSTAR, Chandra e Swift della NASA, e i tre più grandi apparati di telescopi IACT (Imaging Atmospheric Cherenkov Telescope) per astronomia a raggi gamma di altissima energia da terra (H.E.S.S., MAGIC e VERITAS), con i quali è stato possibile osservare e studiare le caratteristiche di durata ed emissione del brillamento ad alta energia.

Elisabetta Cavazzuti, responsabile del programma Fermi per l’ASI, racconta: “Fermi-LAT ha rivelato un aumento notevole di flusso nello stesso periodo degli altri osservatori contribuendo a cercare di identificare la zona di emissione dei raggi gamma durante questi aumenti di luminosità. M87 è un laboratorio che ci dimostra ancora una volta l’importanza di avere osservazioni coordinate a più lunghezze d’onda e anche ben campionate per caratterizzare pienamente la variabilità spettrale della sorgente, variabilità che probabilmente si estende su diverse scale temporali, con una visione il più possibile completa attraverso tutto lo spettro elettromagnetico”.

Dati di elevata qualità sono stati poi raccolti nella banda dei raggi X da Chandra e NuSTAR. Le osservazioni radio VLBA (Very Long Baseline Array), per le quali sono state coinvolte anche le stazioni radioastronomiche dell’INAF, presentano un chiaro cambiamento, su base annuale, dell’angolo di posizione del getto entro pochi milliarcosecondi dal nucleo della galassia.

Principe continua: “In particolare, questi risultati offrono la prima possibilità in assoluto di identificare il punto in cui vengono accelerate le particelle che causano il brillamento, il che potrebbe potenzialmente risolvere un dibattito di lunga data sull’origine dei raggi cosmici (particelle ad altissima energia provenienti dallo spazio) rilevati sulla Terra”.

I dati pubblicati nell’articolo mostrano anche una variazione significativa nell’angolo di posizione dell’asimmetria dell’anello (il cosiddetto “orizzonte degli eventi” del buco nero), così come nella posizione del getto, rivelando connessioni tra queste strutture su scale dimensionali molto diverse. Il ricercatore spiega:

“Nella prima immagine durante la compagna osservativa del 2018 si era visto che questo anello non era omogeneo, presentava quindi delle asimmetrie (cioè delle zone più brillanti). Le successive osservazioni condotte nel 2018 e legate a questa pubblicazione scientifica hanno confermato i dati evidenziando però che l’angolo di posizione dell’asimmetria era cambiato”.

“Come e dove le particelle vengono accelerate nei getti del buco nero supermassiccio è un mistero di lunga data. Per la prima volta possiamo combinare l’imaging diretto delle regioni vicine all’orizzonte degli eventi di un buco nero durante i brillamenti di raggi gamma derivanti da eventi di accelerazione delle particelle, e possiamo testare le teorie sulle origini dei brillamenti stessi”, dice Sera Markoff, professoressa presso l’Università di Amsterdam e co-autrice dello studio.

Giacomo Principe conclude: “Queste osservazioni possono far luce su alcuni principali quesiti dell’astrofisica tuttora ancora irrisolti: come sono originati i potenti getti relativistici che vengono osservati in alcune galassie? Dove vengono accelerate le particelle responsabili dell’emissione dei raggi gamma? Quale fenomeno le accelera fino a energie del TeV (migliaia di miliardi di elettronvolt)? Qual è l’origine dei raggi cosmici?”


 

Riferimenti bibliografici:

L’articolo “Broadband Multi-wavelength Properties of M87 during the 2018 EHT Campaign including a Very High Energy Flaring Episode”, di Event Horizon Telescope – Multi-wavelength science working group, Event Horizon Telescope Collaboration, Fermi Large Area Telescope Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration, è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo, video e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

LUCE SUI TITANI DELL’ALBA COSMICA: I PRIMI QUASAR SFIDANO I LIMITI DELLA FISICA PER CRESCERE
Scoperte nuove evidenze che spiegano come si siano formati i buchi neri supermassicci nel primo miliardo di anni di vita dell’Universo. Lo studio, condotto dai ricercatori dell’INAF, analizza 21 quasar distanti e rivela che questi oggetti si trovano in una fase di accrescimento super veloce, offrendo preziose informazioni sulla loro formazione ed evoluzione, in parallelo con quella delle galassie ospitanti.

In un articolo pubblicato oggi sulla rivista Astronomy & Astrophysics emergono nuove indicazioni che suggeriscono come i buchi neri supermassicci, con masse pari ad alcuni miliardi di volte quella del nostro Sole, si siano formati così rapidamente in meno di un miliardo di anni dopo il Big Bang. Lo studio, guidato dai ricercatori dell’Istituto Nazionale di Astrofisica (INAF), analizza un campione di 21 quasar, tra i più distanti scoperti finora, osservati nei raggi X dai telescopi spaziali XMM-Newton e Chandra. I risultati suggeriscono che i buchi neri supermassicci al centro di questi titanici quasar, i primi a essersi formati durante l’alba cosmica, potrebbero aver raggiunto le loro straordinarie masse grazie a un accrescimento molto rapido e intenso, fornendo così una spiegazione plausibile alla loro esistenza nelle prime fasi dell’Universo.

I quasar sono galassie attive, alimentate da buchi neri supermassicci al loro centro (chiamati nuclei galattici attivi), che emettono enormi quantità di energia mentre attraggono materia. Sono estremamente luminosi e lontani da noi. Nello specifico, i quasar esaminati in questo studio sono tra gli oggetti più distanti mai osservati e risalgono a un’epoca in cui l’Universo aveva meno di un miliardo di anni.

In questo lavoro, l’analisi delle emissioni nei raggi X di tali oggetti ha rivelato un comportamento completamente inaspettato dei buchi neri supermassicci al loro centro: è emerso un legame tra la forma dell’emissione in banda X e la velocità dei venti di materia lanciati dai quasar. Questa relazione associa la velocità dei venti, che può raggiungere migliaia di chilometri al secondo, alla temperatura del gas nella corona, la zona che emette raggi X più prossima al buco nero, legata a sua volta ai potenti meccanismi di accrescimento del buco nero stesso. I quasar con emissione X a bassa energia, quindi con una minore temperatura del gas nella corona, mostrano venti più veloci. Ciò è indice di una fase di crescita estremamente rapida che valica un limite fisico di accrescimento di materia denominato limite di Eddington, per questo motivo tale fase viene chiamata ‘super Eddington’. Viceversa, i quasar con emissioni più energetiche nei raggi X tendono a presentare venti più lenti.

“Il nostro lavoro suggerisce che i buchi neri supermassicci al centro dei primi quasar che si sono formati nel primo miliardo di anni di vita dell’Universo possano effettivamente aver aumentato la loro massa molto velocemente, sfidando i limiti della fisica”, afferma Alessia Tortosa, prima autrice del lavoro e ricercatrice presso l’INAF di Roma. “La scoperta di questo legame tra emissione X e venti è cruciale per comprendere come buchi neri così grandi si siano formati in così poco tempo, offrendo in tal modo un’indicazione concreta per risolvere uno dei più grandi misteri dell’astrofisica moderna”.

Il risultato è stato raggiunto soprattutto grazie all’analisi di dati raccolti con il telescopio spaziale XMM-Newton dell’Agenzia Spaziale Europea (ESA) che ha permesso di osservare i quasar per circa 700 ore, fornendo dati senza precedenti sulla loro natura energetica. La maggior parte dei dati, raccolti tra il 2021 e 2023 nell’ambito del Multi-Year XMM-Newton Heritage Programme, sotto la direzione di Luca Zappacosta, ricercatore dell’INAF di Roma, fa parte del progetto HYPERION, che si propone di studiare i quasar iperluminosi all’alba cosmica dell’Universo. L’estesa campagna di osservazioni è stata guidata da un team di scienziati italiani e ha ricevuto il sostegno cruciale dell’INAF, che ha finanziato il programma, sostenendo così una ricerca di avanguardia sulle dinamiche evolutive delle prime strutture dell’Universo.

“Per il programma HYPERION abbiamo puntato su due fattori chiave: da una parte l’accurata scelta dei quasar da osservare, selezionando i titani, cioè quelli che avevano accumulato la maggior massa possibile, e dall’altra lo studio approfondito delle loro proprietà nei raggi X, mai tentato finora su così tanti oggetti all’alba cosmica”, sostiene Zappacosta. “Direi proprio che abbiamo fatto bingo! I risultati che stiamo ottenendo sono davvero inaspettati e puntano tutti su un meccanismo di crescita dei buchi neri di tipo super Eddington”.

Questo studio fornisce indicazioni importanti per le future missioni in banda X, come ATHENA (ESA), AXIS e Lynx (NASA), il cui lancio è previsto tra il 2030 e il 2040. Infatti, i risultati ottenuti saranno utili per il perfezionamento degli strumenti di osservazione di nuova generazione e per la definizione di migliori strategie di indagine dei buchi neri e dei nuclei galattici nei raggi X a epoche cosmiche più remote, elementi essenziali per comprendere la formazione delle prime strutture galattiche nell’Universo primordiale.

Rappresentazione artistica generata tramite intelligenza artificiale, basata su un’immagine NASA (https://photojournal.jpl.nasa.gov/catalog/PIA16695), che mostra un buco nero supermassiccio in accrescimento, circondato da gas che spiraleggiano verso l'orizzonte degli eventi e emettono potenti venti di materia. Crediti: Emanuela Tortosa
Rappresentazione artistica generata tramite intelligenza artificiale, basata su un’immagine NASA (https://photojournal.jpl.nasa.gov/catalog/PIA16695), che mostra un buco nero supermassiccio in accrescimento, circondato da gas che spiraleggiano verso l’orizzonte degli eventi e emettono potenti venti di materia. Crediti: Emanuela Tortosa

Riferimenti bibliografici:

L’articolo “HYPERION. Shedding light on the first luminous quasars: A correlation between UV disc winds and X-ray continuum”, di Tortosa A. et al. 2024, è stato pubblicato online sulla rivista Astronomy & Astrophysics.

 

Testo e immagini dall’Ufficio Stampa dell’Istituto Nazionale di Astrofisica – INAF

AT 2021hdr, NUBE DI GAS DISTRUTTA DA UNA COPPIA DI BUCHI NERI SUPERMASSICCI AFFAMATI

Caotici e voraci, caratteristiche che potrebbero descrivere perfettamente due buchi neri mostruosi scoperti con l’Osservatorio Neil Gehrels Swift della NASA, satellite con una importante partecipazione italiana dell’Agenzia Spaziale Italiana (ASI) e dell’Istituto Nazionale di Astrofisica (INAF). Un gruppo di ricerca ha infatti rilevato, pubblicando i risultati oggi sulla rivista Astronomy and Astrophysics, per la prima volta un evento transiente di distruzione mareale in cui una coppia di buchi neri supermassivi sta interagendo con una nube di gas nel centro di una galassia distante. Il segnale di questo fenomeno, noto come AT 2021hdr, si ripete periodicamente, offrendo agli astronomi un’opportunità unica di studiare il comportamento di questi oggetti cosmici estremi. Tra gli enti di ricerca coinvolti nello studio c’è anche l’Istituto Nazionale di Astrofisica (INAF).

“È un evento molto strano, chiamato AT 2021hdr, che si ripete ogni pochi mesi”, spiega Lorena Hernández-García, ricercatrice presso il Millennium Institute of Astrophysics e il Millennium Nucleus for Transversal Research and Technology to explore Supermassive Black Holes, prima autrice dello studio e leader del team di ricerca. “Crediamo che una nube di gas abbia inghiottito i buchi neri; mentre orbitano l’uno attorno all’altro, i buchi neri interagiscono con la nube, perturbando e consumando il suo gas. Questo produce oscillazioni che si osservano nella luce del sistema”.

AT 2021hdr è stato scoperto grazie all’ALeRCE broker e osservato per la prima volta nel 2021 con lo ZTF (Zwicky Transient Facility) presso l’Osservatorio Palomar in California.

Rappresentazione artistica in cui si vede una coppia di buchi neri supermassivi che vortica in una nube di gas. L’evento si chiama AT 2021hdr, un brillamento ricorrente studiato dal Neil Gehrels Swift Observatory della NASA e dal ZTF Transient Facility presso l'Osservatorio Palomar in California. Crediti: NASA/Aurore Simonnet (Sonoma State University)
Rappresentazione artistica in cui si vede una coppia di buchi neri supermassivi che vortica in una nube di gas. L’evento si chiama AT 2021hdr, un brillamento ricorrente studiato dal Neil Gehrels Swift Observatory della NASA e dal ZTF Transient Facility presso l’Osservatorio Palomar in California. Crediti: NASA/Aurore Simonnet (Sonoma State University)

Cosa provoca questo fenomeno? Dopo aver esaminato diversi modelli per spiegare ciò che vedevano nei dati, i ricercatori hanno dapprima considerato l’ipotesi di un evento di distruzione mareale (in inglese tidal disruption event), vale a dire la distruzione di una stella che si era avvicinata troppo a uno dei buchi neri, per poi convergere su un’altra possibilità: la distruzione mareale di una nube di gas, più grande del binario stesso. Analizzando i dati raccolti, la dinamica è apparsa subito chiara: quando la nube si è scontrata con i due buchi neri, la loro forza di attrazione gravitazionale l’ha fatta a pezzi, formando filamenti attorno alla coppia. La nube si è poi riscaldata per attrito, il gas è diventato particolarmente denso e caldo vicino ai buchi neri, mentre la complessa interazione di forze ha fatto sì che parte del gas venisse espulso dal sistema a ogni rotazione.

ZTF ha rilevato esplosioni da AT 2021hdr ogni 60-90 giorni dal primo brillamento. Il gruppo di Hernández-García ha osservato la sorgente con Swift da novembre 2022. Il satellite americano Swift li ha aiutati a determinare che la coppia di buchi neri produce oscillazioni nella luce ultravioletta e nei raggi X simultaneamente a quelle viste nella luce visibile.

“È la prima volta che si osserva un evento di distruzione mareale di una nube di gas da parte di una coppia di buchi neri supermassivi”, afferma Gabriele Bruni, ricercatore presso l’INAF di Roma. “In particolare, l’oscillazione periodica misurata in banda ottica, ultravioletta, e raggi X ha una durata mai osservata in precedenza per un evento di distruzione mareale. Grazie al monitoraggio costante di ZTF è stato possibile scoprire questo peculiare sistema, e avviare osservazioni in diverse bande. La survey dello ZTF infatti copre il cielo intero ogni 3 giorni, permettendo per la prima volta di scoprire un grande numero di questi fenomeni astrofisici transitori”.

“I fenomeni transienti permettono di studiare ‘in diretta’ l’evoluzione dei sistemi di accrescimento su buchi neri supermassicci, dove la gravità e il campo magnetico si trovano a un regime energetico estremo. Sono quindi laboratori che non riusciremo mai a riprodurre sulla terra, dove testare nuove leggi della fisica”, sostiene Francesca Panessa, ricercatrice presso l’INAF di Roma.

I due buchi neri protagonisti della scoperta si trovano nel centro di una galassia chiamata 2MASX J21240027+3409114, situata a 1 miliardo di anni luce di distanza in direzione della costellazione del Cigno. I due buchi neri sono separati da circa 26 miliardi di chilometri e insieme contengono 40 milioni di volte la massa del Sole. Gli scienziati stimano che i buchi neri completino un’orbita ogni 130 giorni e che si fonderanno tra circa 70 mila anni.

Bruni sottolinea che “finora sono pochi i fenomeni transienti osservati che presentano un oscillazione nella curva di luce come questo”. E conclude: “Le coppie di buchi neri supermassicci sono ancora un fenomeno raramente osservato, e ne vedremo molti di più con la prossima generazione di antenne gravitazionali a bassa frequenza (come LISA – Laser Interferometer Space Antenna). Inoltre, si aspettiamo di scoprire altri casi come questo nei prossimi anni, anche con l’accensione del Vera Rubin Telescope, che sarà in grado di scrutare ancora più a fondo l’universo”.

 Da sinistra: Francesca Panessa (INAF Roma), Lorena Hernández-García (Millennium Institute of Astrophysics), Gabriele Bruni (INAF Roma). Crediti: L. Sidoli / INAF
Da sinistra: Francesca Panessa (INAF Roma), Lorena Hernández-García (Millennium Institute of Astrophysics), Gabriele Bruni (INAF Roma). Crediti: L. Sidoli / INAF

 

Riferimenti bibliografici:

L’articolo “AT 2021hdr: A candidate tidal disruption of a gas cloud by a binary super massive black hole system”, di L. Hernández-García et al., è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo,  video e immagini dall’Ufficio Stampa INAF, Istituto Nazionale di Astrofisica,

LA PRIMA ANALISI 3D SULLA FORMAZIONE ED EVOLUZIONE DEGLI AMMASSI GLOBULARI

Uno studio pubblicato oggi sulla rivista Astronomy & Astrophysics apre nuove prospettive sulla nostra comprensione della formazione ed evoluzione dinamica delle popolazioni stellari multiple negli ammassi globulari, agglomerati di stelle di forma sferica, molto compatti, formati tipicamente da 1-2 milioni di stelle. Un gruppo di ricercatori, dell’Istituto Nazionale di Astrofisica (INAF), dell’Università degli Studi di Bologna e dell’Università dell’Indiana negli USA, ha infatti condotto la prima analisi cinematica 3D (tridimensionale) delle popolazioni stellari multiple per un campione rappresentativo di 16 ammassi globulari nella nostra Galassia, fornendo una descrizione osservativa pionieristica del modo in cui le stelle si muovono al loro interno e della loro evoluzione dall’epoca di formazione fino allo stato presente.

Galleria di immagini dei 16 ammassi globulari analizzati in ordine di differenza delle proprietà cinematiche osservate tra le popolazioni stellari multiple. Crediti: ESA/Hubble - ESO - SDSS
Galleria di immagini dei 16 ammassi globulari analizzati in ordine di differenza delle proprietà cinematiche osservate tra le popolazioni stellari multiple. Crediti: ESA/Hubble – ESO – SDSS

Emanuele Dalessandro, ricercatore presso l’INAF di Bologna, primo autore dell’articolo e coordinatore del gruppo di lavoro spiega:

“La comprensione dei processi fisici alla base della formazione ed evoluzione iniziale degli ammassi globulari è una delle più affascinanti e discusse domande astrofisiche degli ultimi 20-25 anni. I risultati del nostro studio forniscono la prima evidenza concreta che gli ammassi globulari si siano generati attraverso molteplici eventi di formazione stellare e pongono vincoli fondamentali sul percorso dinamico seguito dagli ammassi nel corso della loro evoluzione. Questi risultati sono stati possibili grazie a un approccio multi-diagnostico e alla combinazione di osservazioni e simulazioni dinamiche allo stato dell’arte”.

Lo studio evidenzia che le differenze cinematiche tra le popolazioni multiple sono estremamente utili per comprendere i meccanismi di formazione ed evoluzione di queste antiche strutture.

Con età che possono arrivare a 12-13 miliardi di anni (quindi fino all’alba del Cosmo), gli ammassi globulari sono tra i primi sistemi a essersi formati nell’Universo e rappresentano una popolazione tipica di tutte le galassie.  Sono sistemi compatti – con masse di alcune centinaia di migliaia di masse solari e dimensioni di pochi parsec –  e osservabili anche in galassie lontane.

“La loro rilevanza astrofisica è enorme – afferma Dalessandro – perché non solo ci aiutano a verificare i modelli cosmologici della formazione dell’Universo grazie alla loro età, ma ci offrono anche laboratori naturali per studiare la formazione, l’evoluzione e l’arricchimento chimico delle galassie”.

Nonostante gli ammassi stellari siano stati studiati per oltre un secolo, risultati osservativi recenti dimostrano che la loro conoscenza è ancora incompleta.

“Risultati ottenuti negli ultimi due decenni, hanno inaspettatamente dimostrato che gli ammassi globulari sono composti da più di una popolazione di stelle: una primordiale, con proprietà chimiche simili a quelle di altre stelle nella Galassia, e una con abbondanze chimiche anomale di elementi leggeri quali elio, ossigeno, sodio, azoto”,

dice Mario Cadelano, ricercatore al Dipartimento di Fisica e Astronomia dell’Università di Bologna e associato INAF, tra gli autori dello studio.

“Nonostante il gran numero di osservazioni e modelli teorici finalizzati a caratterizzare le proprietà di queste popolazioni, i meccanismi che regolano la loro formazione non sono tutt’ora compresi”.

Il satellite Gaia dell’ESA che mappa le stelle della Via Lattea. Crediti: ESA/ATG medialab; background: ESO/S. Brunier
Il satellite Gaia dell’ESA che mappa le stelle della Via Lattea. Crediti: ESA/ATG medialab; background: ESO/S. Brunier

Lo studio si basa sulla misura delle velocità nelle tre dimensioni, ovvero sulla combinazione di moti propri e velocità radiali, ottenuti dal telescopio dell’ESA Gaia e da dati ottenuti tra gli altri con il telescopio VLT dell’ESO principalmente nell’ambito della survey MIKiS (Multi Instrument Kinematic Survey), una survey spettroscopica specificamente indirizzata all’esplorazione della cinematica interna degli ammassi globulari. L’utilizzo di questi telescopi, dallo spazio e da terra, ha garantito una visione 3D senza precedenti della distribuzione di velocità delle stelle negli ammassi globulari selezionati.

Il Very Large Telescope (VLT) dell'ESO durante alcune osservazioni. Crediti: ESO/S. Brunier
Il Very Large Telescope (VLT) dell’ESO durante alcune osservazioni. Crediti: ESO/S. Brunier

Dalle analisi emerge che le stelle con differenti abbondanze di elementi leggeri sono caratterizzate da proprietà cinematiche differenti, come la velocità di rotazione e la distribuzione delle orbite.

“In questo lavoro abbiamo analizzato nel dettaglio come si muovono all’interno di ogni ammasso migliaia di stelle”, aggiunge Alessandro Della Croce, studente di dottorato presso l’INAF di Bologna. “È risultato subito chiaro che stelle appartenenti a diverse popolazioni sono caratterizzate da proprietà cinematiche differenti: le stelle con composizione chimica anomala tendenzialmente ruotano all’interno dell’ammasso più velocemente delle altre e si diffondono progressivamente dalle regioni centrali verso quelle più esterne”.

L’intensità di queste differenze cinematiche dipende all’età dinamica degli ammassi globulari.

“Questi risultati sono compatibili con l’evoluzione dinamica a ‘lungo termine’ di sistemi stellari in cui le stelle con abbondanze chimiche anomale si formano più centralmente concentrate e più rapidamente rotanti di quelle standard. Ciò di conseguenza suggerisce che gli ammassi globulari si siano generati attraverso eventi multipli di formazione stellare e fornisce un tassello importante nella definizione dei processi fisici e dei tempi-scala alla base della formazione ed evoluzione di ammassi stellari massicci”, sottolinea Dalessandro.

Questa nuova visione tridimensionale del moto delle stelle all’interno degli ammassi globulari fornisce un quadro inedito e affascinante sulla formazione ed evoluzione dinamica di questi sistemi, contribuendo a chiarire alcuni dei misteri più complessi riguardanti l’origine di queste antichissime strutture.


 

Riferimenti Bibliografici:

L’articolo “A 3D view of multiple populations kinematics in Galactic globular clusters”, di  E. Dalessandro, M. Cadelano, A. Della Croce, F. I. Aros, E. B. White, E. Vesperini, C. Fanelli, F. R. Ferraro, B. Lanzoni, S. Leanza, L. Origlia, è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo e immagini dagli Uffici Stampa INAF – Istituto Nazionale di Astrofisica e Alma Mater Studiorum – Università degli Studi di Bologna

Scienziati scoprono Barnard b, un pianeta in orbita intorno alla stella di Barnard, la stella singola più vicina al Sole

This artist’s impression shows Barnard b, a sub-Earth-mass planet that was discovered orbiting Barnard’s star. Its signal was detected with the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), and astronomers were able to confirm it with data from other instruments. An earlier promising detection in 2018 around the same star could not be confirmed by these data. On this newly discovered exoplanet, which has at least half the mass of Venus but is too hot to support liquid water, a year lasts just over three Earth days.Crediti: ESO/M. Kornmesser
Impressione artistica del pianeta Barnard b.
Crediti: ESO/M. Kornmesser

Utilizzando il VLT (Very Large Telescope) dell’ESO (Osservatorio Europeo Australe), alcuni astronomi hanno scoperto un esopianeta in orbita intorno alla stella di Barnard, la stella singola più vicina al Sole. Su questo esopianeta appena scoperto, che ha una massa pari ad almeno la metà di quella di Venere, un anno dura poco più di tre giorni terrestri. Le osservazioni dell’équipe suggeriscono anche l’esistenza di altri tre candidati esopianeti, in orbite diverse intorno alla stella.

Situata a soli sei anni luce di distanza, la stella di Barnard è il secondo sistema stellare, dopo il gruppo di tre stelle di Alpha Centauri, e la stella singola più vicina a noi. Grazie alla sua vicinanza, è un obiettivo primario nella ricerca di esopianeti simili alla Terra. Nonostante una promettente riveazione nel 2018, finora nessun pianeta era stato confermato in orbita intorno alla stella di Barnard.

Rappresentazione grafica delle distanze relative tra le stelle più vicine e il Sole.
Crediti: IEEC/Science-Wave – Guillem Ramisa
Il grafico mostra la costellazione di Ofiuco (o Serpentario), a cavallo dell'equatore celeste. È indicata la posizione della stella di Barnard, così come l'ubicazione della maggior parte delle stelle visibili a occhio nudo in una notte buia e serena. Crediti: ESO, IAU and Sky & Telescope
Il grafico mostra la costellazione di Ofiuco (o Serpentario), a cavallo dell’equatore celeste. È indicata la posizione della stella di Barnard, così come l’ubicazione della maggior parte delle stelle visibili a occhio nudo in una notte buia e serena.
Crediti: ESO, IAU and Sky & Telescope

La scoperta di questo nuovo esopianeta, annunciata in un articolo pubblicato oggi sulla rivista Astronomy & Astrophysics, è il risultato di osservazioni effettuate negli ultimi cinque anni con il VLT dell’ESO, situato presso l’Osservatorio del Paranal in Cile.

Anche se ci è voluto molto tempo, siamo sempre stati fiduciosi di poter trovare qualcosa“,

afferma Jonay González Hernández, ricercatore presso l’Instituto de Astrofísica de Canarias in Spagna e autore principale dell’articolo. L’équipe stava cercando segnali da possibili esopianeti all’interno della zona abitabile o temperata della stella di Barnard, l’intervallo in cui l’acqua può essere liquida sulla superficie del pianeta. Le nane rosse come la stella di Barnard sono spesso considerate dagli astronomi poiché lì i pianeti rocciosi di piccola massa sono più facili da rilevare che intorno a stelle più grandi, simili al Sole. [1]

Barnard b [2], come viene chiamato l’esopianeta appena scoperto, è venti volte più vicino alla stella di Barnard di quanto Mercurio lo sia al Sole. Orbita intorno alla stella in 3,15 giorni terrestri e ha una temperatura superficiale di circa 125 °C.

Barnard b è uno degli esopianeti di massa più piccola trovati finora e uno dei pochi noti con una massa inferiore a quella della Terra. Ma il pianeta è troppo vicino alla stella ospite, più vicino rispetto alla zona abitabile“, spiega González Hernández. “Anche se la stella è circa 2500 gradi più fredda del Sole, in quella posizione fa troppo caldo perchè si possa mantenere acqua liquida sulla superficie“.

Per le osservazioni, il gruppo di lavoro ha utilizzato ESPRESSO, uno strumento molto preciso progettato per misurare l’oscillazione di una stella causata dall’attrazione gravitazionale di uno o più pianeti in orbita intorno ad essa. I risultati ottenuti da queste osservazioni sono stati confermati dai dati di altri strumenti specializzati nella caccia agli esopianeti: HARPS presso l’Osservatorio di La Silla dell’ESO, HARPS-N e CARMENES. I nuovi dati, tuttavia, non supportano l’esistenza dell’esopianeta segnalato nel 2018.

Oltre al pianeta confermato, l’équipe internazionale ha anche trovato indizi di altri tre candidati esopianeti in orbita intorno alla stessa stella. Serviranno ulteriori osservazioni con ESPRESSO per la conferma.

Ora dobbiamo continuare a osservare questa stella per confermare gli altri segnali candidati“, afferma Alejandro Suárez Mascareño, anch’egli ricercatore presso l’Instituto de Astrofísica de Canarias e coautore dello studio. “Ma la scoperta di questo pianeta, insieme con altre scoperte precedenti come Proxima b e d, dimostra che il nostro angolino cosmico è pieno di pianeti di piccola massa“.

L’Extremely Large Telescope (ELT) dell’ESO, attualmente in costruzione, è destinato a trasformare il campo della ricerca sugli esopianeti. Lo strumento ANDES dell’ELT consentirà di rivelare un numero sempre maggiore di questi piccoli pianeti rocciosi nella zona temperata intorno a stelle vicine, oltre la portata degli attuali telescopi, e di studiarne la composizione dell’atmosfera.

La panoramica mostra i dintorni della nana rossa nota come stella di Barnard, nella costellazione dell'Ofiuco. L'immagine è stata prodotta a partire dai dati della DSS2 (Digitized Sky Survey 2). Nel centro dell'immagine si trova la stella di Barnard, catturata in tre diverse esposizioni. La stella è la più veloce nel cielo notturno e il suo grande moto proprio - lo spostamento apparente sulla volta celeste - viene evidenziato dal fatto che la posizione cambi tra osservazioni successive - mostrate in rosso, giallo e blu. Crediti: ESO/Digitized Sky Survey 2 Acknowledgement: Davide De Martin E — Red Dots
La panoramica mostra i dintorni della nana rossa nota come stella di Barnard, nella costellazione dell’Ofiuco. L’immagine è stata prodotta a partire dai dati della DSS2 (Digitized Sky Survey 2). Nel centro dell’immagine si trova la stella di Barnard, catturata in tre diverse esposizioni. La stella è la più veloce nel cielo notturno e il suo grande moto proprio – lo spostamento apparente sulla volta celeste – viene evidenziato dal fatto che la posizione cambi tra osservazioni successive – mostrate in rosso, giallo e blu.
Crediti:
ESO/Digitized Sky Survey 2 Acknowledgement: Davide De Martin
E — Red Dots

Note

[1] Gli astronomi osservano preferenzialmente le stelle fredde, come le nane rosse, perché la loro zona temperata è molto più vicina alla stella rispetto alle stelle più calde, come il Sole. Ciò significa che i pianeti che orbitano all’interno della zona temperata hanno periodi orbitali più brevi, consentendo agli astronomi di monitorarli per diversi giorni o settimane, anziché anni. Inoltre, le nane rosse sono molto meno massicce del Sole, quindi sono più facilmente disturbate dall’attrazione gravitazionale dei loro pianeti  e quindi oscillano maggiormente.
[2] È pratica comune nella scienza dare agli esopianeti il nome della stella ospite seguito da una lettera minuscola: “b” indica il primo pianeta identificato, “c” il successivo e così via. Il nome Barnard b è stato quindi dato anche a un candidato pianeta precedentemente identificato, ma non confermato, intorno alla stella di Barnard.

Ulteriori Informazioni

Questo risultato è stato presentato nell’articolo “A sub-Earth-mass planet orbiting Barnard’s star” pubblicato su Astronomy & Astrophysics. (https://www.aanda.org/10.1051/0004-6361/202451311)

L’équipe è composta da J. I. González Hernández (Instituto de Astrofísica de Canarias, Spagna [IAC] e Departamento de Astrofísica, Universidad de La Laguna, Spagna [IAC-ULL]), A. Suárez Mascareño (IAC e IAC-ULL), A. M. Silva (Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portogallo [IA-CAUP] e Departamento de Física e Astronomia Faculdade de Ciências, Universidade do Porto, Portogallo [FCUP]), A. K. Stefanov (IAC e IAC-ULL), J. P. Faria (Observatoire de Genève, Université de Genève, Svizzera [UNIGE]; IA-CAUP e FCUP), H. M. Tabernero (Departamento de Física de la Tierra y Astrofísica & Instituto de Física de Partículas y del Cosmos, Universidad Complutense de Madrid, Spagna), A. Sozzetti (INAF – Osservatorio Astrofisico di Torino, Italia [INAF-OATo]), R. Rebolo (IAC; IAC-ULL e Consejo Superior de Investigaciones Científicas, Spagna [CSIC]), F. Pepe (UNIGE), N. C. Santos (IA-CAUP; FCUP), S. Cristiani (INAF – Osservatorio Astronomico di Trieste, Italia [INAF-OAT] e Institute for Fundamental Physics of the Universe, Trieste, Italia [IFPU]), C. Lovis (UNIGE), X. Dumusque (UNIGE), P. Figueira (UNIGE e IA-CAUP), J. Lillo-Box (Centro de Astrobiología, CSIC-INTA, Madrid, Spagna [CAB]), N. Nari (IAC; Light Bridges S. L., Canarias, Spagna e IAC-ULL), S. Benatti (INAF – Osservatorio Astronomico di Palermo, Italia [INAF-OAPa]), M. J. Hobson (UNIGE), A. Castro-González (CAB), R. Allart (Institut Trottier de Recherche sur les Exoplanètes, Université de Montréal, Canada e UNIGE), V. M. Passegger (National Astronomical Observatory of Japan, Hilo, USA; IAC; IAC-ULL e Hamburger Sternwarte, Hamburg, Germania), M.-R. Zapatero Osorio (CAB), V. Adibekyan (IA-CAUP e FCUP), Y. Alibert (Center for Space and Habitability, University of Bern, Svizzera e Weltraumforschung und Planetologie, Physikalisches Institut, University of Bern, Svizzera), C. Allende Prieto (IAC e IAC-ULL), F. Bouchy (UNIGE), M. Damasso (INAF-OATo), V. D’Odorico (INAF-OAT e IFPU), P. Di Marcantonio (INAF-OAT), D. Ehrenreich (UNIGE), G. Lo Curto (European Southern Observatory, Santiago, Cile [ESO Chile]), R. Génova Santos (IAC e IAC-ULL), C. J. A. P. Martins (IA-CAUP e Centro de Astrofísica da Universidade do Porto, Portogallo), A. Mehner (ESO Chile), G. Micela (INAF-OAPa), P. Molaro (INAF-OAT), N. Nunes (Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Portogallo), E. Palle (IAC e IAC-ULL), S. G. Sousa (IA-CAUP e FCUP), e S. Udry (UNIGE).

L’ESO (European Southern Observatory o Osservatorio Europeo Australe) consente agli scienziati di tutto il mondo di scoprire i segreti dell’Universo a beneficio di tutti. Progettiamo, costruiamo e gestiamo da terra osservatori di livello mondiale – che gli astronomi utilizzano per affrontare temi interessanti e diffondere il fascino dell’astronomia – e promuoviamo la collaborazione internazionale per l’astronomia. Fondato come organizzazione intergovernativa nel 1962, oggi l’ESO è sostenuto da 16 Stati membri (Austria, Belgio, Danimarca, Francia, Finlandia, Germania, Irlanda, Italia, Paesi Bassi, Polonia, Portogallo, Regno Unito, Repubblica Ceca, Spagna, Svezia e Svizzera), insime con il paese che ospita l’ESO, il Cile, e l’Australia come partner strategico. Il quartier generale dell’ESO e il Planetario e Centro Visite Supernova dell’ESO si trovano vicino a Monaco, in Germania, mentre il deserto cileno di Atacama, un luogo meraviglioso con condizioni uniche per osservare il cielo, ospita i nostri telescopi. L’ESO gestisce tre siti osservativi: La Silla, Paranal e Chajnantor. Sul Paranal, l’ESO gestisce il VLT (Very Large Telescope) e il VLTI (Very Large Telescope Interferometer), così come due telescopi per survey, VISTA, che lavora nell’infrarosso, e VST (VLT Survey Telescope) in luce visibile. Sempre a Paranal l’ESO ospiterà e gestirà la schiera meridionale di telescopi di CTA, il Cherenkov Telescope Array Sud, il più grande e sensibile osservatorio di raggi gamma del mondo. Insieme con partner internazionali, l’ESO gestisce APEX e ALMA a Chajnantor, due strutture che osservano il cielo nella banda millimetrica e submillimetrica. A Cerro Armazones, vicino a Paranal, stiamo costruendo “il più grande occhio del mondo rivolto al cielo” – l’ELT (Extremely Large Telescope, che significa Telescopio Estremamente Grande) dell’ESO. Dai nostri uffici di Santiago, in Cile, sosteniamo le operazioni nel paese e collaboriamo con i nostri partner e la società cileni.

La traduzione dall’inglese dei comunicati stampa dell’ESO è un servizio dalla Rete di Divulgazione Scientifica dell’ESO (ESON: ESO Science Outreach Network) composta da ricercatori e divulgatori scientifici da tutti gli Stati Membri dell’ESO e altri paesi. Il nodo italiano della rete ESON è gestito da Anna Wolter.

Testo, video e immagini dall’Osservatorio Europeo Australe – ESO.