News
Ad
Ad
Ad
Tag

astrofisica

Browsing

JWST OSSERVA UN ANTICHISSIMO BUCO NERO SUPERMASSICCIO DORMIENTE, A ‘RIPOSO’ DOPO UN’ABBUFFATA COSMICA, NELLA GALASSIA GN-1001830

È uno dei più grandi buchi neri supermassicci non attivi mai osservati nell’universo primordiale e il primo individuato durante l’epoca della reionizzazione. La scoperta, pubblicata sulla rivista Nature, è stata possibile grazie alle rilevazioni del telescopio spaziale James Webb. Allo studio hanno partecipato anche INAF, Scuola Normale Superiore di Pisa e Sapienza Università di Roma.

JWST buco nero dormiente GN-1001830 Illustrazione artistica che rappresenta l'aspetto potenziale del buco nero supermassiccio scoperto dal team di ricerca durante la sua fase di intensa attività super-Eddington. Crediti: Jiarong Gu
Illustrazione artistica che rappresenta l’aspetto potenziale del buco nero supermassiccio scoperto dal team di ricerca durante la sua fase di intensa attività super-Eddington. Crediti: Jiarong Gu

Anche i buchi neri schiacciano un sonnellino tra una mangiata e l’altra. Un team internazionale di scienziati, guidato dall’Università di Cambridge, ha scoperto un antichissimo buco nero supermassiccio “dormiente” in una galassia compatta, relativamente quiescente e che vediamo come era quasi 13 miliardi di anni fa. La galassia è GN-1001830. Il buco nero, descritto in un articolo pubblicato oggi sulla rivista Nature, ha una massa pari a 400 milioni di volte quella del Sole e risale a meno di 800 milioni di anni dopo il Big Bang, rendendolo uno degli oggetti più antichi e massicci mai rilevati.

Questo mastodontico oggetto è inoltre il primo buco nero supermassiccio non attivo, in termini di accrescimento di materia, osservato durante l’epoca della reionizzazione, una fase di transizione nell’universo primordiale durante la quale il gas intergalattico è stato ionizzato dalla radiazione delle prime sorgenti cosmiche. Probabilmente rappresenta solo la punta dell’iceberg di una intera popolazione di buchi neri “a riposo” ancora da osservare in questa epoca lontana. La scoperta, a cui partecipano ricercatrici e ricercatori anche dell’Istituto Nazionale di Astrofisica (INAF), della Scuola Normale Superiore di Pisa e della Sapienza Università di Roma, si basa sui dati raccolti telescopio spaziale James Webb (JWST), nell’ambito del programma JADES (JWST Advanced Extragalactic Survey).

In che senso il buco nero è “dormiente”? Grazie a questi dati, il gruppo di ricerca ha stabilito che, nonostante la sua dimensione colossale, questo buco nero sta accrescendo la materia circostante a un ritmo molto basso a differenza di quelli di massa simile osservati nella stessa epoca (i cosiddetti quasar) – circa 100 volte inferiore al limite teorico massimo – rendendolo praticamente inattivo.

JWST buco nero dormiente GN-1001830 Immagine in falsi colori ottenuta dal telescopio spaziale JWST, che mostra una piccola frazione del campo GOODS-North. La galassia evidenziata nel riquadro ospita un antichissimo buco nero supermassiccio 'dormiente'. Crediti: JADES Collaboration
Immagine in falsi colori ottenuta dal telescopio spaziale JWST, che mostra una piccola frazione del campo GOODS-North. La galassia evidenziata nel riquadro ospita un antichissimo buco nero supermassiccio ‘dormiente’. Crediti: JADES Collaboration

Un’altra peculiarità di questo buco nero ad alto redshift (ossia collocato nell’universo primordiale) è il suo rapporto con la galassia ospite: la sua massa rappresenta il 40 per cento della massa stellare totale, un valore mille volte superiore a quello dei buchi neri normalmente osservati nell’universo vicino. Alessandro Trinca, ricercatore post-doc oggi in forza all’Università degli studi dell’Insubria ma già post-doc presso l’INAF di Roma per un anno, spiega:

“Questo squilibrio suggerisce che il buco nero abbia avuto una fase di crescita rapidissima, sottraendo gas alla formazione stellare della galassia. Ha rubato tutto il gas che aveva a disposizione prima di diventare dormiente lasciando la componente stellare a bocca asciutta”.

Alessandro Trinca, ricercatore post-doc presso l’Università degli studi dell’Insubria
Alessandro Trinca, ricercatore post-doc presso l’Università degli studi dell’Insubria

Rosa Valiante, ricercatrice dell’INAF di Roma coinvolta nel team internazionale e coautrice dell’articolo, aggiunge:

“Comprendere la natura dei buchi neri è da sempre un argomento che affascina l’immaginario collettivo: sono oggetti apparentemente misteriosi che mettono alla prova ‘famose’ teorie scientifiche come quelle di Einstein e Hawking. La necessità di osservare e capire i buchi neri, da quando si formano a quando diventano massicci fino a miliardi di volte il nostro Sole, spinge non solo la ricerca scientifica a progredire, ma anche l’avanzamento tecnologico”.

Rosa Valiante, ricercatrice presso l’INAF di Roma
Rosa Valiante, ricercatrice presso l’INAF di Roma

I buchi neri supermassicci così antichi, come quello descritto nell’articolo su Nature, rappresentano un mistero in astrofisica. La rapidità con cui questi oggetti sono cresciuti nelle prime fasi della storia dell’Universo sfida i modelli tradizionali, che non sono in grado di spiegare la formazione di buchi neri di tale portata. In condizioni normali, i buchi neri accrescono materia fino a un limite teorico, chiamato “limite di Eddington”, oltre il quale la pressione della radiazione generata dall’accrescimento contrasta ulteriori flussi di materiale verso il buco nero. La scoperta di questo buco nero primordiale supporta l’ipotesi che fasi brevi ma intense di accrescimento dette “super-Eddington” siano essenziali per spiegare l’esistenza di questi “giganti cosmici” nell’universo primordiale. Si tratta di fasi durante le quali i buchi neri riuscirebbero a inglobare materia a un ritmo molto superiore, sfuggendo temporaneamente a questa limitazione, intervallate da periodi di dormienza.

“Se la crescita avvenisse a un ritmo inferiore al limite di Eddington, il buco nero dovrebbe accrescere il gas in modo continuativo nel tempo per sperare di raggiungere la massa osservata. Sarebbe quindi molto improbabile osservarlo in una fase dormiente”, spiega Raffaella Schneider, professoressa del Dipartimento di Fisica della Sapienza.

Raffaella Schneider, professoressa del Dipartimento di Fisica della Sapienza
Raffaella Schneider, professoressa del Dipartimento di Fisica della Sapienza

Gli scienziati ipotizzano che buchi neri simili siano molto più comuni di quanto si pensi, ma oggetti in un tale stato dormiente emettono pochissima luce, il che li rende particolarmente difficili da individuare, persino con strumenti estremamente avanzati come il telescopio spaziale Webb. E allora come scovarli? Sebbene non possano essere osservati direttamente, la loro presenza viene svelata dal bagliore di un disco di accrescimento che si forma intorno a loro. Con il JWST, telescopio delle agenzie spaziali americana (NASA), europea (ESA) e canadese (CSA) progettato per osservare oggetti estremamente poco luminosi e distanti, sarà possibile esplorare nuove frontiere nello studio delle prime strutture galattiche.

Stefano Carniani, ricercatore della Scuola Normale Superiore di Pisa e membro del team JADES commenta:

“Questa scoperta apre un nuovo capitolo nello studio dei buchi neri distanti. Grazie alle  immagini del James Webb, potremo indagare le proprietà dei buchi neri dormienti, rimasti finora invisibili. Queste osservazioni offrono i pezzi mancanti per completare il puzzle della formazione e dell’evoluzione delle galassie nell’universo primordiale”.

Stefano Carniani, ricercatore presso la Scuola Normale Superiore di Pisa
Stefano Carniani, ricercatore presso la Scuola Normale Superiore di Pisa

La scoperta rappresenta solo l’inizio di una nuova fase di indagine. Il JWST sarà ora utilizzato per individuare altri buchi neri dormienti simili, contribuendo a svelare nuovi misteri sull’evoluzione delle strutture cosmiche nell’universo primordiale.Le osservazioni utilizzate in questo lavoro sono state ottenute nell’ambito della collaborazione JADES tra i team di sviluppo degli strumenti Near-Infrared Camera (NIRCam) e Near-Infrared Spectrograph (NIRSpec), con un contributo anche dal team statunitense del Mid-Infrared Instrument (MIRI).

JWST buco nero dormiente GN-1001830 Un’immagine in tre colori del nucleo galattico attivo e della galassia ospite JADES GN 1146115. L’immagine è stata creata con diversi filtri (rosso F444W, verde F277W e blu F115W) utilizzando gli strumenti dal James Webb Space Telescope NIRCam e NIRSpec in modalità multi-oggetto, come parte del programma JADES (JWST Advanced Extragalactic Survey). La galassia si trova a un redshift di 6.68, che corrisponde a un’epoca di meno di 800 milioni di anni dopo il Big Bang. Crediti: I. Juodzbalis et al. / Nature (2024)
Un’immagine in tre colori del nucleo galattico attivo e della galassia ospite JADES GN 1146115. L’immagine è stata creata con diversi filtri (rosso F444W, verde F277W e blu F115W) utilizzando gli strumenti dal James Webb Space Telescope NIRCam e NIRSpec in modalità multi-oggetto, come parte del programma JADES (JWST Advanced Extragalactic Survey). La galassia si trova a un redshift di 6.68, che corrisponde a un’epoca di meno di 800 milioni di anni dopo il Big Bang. Crediti: I. Juodzbalis et al. / Nature (2024)

 

Riferimenti bibliografici:

L’articolo “A dormant, overmassive black hole in the early Universe”, di Ignas Juodžbalis, Roberto Maiolino, William M. Baker, Sandro Tacchella, Jan Scholtz, Francesco D’Eugenio, Raffaella Schneider, Alessandro Trinca, Rosa Valiante, Christa DeCoursey, Mirko Curti, Stefano Carniani, Jacopo Chevallard, Anna de Graaff, Santiago Arribas, Jake S. Bennett, Martin A. Bourne, Andrew J. Bunker, Stephane Charlot, Brian Jiang, Sophie Koudmani, Michele Perna, Brant Robertson, Debora Sijacki, Hannah Ubler, Christina C. Williams, Chris Willott, Joris Witstok, è stato pubblicato sulla rivista Nature.

Testo e immagini dagli Uffici Stampa INAF, Scuola Normale Superiore Pisa, Ufficio Stampa e Comunicazione Sapienza Università di Roma

L’INATTESO BRILLAMENTO NEL GETTO DI M87 OSSERVATO DALLE ONDE RADIO AI RAGGI GAMMA

Curva di luce del brillamento a raggi gamma (in basso) e raccolta di immagini quasi-simulatneee del getto di M87 (in alto) a varie scale ottenute in radio e raggi X durante la campagna del 2018. Lo strumento, la lunghezza d'onda di osservazione e la scala sono mostrati in alto a sinistra di ogni immagine. Crediti: EHT Collaboration, Fermi-LAT Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration
Curva di luce del brillamento a raggi gamma (in basso) e raccolta di immagini quasi-simulatneee del getto di M87 (in alto) a varie scale ottenute in radio e raggi X durante la campagna del 2018. Lo strumento, la lunghezza d’onda di osservazione e la scala sono mostrati in alto a sinistra di ogni immagine. Crediti: EHT Collaboration, Fermi-LAT Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration

È il primo episodio registrato dal 2010. I dati sono stati raccolti dalla collaborazione Event Horizon Telescope (EHT) nel corso di una campagna osservativa a diverse lunghezze d’onda del 2018 sfruttando numerosi telescopi in orbita come Fermi, HST, NuSTAR, Chandra, Swift della NASA, insieme ai tre più grandi telescopi Cherenkov sulla Terra: H.E.S.S., MAGIC e VERITAS.

Gli osservatori e i telescopi che hanno partecipato alla campagna multibanda del 2018 per la rilevazione del brillamento di raggi gamma ad alte energie dal buco nero M87*. Crediti: EHT Collaboration, Fermi-LAT Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration
Gli osservatori e i telescopi che hanno partecipato alla campagna multibanda del 2018 per la rilevazione del brillamento di raggi gamma ad alte energie dal buco nero M87*. Crediti: EHT Collaboration, Fermi-LAT Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration

La collaborazione scientifica internazionale Event Horizon Telescope (EHT), che nel 2019 aveva pubblicato la prima “foto” di un buco nero, quello supermassiccio al centro della galassia Messier 87 (denominato M87*), ha recentemente osservato e studiato a diverse lunghezze d’onda uno spettacolare brillamento (flare in inglese) proveniente dal potente getto relativistico al centro della stessa galassia, la più luminosa dell’ammasso della Vergine. Lo studio, coordinato dal gruppo di ricerca EHT-MWL che include anche l’Università degli studi di Trieste, l’Istituto Nazionale di Astrofisica (INAF), l’Istituto Nazionale di Fisica Nucleare (INFN) e l’Agenzia Spaziale Italiana (ASI), presenta i dati della seconda campagna osservativa di EHT realizzata nell’aprile del 2018 che ha coinvolto oltre 25 telescopi terrestri e in orbita. Nello studio gli autori riportano la prima osservazione in oltre un decennio di un brillamento di raggi gamma ad altissime energie – fino a migliaia di miliardi di elettronvolt – da M87* dopo aver ottenuto quasi in simultanea gli spettri della galassia con il più ampio intervallo di lunghezze d’onda finora raccolti. L’articolo è stato pubblicato sulla rivista Astronomy & Astrophysics.

“Siamo stati fortunati a rilevare un brillamento di raggi gamma da M87* durante la campagna multi-lunghezza d’onda dell’Event Horizon Telescope. Questo è il primo episodio di brillamento di raggi gamma in questa sorgente dal 2010. Le osservazioni, comprese quelle eseguite con un’infrastruttura più sensibile nel 2021 e 2022, così come quelle pianificate per i prossimi anni, ci offriranno ulteriori approfondimenti e un’incredibile opportunità per investigare la fisica attorno al buco nero supermassiccio M87*, spiegando la connessione tra il disco di accrescimento e il getto emesso, nonché l’origine e i meccanismi responsabili dell’emissione di fotoni di raggi gamma”, commenta Giacomo Principe, responsabile del progetto, ricercatore dell’Università degli studi di Trieste, associato INAF e INFN.

Il brillamento energetico, durato circa tre giorni, ha rivelato che l’emissione era sbilanciata verso energie più elevate di quelle tipiche emesse dal buco nero di M87.

“Insieme alle osservazioni sub-millimetriche dell’EHT, i nuovi dati raccolti in molteplici bande di radiazione offrono un’opportunità unica per comprendere le proprietà della regione di emissione di raggi gamma, collegarla a potenziali cambiamenti nel getto di M87 e consentire test più sensibili sulla relatività generale”, sottolinea Principe.

Spingendo materiale ad altissima energia al di fuori della galassia ospite, il getto relativistico esaminato dai ricercatori e dalle ricercatrici ha un’estensione sorprendente arrivando a dimensioni che superano quelle dell’orizzonte degli eventi del buco nero per decine di milioni di volte: come dire la differenza che c’è in termini di dimensioni tra un batterio e la più grande balenottera azzurra conosciuta.

Tra i telescopi coinvolti nella campagna troviamo Fermi (con lo strumento LAT), NuSTAR, Chandra e Swift della NASA, e i tre più grandi apparati di telescopi IACT (Imaging Atmospheric Cherenkov Telescope) per astronomia a raggi gamma di altissima energia da terra (H.E.S.S., MAGIC e VERITAS), con i quali è stato possibile osservare e studiare le caratteristiche di durata ed emissione del brillamento ad alta energia.

Elisabetta Cavazzuti, responsabile del programma Fermi per l’ASI, racconta: “Fermi-LAT ha rivelato un aumento notevole di flusso nello stesso periodo degli altri osservatori contribuendo a cercare di identificare la zona di emissione dei raggi gamma durante questi aumenti di luminosità. M87 è un laboratorio che ci dimostra ancora una volta l’importanza di avere osservazioni coordinate a più lunghezze d’onda e anche ben campionate per caratterizzare pienamente la variabilità spettrale della sorgente, variabilità che probabilmente si estende su diverse scale temporali, con una visione il più possibile completa attraverso tutto lo spettro elettromagnetico”.

Dati di elevata qualità sono stati poi raccolti nella banda dei raggi X da Chandra e NuSTAR. Le osservazioni radio VLBA (Very Long Baseline Array), per le quali sono state coinvolte anche le stazioni radioastronomiche dell’INAF, presentano un chiaro cambiamento, su base annuale, dell’angolo di posizione del getto entro pochi milliarcosecondi dal nucleo della galassia.

Principe continua: “In particolare, questi risultati offrono la prima possibilità in assoluto di identificare il punto in cui vengono accelerate le particelle che causano il brillamento, il che potrebbe potenzialmente risolvere un dibattito di lunga data sull’origine dei raggi cosmici (particelle ad altissima energia provenienti dallo spazio) rilevati sulla Terra”.

I dati pubblicati nell’articolo mostrano anche una variazione significativa nell’angolo di posizione dell’asimmetria dell’anello (il cosiddetto “orizzonte degli eventi” del buco nero), così come nella posizione del getto, rivelando connessioni tra queste strutture su scale dimensionali molto diverse. Il ricercatore spiega:

“Nella prima immagine durante la compagna osservativa del 2018 si era visto che questo anello non era omogeneo, presentava quindi delle asimmetrie (cioè delle zone più brillanti). Le successive osservazioni condotte nel 2018 e legate a questa pubblicazione scientifica hanno confermato i dati evidenziando però che l’angolo di posizione dell’asimmetria era cambiato”.

“Come e dove le particelle vengono accelerate nei getti del buco nero supermassiccio è un mistero di lunga data. Per la prima volta possiamo combinare l’imaging diretto delle regioni vicine all’orizzonte degli eventi di un buco nero durante i brillamenti di raggi gamma derivanti da eventi di accelerazione delle particelle, e possiamo testare le teorie sulle origini dei brillamenti stessi”, dice Sera Markoff, professoressa presso l’Università di Amsterdam e co-autrice dello studio.

Giacomo Principe conclude: “Queste osservazioni possono far luce su alcuni principali quesiti dell’astrofisica tuttora ancora irrisolti: come sono originati i potenti getti relativistici che vengono osservati in alcune galassie? Dove vengono accelerate le particelle responsabili dell’emissione dei raggi gamma? Quale fenomeno le accelera fino a energie del TeV (migliaia di miliardi di elettronvolt)? Qual è l’origine dei raggi cosmici?”


 

Riferimenti bibliografici:

L’articolo “Broadband Multi-wavelength Properties of M87 during the 2018 EHT Campaign including a Very High Energy Flaring Episode”, di Event Horizon Telescope – Multi-wavelength science working group, Event Horizon Telescope Collaboration, Fermi Large Area Telescope Collaboration, H.E.S.S. Collaboration, MAGIC Collaboration, VERITAS Collaboration, EAVN Collaboration, è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo, video e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

A TEMPO DI PULSAR CON MEERKAT: UNA NUOVA MAPPA DELL’UNIVERSO NELLE ONDE GRAVITAZIONALI

La collaborazione MeerKAT Pulsar Timing Array (MPTA) ha confermato l’evidenza di un fondo cosmico di onde gravitazionali, un segnale che si ritiene derivi da una popolazione di coppie di buchi neri supermassicci spiraleggianti. Grazie alla sua sensibilità senza precedenti, l’esperimento MPTA si distingue come il rivelatore più potente di onde gravitazionali a frequenza ultra bassa nell’emisfero australe. Questa caratteristica ha consentito di mappare con precisione la distribuzione delle onde gravitazionali nell’universo.

Rappresentazione artistica delle onde gravitazionali e del cielo sopra una delle antenne del radiotelescopio sudafricano MeerKAT, gestito dall’Osservatorio SARAO. Crediti: Carl Knox, OzGrav, Swinburne University of Technology and South African Radio Astronomy Observatory (SARAO)
Rappresentazione artistica delle onde gravitazionali e del cielo sopra una delle antenne del radiotelescopio sudafricano MeerKAT, gestito dall’Osservatorio SARAO. Crediti: Carl Knox, OzGrav, Swinburne University of Technology and South African Radio Astronomy Observatory (SARAO)

Grazie a quasi 5 anni di osservazioni con il radiotelescopio sudafricano MeerKAT, un gruppo di ricerca guidato dalla collaborazione MeerKAT Pulsar Timing Array (MPTA) ha trovato ulteriori conferme all’ipotesi dell’esistenza di un fondo cosmico di onde gravitazionali aventi frequenze estremamente basse (1-10 nanoHertz), ottenendo la mappa finora più dettagliata della distribuzione di queste onde gravitazionali nell’Universo. Il segnale potrebbe provenire da una popolazione di coppie di buchi neri supermassicci spiraleggianti. Gli esiti di questo sforzo internazionale, che ha visto coinvolti anche ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università di Milano-Bicocca, hanno prodotto tre studi pubblicati oggi sulla rivista Monthly Notices of the Royal Astronomical Society.

Le antenne che formano il radiotelescopio sudafricano MeerKAT. Crediti: Enrico Sacchetti / INAF

Il MeerKAT Pulsar Timing Array è un esperimento internazionale che utilizza il sensibilissimo radiotelescopio MeerKAT (gestito dal South African Radio Astronomy Observatory) proprio per osservare, circa ogni due settimane, decine e decine di pulsar e misurare il tempo di arrivo degli impulsi radio con una precisione che può raggiungere le decine di nanosecondi.

“Grazie a queste caratteristiche, MPTA costituisce il più potente rivelatore di onde gravitazionali di frequenza ultra bassa nell’intero emisfero australe”,

sottolinea Federico Abbate, ricercatore dell’INAF di Cagliari e tra gli autori di tutti e tre gli articoli pubblicati oggi.

Le pulsar, stelle di neutroni in rapida rotazione, fungono da orologi naturali e i loro impulsi radio regolari permettono agli scienziati di rilevare minime variazioni causate dal passaggio delle onde gravitazionali. Nel corso di questi anni abbiamo imparato a conoscere cosa sono queste onde gravitazionali, perturbazioni nel tessuto dello spazio-tempo teorizzate già negli anni venti dello scorso secolo da Albert Einstein e causate da alcuni degli eventi più potenti dell’Universo (per esempio la coalescenza di un sistema binario formato da due buchi neri). La sovrapposizione di queste onde, la cui rilevazione è particolarmente difficile, forma una sorta di ronzio cosmico che fornisce preziosi indizi sui processi nascosti che modellano la struttura dell’Universo.

Il team ha infatti trovato ulteriori forti indicazioni circa l’esistenza di segnali di onde gravitazionali provenienti dal lento spiraleggiare, uno attorno all’altro, di buchi neri supermassicci, catturando però un segnale più intenso rispetto a esperimenti simili in corso con altri strumenti. Ulteriori dati e tecniche di analisi ancora più avanzate sono adesso necessari per confermare tale ipotesi e individuare univocamente il sistema binario di buchi neri supermassicci.

“Siamo fortunati che la natura ci abbia fornito orologi così precisi distribuiti in tutta la nostra galassia, le cosiddette pulsar”,

aggiunge Kathrin Grunthal, ricercatrice del Max-Planck-Institut für Radioastronomie e prima autrice di uno degli articoli scientifici pubblicati oggi.

“Utilizzando MeerKAT, uno dei radiotelescopi più potenti al mondo, possiamo monitorare con precisione questi oggetti e cercare nel loro comportamento minuscoli cambiamenti causati dalle onde gravitazionali che risuonano attraverso l’Universo”.

 

“Studiare il ronzio delle onde gravitazionali ci permette di sintonizzarci sugli echi di eventi cosmici avvenuti nel corso di miliardi di anni”,

spiega Matthew Miles, ricercatore di OzGrav e della Swinburne University of Technology, nonché autore principale di due degli articoli pubblicati oggi su MNRAS.

Golam Shaifullah, ricercatore dell’Università degli Studi di Milano-Bicocca, a sua volta coinvolto nella ricerca, approfondisce:

“Rivelare onde gravitazionali a frequenze nell’ordine dei nanohertz ci permetterà non solo di cercare sistemi binari formati da buchi neri supermassicci, ma anche di aprire una finestra sulle fasi più antiche della formazione dell’Universo, oltre che su una varietà di processi fisici esotici.”

A 18 mesi di distanza dalla prima serie di pubblicazioni da parte di altri tre esperimenti internazionali (tra cui l’European Pulsar Timing Array, EPTA, in cui sono è coinvolto INAF, l’Università di Milano Bicocca e il Gran Sasso Science Institute), i risultati pubblicati oggi offrono nuove prospettive per la comprensione dei buchi neri più massicci dell’Universo, sul loro ruolo nella formazione del cosmo e sull’architettura cosmica che hanno lasciato dietro di sé.

mappa universo Rappresentazione artistica delle onde gravitazionali e del cielo sopra una delle antenne del radiotelescopio sudafricano MeerKAT, gestito dall’Osservatorio SARAO. Crediti: Carl Knox, OzGrav, Swinburne University of Technology and South African Radio Astronomy Observatory (SARAO)
A tempo di pulsar con MeerKAT: una nuova mappa dell’universo nelle onde gravitazionali con tre studi sulla rivista Monthly Notices of the Royal Astronomical Society. Rappresentazione artistica delle onde gravitazionali e del cielo sopra una delle antenne del radiotelescopio sudafricano MeerKAT, gestito dall’Osservatorio SARAO. Crediti: Carl Knox, OzGrav, Swinburne University of Technology and South African Radio Astronomy Observatory (SARAO)

Caterina Tiburzi, ricercatrice dell’INAF di Cagliari coinvolta nella collaborazione EPTA, spiega:

“Comprendere e modellare il rumore di fondo che affligge il segnale delle pulsar, causato dagli effetti del gas ionizzato interposto tra le stelle, la Terra e il Sole, è l’elemento chiave per confermare definitivamente i risultati di MPTA, così come quelli di EPTA e degli altri esperimenti precedenti. I nuovi ricevitori a bassa frequenza di MeerKAT saranno strumenti straordinari per questo scopo”.

“Oltre all’entusiasmo per i nuovi esiti osservativi – conclude infine Andrea Possenti, dell’INAF Cagliari, e membro della collaborazione MPTA fin dalla sua fondazione nel 2018 – questo è un momento cruciale, che dimostra come la collaborazione internazionale negli esperimenti di tipo Pulsar Timing Array, nei quali INAF è coinvolto da oltre 20 anni, spalancherà infine le porte dell’astronomia delle onde gravitazionali di frequenza ultra bassa”.

prototipo SKA

 

Per altre informazioni:

I tre articoli pubblicati oggi su sulla rivista Monthly Notices of the Royal Astronomical Society:

  • “The MeerKAT Pulsar Timing Array: Maps of the gravitational-wave sky with the 4.5 year data release” di K. Grunthal et al.

  • “The MeerKAT Pulsar Timing Array: The 4.5-year data release and the noise and stochastic signals of the millisecond pulsar population” di Matthew T. Miles et al.

  • “The MeerKAT Pulsar Timing Array: The first search for gravitational waves with the MeerKAT radio telescope” di Matthew T. Miles et al.

 

Testi, video e immagini dagli Uffici Stampa dell’Università di Milano-Bicocca e dell’Istituto Nazionale di Astrofisica – INAF

L’UNIONE EUROPEA FINANZIA LO STUDIO CONCETTUALE DELLA NUOVA INFRASTRUTTURA ASTRONOMICA DA TERRA WIDE FIELD SPECTROSCOPIC TELESCOPE – WST

È stato firmato lo scorso 4 novembre il contratto per il finanziamento dello studio concettuale di un nuovo telescopio, il Wide Field Spectroscopic Telescope (in breve WST), che potrebbe diventare operativo in Cile dopo il 2040.  Il consorzio internazionale che ha ottenuto il finanziamento, proporrà WST come progetto candidato a diventare la prossima infrastruttura osservativa dello European Southern Observatory (ESO) dopo il completamento dello Extremely Large Telescope (ELT), attualmente in costruzione nelle Ande Cilene.

Link: https://www.wstelescope.com/

Rendering del progetto WST. Crediti: G.Gausachs/WST
Rendering del progetto WST. Crediti: G.Gausachs/WST

L’innovativo progetto WST per realizzare un telescopio interamente dedicato a survey – campagne osservative estese – spettroscopiche di tutti i tipi di oggetti celesti, dalle galassie più lontane, agli asteroidi e comete del nostro Sistema Solare, è stato selezionato nell’ambito del Programma Quadro Horizon Europe dell’Unione Europea con un bando competitivo destinato alle infrastrutture di ricerca. Il consorzio internazionale alla guida del progetto WST ha ottenuto tre milioni di euro da utilizzare nei prossimi tre anni – durante il triennio 2025-2027 – per completare uno studio concettuale dettagliato del nuovo telescopio.

Il consorzio internazionale vede la partecipazione di diciannove istituti di ricerca in Europa e in Australia, con un team scientifico composto da oltre seicento membri provenienti da trentadue Paesi di tutti e cinque i continenti. Alla guida del consorzio Roland Bacon del Centro Nazionale della Ricerca Scientifica (Centre National de la Recherche Scientifique – CNRS, Francia) e Sofia Randich dell’Istituto Nazionale di Astrofisica (INAF), supportati da un Project Office e da uno Steering Commitee del quale fanno parte rappresentanti di tutti gli istituti coinvolti. L’Italia partecipa, oltre che con l’INAF, anche con l’Università di Bologna. Nutrito è il coinvolgimento di ricercatori e ricercatrici del nostro Paese in ruoli chiave e di responsabilità in WST, sia sugli aspetti scientifici che tecnologici.

WST promette di rispondere a una necessità individuata dalla comunità scientifica internazionale: un telescopio della classe dei 10 metri, con ampio campo visivo,  dedicato in modo esclusivo all’acquisizione di spettri delle sorgenti celesti. La necessità di avere a disposizione questo tipo di struttura osservativa compare esplicitamente in molti piani scientifici strategici internazionali che individuano i punti chiave della ricerca astrofisica della prossima decade, tra cui lo European Astronet Roadmap 2023.

Infatti, nonostante siano in fase di costruzione telescopi da terra con specchi principali di 30-40 metri, non esiste un telescopio fra quelli esistenti, in via di sviluppo, o proposti che presenti le stesse caratteristiche di WST e che lo rende un unicum: l’attuale disegno prevede infatti uno specchio principale del diametro di 12 metri, il funzionamento simultaneo di uno spettrografo multi-oggetto (MOS) in grado di osservare su un ampio campo visivo (tre gradi quadrati, quanto la superficie apparente di 12 lune piene) e altissime capacità di “multiplex” (20.000 fibre), insieme a uno spettrografo a campo integrale panoramico (IFS) che copre una superficie apparente di cielo di 9 minuti d’arco quadrati.

“Queste specifiche sono molto ambiziose e collocano il progetto WST al di sopra delle infrastrutture osservative da terra esistenti e in fase di programmazione. In soli cinque anni di attività, il MOS permetterebbe di ottenere spettri di 250 milioni di galassie e 25 milioni di stelle a bassa risoluzione spettrale e più 2 milioni di stelle ad alta risoluzione, mentre l’IFS fornirebbe 4 miliardi di spettri, grazie ai quali  i ricercatori potranno ottenere una caratterizzazione completa delle sorgenti. Per mettere questi numeri in contesto, sarebbero necessari 43 anni per ottenere gli stessi 4 miliardi di spettri utilizzando la IFS disponibile sul telescopio VLT dell’ESO oppure 375 anni dello strumento 4MOST che sta per diventare operativo, per osservare i 250 milioni di galassie, raggiungendo la stessa ‘profondità’ ”, dice Roland Bacon.

“Il Wide Field Spectroscopic Telescope produrrà scienza di punta e trasformativa, e permetterà di affrontare temi e domande scientifiche rilevanti riguardanti la cosmologia; la formazione, l’evoluzione, arricchimento chimico delle galassie (inclusa la Via Lattea); l’origine di stelle e pianeti; l’astrofisica che studia eventi transienti o variabili nel tempo; l’astrofisica-multimessaggera”, aggiunge Sofia Randich.

 Il Wide Field Spectroscopic Telescope (WST) verrà utilizzato per affrontare molte questioni aperte nell'astrofisica moderna: dalla formazione delle strutture su larga scala nell'universo primordiale, all'interazione delle galassie nella rete cosmica, dalla formazione della nostra stessa Galassia, fino all'evoluzione delle stelle e alla formazione di pianeti intorno a esse. Crediti: WST/V.Springel, Max-Planck-Institut für Astrophysik/ESO
Il Wide Field Spectroscopic Telescope (WST) verrà utilizzato per affrontare molte questioni aperte nell’astrofisica moderna: dalla formazione delle strutture su larga scala nell’universo primordiale, all’interazione delle galassie nella rete cosmica, dalla formazione della nostra stessa Galassia, fino all’evoluzione delle stelle e alla formazione di pianeti intorno a esse. Crediti: WST/V.Springel, Max-Planck-Institut für Astrophysik/ESO

Lo studio concettuale finanziato grazie ai fondi del programma Horizon Europe affronterà tutti gli aspetti rilevanti necessari per avere un quadro completo: il disegno del telescopio e degli strumenti che verranno installati a bordo, l’individuazione del sito in Cile dove collocare il telescopio stesso, l’ulteriore definizione dei casi scientifici, la predisposizione di un “survey plan” insieme allo sviluppo di un modello operativo per il telescopio, schemi e idee innovative per l’analisi dei dati acquisiti, con lo scopo di massimizzare il ritorno scientifico.

Lo studio concettuale presterà particolare attenzione alla sostenibilità ambientale.  L’impatto ambientale sarà infatti uno dei criteri che guiderà le scelte tecnologiche e si svilupperanno soluzioni che permetteranno di mitigare le principali fonti di emissione di anidride carbonica. L’impatto ambientale previsto sia in fase di costruzione, che in fase di operatività di WST sarà documentato in dettaglio alla fine dello studio.

Nel futuro prossimo, l’ESO aprirà una call for ideas per valutare i progetti più innovativi e promettenti dal punto di vista scientifico su cui investire dopo la realizzazione di Elt, la cui prima luce è prevista nel 2028. Se approvato, il WST diventerebbe la prossima grande infrastruttura dell’ESO, con il potenziale per affrontare questioni astrofisiche dal carattere rivoluzionario dal 2040 in poi.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

LUCE SUI TITANI DELL’ALBA COSMICA: I PRIMI QUASAR SFIDANO I LIMITI DELLA FISICA PER CRESCERE
Scoperte nuove evidenze che spiegano come si siano formati i buchi neri supermassicci nel primo miliardo di anni di vita dell’Universo. Lo studio, condotto dai ricercatori dell’INAF, analizza 21 quasar distanti e rivela che questi oggetti si trovano in una fase di accrescimento super veloce, offrendo preziose informazioni sulla loro formazione ed evoluzione, in parallelo con quella delle galassie ospitanti.

In un articolo pubblicato oggi sulla rivista Astronomy & Astrophysics emergono nuove indicazioni che suggeriscono come i buchi neri supermassicci, con masse pari ad alcuni miliardi di volte quella del nostro Sole, si siano formati così rapidamente in meno di un miliardo di anni dopo il Big Bang. Lo studio, guidato dai ricercatori dell’Istituto Nazionale di Astrofisica (INAF), analizza un campione di 21 quasar, tra i più distanti scoperti finora, osservati nei raggi X dai telescopi spaziali XMM-Newton e Chandra. I risultati suggeriscono che i buchi neri supermassicci al centro di questi titanici quasar, i primi a essersi formati durante l’alba cosmica, potrebbero aver raggiunto le loro straordinarie masse grazie a un accrescimento molto rapido e intenso, fornendo così una spiegazione plausibile alla loro esistenza nelle prime fasi dell’Universo.

I quasar sono galassie attive, alimentate da buchi neri supermassicci al loro centro (chiamati nuclei galattici attivi), che emettono enormi quantità di energia mentre attraggono materia. Sono estremamente luminosi e lontani da noi. Nello specifico, i quasar esaminati in questo studio sono tra gli oggetti più distanti mai osservati e risalgono a un’epoca in cui l’Universo aveva meno di un miliardo di anni.

In questo lavoro, l’analisi delle emissioni nei raggi X di tali oggetti ha rivelato un comportamento completamente inaspettato dei buchi neri supermassicci al loro centro: è emerso un legame tra la forma dell’emissione in banda X e la velocità dei venti di materia lanciati dai quasar. Questa relazione associa la velocità dei venti, che può raggiungere migliaia di chilometri al secondo, alla temperatura del gas nella corona, la zona che emette raggi X più prossima al buco nero, legata a sua volta ai potenti meccanismi di accrescimento del buco nero stesso. I quasar con emissione X a bassa energia, quindi con una minore temperatura del gas nella corona, mostrano venti più veloci. Ciò è indice di una fase di crescita estremamente rapida che valica un limite fisico di accrescimento di materia denominato limite di Eddington, per questo motivo tale fase viene chiamata ‘super Eddington’. Viceversa, i quasar con emissioni più energetiche nei raggi X tendono a presentare venti più lenti.

“Il nostro lavoro suggerisce che i buchi neri supermassicci al centro dei primi quasar che si sono formati nel primo miliardo di anni di vita dell’Universo possano effettivamente aver aumentato la loro massa molto velocemente, sfidando i limiti della fisica”, afferma Alessia Tortosa, prima autrice del lavoro e ricercatrice presso l’INAF di Roma. “La scoperta di questo legame tra emissione X e venti è cruciale per comprendere come buchi neri così grandi si siano formati in così poco tempo, offrendo in tal modo un’indicazione concreta per risolvere uno dei più grandi misteri dell’astrofisica moderna”.

Il risultato è stato raggiunto soprattutto grazie all’analisi di dati raccolti con il telescopio spaziale XMM-Newton dell’Agenzia Spaziale Europea (ESA) che ha permesso di osservare i quasar per circa 700 ore, fornendo dati senza precedenti sulla loro natura energetica. La maggior parte dei dati, raccolti tra il 2021 e 2023 nell’ambito del Multi-Year XMM-Newton Heritage Programme, sotto la direzione di Luca Zappacosta, ricercatore dell’INAF di Roma, fa parte del progetto HYPERION, che si propone di studiare i quasar iperluminosi all’alba cosmica dell’Universo. L’estesa campagna di osservazioni è stata guidata da un team di scienziati italiani e ha ricevuto il sostegno cruciale dell’INAF, che ha finanziato il programma, sostenendo così una ricerca di avanguardia sulle dinamiche evolutive delle prime strutture dell’Universo.

“Per il programma HYPERION abbiamo puntato su due fattori chiave: da una parte l’accurata scelta dei quasar da osservare, selezionando i titani, cioè quelli che avevano accumulato la maggior massa possibile, e dall’altra lo studio approfondito delle loro proprietà nei raggi X, mai tentato finora su così tanti oggetti all’alba cosmica”, sostiene Zappacosta. “Direi proprio che abbiamo fatto bingo! I risultati che stiamo ottenendo sono davvero inaspettati e puntano tutti su un meccanismo di crescita dei buchi neri di tipo super Eddington”.

Questo studio fornisce indicazioni importanti per le future missioni in banda X, come ATHENA (ESA), AXIS e Lynx (NASA), il cui lancio è previsto tra il 2030 e il 2040. Infatti, i risultati ottenuti saranno utili per il perfezionamento degli strumenti di osservazione di nuova generazione e per la definizione di migliori strategie di indagine dei buchi neri e dei nuclei galattici nei raggi X a epoche cosmiche più remote, elementi essenziali per comprendere la formazione delle prime strutture galattiche nell’Universo primordiale.

Rappresentazione artistica generata tramite intelligenza artificiale, basata su un’immagine NASA (https://photojournal.jpl.nasa.gov/catalog/PIA16695), che mostra un buco nero supermassiccio in accrescimento, circondato da gas che spiraleggiano verso l'orizzonte degli eventi e emettono potenti venti di materia. Crediti: Emanuela Tortosa
Rappresentazione artistica generata tramite intelligenza artificiale, basata su un’immagine NASA (https://photojournal.jpl.nasa.gov/catalog/PIA16695), che mostra un buco nero supermassiccio in accrescimento, circondato da gas che spiraleggiano verso l’orizzonte degli eventi e emettono potenti venti di materia. Crediti: Emanuela Tortosa

Riferimenti bibliografici:

L’articolo “HYPERION. Shedding light on the first luminous quasars: A correlation between UV disc winds and X-ray continuum”, di Tortosa A. et al. 2024, è stato pubblicato online sulla rivista Astronomy & Astrophysics.

 

Testo e immagini dall’Ufficio Stampa dell’Istituto Nazionale di Astrofisica – INAF

AT 2021hdr, NUBE DI GAS DISTRUTTA DA UNA COPPIA DI BUCHI NERI SUPERMASSICCI AFFAMATI

Caotici e voraci, caratteristiche che potrebbero descrivere perfettamente due buchi neri mostruosi scoperti con l’Osservatorio Neil Gehrels Swift della NASA, satellite con una importante partecipazione italiana dell’Agenzia Spaziale Italiana (ASI) e dell’Istituto Nazionale di Astrofisica (INAF). Un gruppo di ricerca ha infatti rilevato, pubblicando i risultati oggi sulla rivista Astronomy and Astrophysics, per la prima volta un evento transiente di distruzione mareale in cui una coppia di buchi neri supermassivi sta interagendo con una nube di gas nel centro di una galassia distante. Il segnale di questo fenomeno, noto come AT 2021hdr, si ripete periodicamente, offrendo agli astronomi un’opportunità unica di studiare il comportamento di questi oggetti cosmici estremi. Tra gli enti di ricerca coinvolti nello studio c’è anche l’Istituto Nazionale di Astrofisica (INAF).

“È un evento molto strano, chiamato AT 2021hdr, che si ripete ogni pochi mesi”, spiega Lorena Hernández-García, ricercatrice presso il Millennium Institute of Astrophysics e il Millennium Nucleus for Transversal Research and Technology to explore Supermassive Black Holes, prima autrice dello studio e leader del team di ricerca. “Crediamo che una nube di gas abbia inghiottito i buchi neri; mentre orbitano l’uno attorno all’altro, i buchi neri interagiscono con la nube, perturbando e consumando il suo gas. Questo produce oscillazioni che si osservano nella luce del sistema”.

AT 2021hdr è stato scoperto grazie all’ALeRCE broker e osservato per la prima volta nel 2021 con lo ZTF (Zwicky Transient Facility) presso l’Osservatorio Palomar in California.

Rappresentazione artistica in cui si vede una coppia di buchi neri supermassivi che vortica in una nube di gas. L’evento si chiama AT 2021hdr, un brillamento ricorrente studiato dal Neil Gehrels Swift Observatory della NASA e dal ZTF Transient Facility presso l'Osservatorio Palomar in California. Crediti: NASA/Aurore Simonnet (Sonoma State University)
Rappresentazione artistica in cui si vede una coppia di buchi neri supermassivi che vortica in una nube di gas. L’evento si chiama AT 2021hdr, un brillamento ricorrente studiato dal Neil Gehrels Swift Observatory della NASA e dal ZTF Transient Facility presso l’Osservatorio Palomar in California. Crediti: NASA/Aurore Simonnet (Sonoma State University)

Cosa provoca questo fenomeno? Dopo aver esaminato diversi modelli per spiegare ciò che vedevano nei dati, i ricercatori hanno dapprima considerato l’ipotesi di un evento di distruzione mareale (in inglese tidal disruption event), vale a dire la distruzione di una stella che si era avvicinata troppo a uno dei buchi neri, per poi convergere su un’altra possibilità: la distruzione mareale di una nube di gas, più grande del binario stesso. Analizzando i dati raccolti, la dinamica è apparsa subito chiara: quando la nube si è scontrata con i due buchi neri, la loro forza di attrazione gravitazionale l’ha fatta a pezzi, formando filamenti attorno alla coppia. La nube si è poi riscaldata per attrito, il gas è diventato particolarmente denso e caldo vicino ai buchi neri, mentre la complessa interazione di forze ha fatto sì che parte del gas venisse espulso dal sistema a ogni rotazione.

ZTF ha rilevato esplosioni da AT 2021hdr ogni 60-90 giorni dal primo brillamento. Il gruppo di Hernández-García ha osservato la sorgente con Swift da novembre 2022. Il satellite americano Swift li ha aiutati a determinare che la coppia di buchi neri produce oscillazioni nella luce ultravioletta e nei raggi X simultaneamente a quelle viste nella luce visibile.

“È la prima volta che si osserva un evento di distruzione mareale di una nube di gas da parte di una coppia di buchi neri supermassivi”, afferma Gabriele Bruni, ricercatore presso l’INAF di Roma. “In particolare, l’oscillazione periodica misurata in banda ottica, ultravioletta, e raggi X ha una durata mai osservata in precedenza per un evento di distruzione mareale. Grazie al monitoraggio costante di ZTF è stato possibile scoprire questo peculiare sistema, e avviare osservazioni in diverse bande. La survey dello ZTF infatti copre il cielo intero ogni 3 giorni, permettendo per la prima volta di scoprire un grande numero di questi fenomeni astrofisici transitori”.

“I fenomeni transienti permettono di studiare ‘in diretta’ l’evoluzione dei sistemi di accrescimento su buchi neri supermassicci, dove la gravità e il campo magnetico si trovano a un regime energetico estremo. Sono quindi laboratori che non riusciremo mai a riprodurre sulla terra, dove testare nuove leggi della fisica”, sostiene Francesca Panessa, ricercatrice presso l’INAF di Roma.

I due buchi neri protagonisti della scoperta si trovano nel centro di una galassia chiamata 2MASX J21240027+3409114, situata a 1 miliardo di anni luce di distanza in direzione della costellazione del Cigno. I due buchi neri sono separati da circa 26 miliardi di chilometri e insieme contengono 40 milioni di volte la massa del Sole. Gli scienziati stimano che i buchi neri completino un’orbita ogni 130 giorni e che si fonderanno tra circa 70 mila anni.

Bruni sottolinea che “finora sono pochi i fenomeni transienti osservati che presentano un oscillazione nella curva di luce come questo”. E conclude: “Le coppie di buchi neri supermassicci sono ancora un fenomeno raramente osservato, e ne vedremo molti di più con la prossima generazione di antenne gravitazionali a bassa frequenza (come LISA – Laser Interferometer Space Antenna). Inoltre, si aspettiamo di scoprire altri casi come questo nei prossimi anni, anche con l’accensione del Vera Rubin Telescope, che sarà in grado di scrutare ancora più a fondo l’universo”.

 Da sinistra: Francesca Panessa (INAF Roma), Lorena Hernández-García (Millennium Institute of Astrophysics), Gabriele Bruni (INAF Roma). Crediti: L. Sidoli / INAF
Da sinistra: Francesca Panessa (INAF Roma), Lorena Hernández-García (Millennium Institute of Astrophysics), Gabriele Bruni (INAF Roma). Crediti: L. Sidoli / INAF

 

Riferimenti bibliografici:

L’articolo “AT 2021hdr: A candidate tidal disruption of a gas cloud by a binary super massive black hole system”, di L. Hernández-García et al., è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo,  video e immagini dall’Ufficio Stampa INAF, Istituto Nazionale di Astrofisica,

UN FRANCOBOLLO SPECIALE PER IL BICENTENARIO DELLA NASCITA DI LORENZO RESPIGHI
TRA I PIONIERI DELL’ASTROFISICA ITALIANA

Lorenzo Respighi francobollo
Il francobollo commemorativo dedicato al bicentenario della nascita di Lorenzo Respighi. Crediti: Poste Italiane, bozzettista: Claudia Giusto

Roma, 8 novembre 2024 – Per celebrare il bicentenario della nascita di Lorenzo Respighi (Cortemaggiore 1824 – Roma 1889) il Ministero delle Imprese e del Made in Italy ha emesso un francobollo commemorativo realizzato dalla bozzettista Claudia Giusto. L’annullo filatelico speciale di oggi, organizzato presso la sede dell’Istituto Nazionale di Astrofisica (INAF) e del Museo Astronomico e Copernicano dell’Osservatorio Astronomico di Roma, intende ricordare il contributo inestimabile di un pioniere dell’astrofisica e tra i più valenti astronomi italiani del XIX secolo.

Proposto dal “Comitato nazionale per le Celebrazioni del bicentenario della nascita di Lorenzo Respighi (1824-1889)”, istituito con decreto del Ministro della Cultura che ne ha finanziato le varie attività celebrative svolte e ancora in corso durante il 2024, il francobollo fa parte della serie tematica “Le Eccellenze del Sapere”, pensata per la Giornata mondiale della Scienza dell’ONU (che ogni anno viene celebrata il 10 novembre) e che include emissioni dedicate anche ad altre illustri figure della scienza italiana come Giovanni Caselli, Alessandro Cruto, Camillo Golgi e Nazareno Strampelli.

Grazie al suo impegno e alla sua ricerca pionieristica, Lorenzo Respighi è ricordato come uno degli astronomi più brillanti del suo tempo, capace di spingere i confini della conoscenza dell’epoca. La sua vita s’intreccia prima con la storia dell’Osservatorio Astronomico di Bologna e poi con quella dell’Osservatorio Astronomico del Campidoglio. Respighi fu innovatore nel campo dell’astrofisica con ricerche all’avanguardia sulla fisica solare, la spettroscopia stellare e le tecnologie come il prisma obiettivo per la raccolta di spettri.

L’astronomo fu co-fondatore della Società degli Spettroscopisti Italiani, primo ente al mondo dedicato alla promozione dell’astrofisica, che oggi è la Società Astronomica Italiana (SAIt). Respighi fu inoltre membro dell’Accademia dei Lincei e della Società italiana delle scienze detta dei XL, nonché membro della Royal Astronomical Society, della Commissione europea per la misura del grado di meridiano e della Commissione italiana dei pesi e delle misure.

Ricordiamo che l’annullo filatelico è un timbro speciale che viene applicato sui francobolli nel primo giorno di emissione per commemorare eventi importanti come anniversari o altre manifestazioni. L’annullo filatelico è progettato appositamente per i collezionisti e ha un valore estetico oltre che storico.

La vignetta del francobollo riproduce un particolare di un ritratto di Respighi realizzato nel 1880, in evidenza su una stampa d’epoca realizzata da Cacchiatelli e Cleter nel 1865 e raffigurante l’interno dell’Osservatorio Astronomico del Campidoglio di Roma. Entrambe le opere sono custodite presso il Museo dell’INAF-Osservatorio Astronomico di Roma. Completano il francobollo la leggenda “LORENZO RESPIGHI ASTRONOMO 1824 – 1889”, la scritta “ITALIA” e l’indicazione tariffaria “B” che equivale al prezzo di 1,25 euro.

Il francobollo è stampato dall’Istituto Poligrafico e Zecca dello Stato S.p.A., in rotocalcografia, su carta bianca, patinata neutra, autoadesiva; formato stampa e carta: 30 x 40 mm; formato tracciatura: 37 x 46 mm; dentellatura: 11 effettuata con fustellatura. Con una grammatura di 90 g/mq, la tiratura del francobollo sarà di 250 mila esemplari.

Testo e immagini dall’Ufficio Stampa dell’Istituto Nazionale di Astrofisica – INAF

LA PRIMA ANALISI 3D SULLA FORMAZIONE ED EVOLUZIONE DEGLI AMMASSI GLOBULARI

Uno studio pubblicato oggi sulla rivista Astronomy & Astrophysics apre nuove prospettive sulla nostra comprensione della formazione ed evoluzione dinamica delle popolazioni stellari multiple negli ammassi globulari, agglomerati di stelle di forma sferica, molto compatti, formati tipicamente da 1-2 milioni di stelle. Un gruppo di ricercatori, dell’Istituto Nazionale di Astrofisica (INAF), dell’Università degli Studi di Bologna e dell’Università dell’Indiana negli USA, ha infatti condotto la prima analisi cinematica 3D (tridimensionale) delle popolazioni stellari multiple per un campione rappresentativo di 16 ammassi globulari nella nostra Galassia, fornendo una descrizione osservativa pionieristica del modo in cui le stelle si muovono al loro interno e della loro evoluzione dall’epoca di formazione fino allo stato presente.

Galleria di immagini dei 16 ammassi globulari analizzati in ordine di differenza delle proprietà cinematiche osservate tra le popolazioni stellari multiple. Crediti: ESA/Hubble - ESO - SDSS
Galleria di immagini dei 16 ammassi globulari analizzati in ordine di differenza delle proprietà cinematiche osservate tra le popolazioni stellari multiple. Crediti: ESA/Hubble – ESO – SDSS

Emanuele Dalessandro, ricercatore presso l’INAF di Bologna, primo autore dell’articolo e coordinatore del gruppo di lavoro spiega:

“La comprensione dei processi fisici alla base della formazione ed evoluzione iniziale degli ammassi globulari è una delle più affascinanti e discusse domande astrofisiche degli ultimi 20-25 anni. I risultati del nostro studio forniscono la prima evidenza concreta che gli ammassi globulari si siano generati attraverso molteplici eventi di formazione stellare e pongono vincoli fondamentali sul percorso dinamico seguito dagli ammassi nel corso della loro evoluzione. Questi risultati sono stati possibili grazie a un approccio multi-diagnostico e alla combinazione di osservazioni e simulazioni dinamiche allo stato dell’arte”.

Lo studio evidenzia che le differenze cinematiche tra le popolazioni multiple sono estremamente utili per comprendere i meccanismi di formazione ed evoluzione di queste antiche strutture.

Con età che possono arrivare a 12-13 miliardi di anni (quindi fino all’alba del Cosmo), gli ammassi globulari sono tra i primi sistemi a essersi formati nell’Universo e rappresentano una popolazione tipica di tutte le galassie.  Sono sistemi compatti – con masse di alcune centinaia di migliaia di masse solari e dimensioni di pochi parsec –  e osservabili anche in galassie lontane.

“La loro rilevanza astrofisica è enorme – afferma Dalessandro – perché non solo ci aiutano a verificare i modelli cosmologici della formazione dell’Universo grazie alla loro età, ma ci offrono anche laboratori naturali per studiare la formazione, l’evoluzione e l’arricchimento chimico delle galassie”.

Nonostante gli ammassi stellari siano stati studiati per oltre un secolo, risultati osservativi recenti dimostrano che la loro conoscenza è ancora incompleta.

“Risultati ottenuti negli ultimi due decenni, hanno inaspettatamente dimostrato che gli ammassi globulari sono composti da più di una popolazione di stelle: una primordiale, con proprietà chimiche simili a quelle di altre stelle nella Galassia, e una con abbondanze chimiche anomale di elementi leggeri quali elio, ossigeno, sodio, azoto”,

dice Mario Cadelano, ricercatore al Dipartimento di Fisica e Astronomia dell’Università di Bologna e associato INAF, tra gli autori dello studio.

“Nonostante il gran numero di osservazioni e modelli teorici finalizzati a caratterizzare le proprietà di queste popolazioni, i meccanismi che regolano la loro formazione non sono tutt’ora compresi”.

Il satellite Gaia dell’ESA che mappa le stelle della Via Lattea. Crediti: ESA/ATG medialab; background: ESO/S. Brunier
Il satellite Gaia dell’ESA che mappa le stelle della Via Lattea. Crediti: ESA/ATG medialab; background: ESO/S. Brunier

Lo studio si basa sulla misura delle velocità nelle tre dimensioni, ovvero sulla combinazione di moti propri e velocità radiali, ottenuti dal telescopio dell’ESA Gaia e da dati ottenuti tra gli altri con il telescopio VLT dell’ESO principalmente nell’ambito della survey MIKiS (Multi Instrument Kinematic Survey), una survey spettroscopica specificamente indirizzata all’esplorazione della cinematica interna degli ammassi globulari. L’utilizzo di questi telescopi, dallo spazio e da terra, ha garantito una visione 3D senza precedenti della distribuzione di velocità delle stelle negli ammassi globulari selezionati.

Il Very Large Telescope (VLT) dell'ESO durante alcune osservazioni. Crediti: ESO/S. Brunier
Il Very Large Telescope (VLT) dell’ESO durante alcune osservazioni. Crediti: ESO/S. Brunier

Dalle analisi emerge che le stelle con differenti abbondanze di elementi leggeri sono caratterizzate da proprietà cinematiche differenti, come la velocità di rotazione e la distribuzione delle orbite.

“In questo lavoro abbiamo analizzato nel dettaglio come si muovono all’interno di ogni ammasso migliaia di stelle”, aggiunge Alessandro Della Croce, studente di dottorato presso l’INAF di Bologna. “È risultato subito chiaro che stelle appartenenti a diverse popolazioni sono caratterizzate da proprietà cinematiche differenti: le stelle con composizione chimica anomala tendenzialmente ruotano all’interno dell’ammasso più velocemente delle altre e si diffondono progressivamente dalle regioni centrali verso quelle più esterne”.

L’intensità di queste differenze cinematiche dipende all’età dinamica degli ammassi globulari.

“Questi risultati sono compatibili con l’evoluzione dinamica a ‘lungo termine’ di sistemi stellari in cui le stelle con abbondanze chimiche anomale si formano più centralmente concentrate e più rapidamente rotanti di quelle standard. Ciò di conseguenza suggerisce che gli ammassi globulari si siano generati attraverso eventi multipli di formazione stellare e fornisce un tassello importante nella definizione dei processi fisici e dei tempi-scala alla base della formazione ed evoluzione di ammassi stellari massicci”, sottolinea Dalessandro.

Questa nuova visione tridimensionale del moto delle stelle all’interno degli ammassi globulari fornisce un quadro inedito e affascinante sulla formazione ed evoluzione dinamica di questi sistemi, contribuendo a chiarire alcuni dei misteri più complessi riguardanti l’origine di queste antichissime strutture.


 

Riferimenti Bibliografici:

L’articolo “A 3D view of multiple populations kinematics in Galactic globular clusters”, di  E. Dalessandro, M. Cadelano, A. Della Croce, F. I. Aros, E. B. White, E. Vesperini, C. Fanelli, F. R. Ferraro, B. Lanzoni, S. Leanza, L. Origlia, è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo e immagini dagli Uffici Stampa INAF – Istituto Nazionale di Astrofisica e Alma Mater Studiorum – Università degli Studi di Bologna

Scienziati scoprono Barnard b, un pianeta in orbita intorno alla stella di Barnard, la stella singola più vicina al Sole

This artist’s impression shows Barnard b, a sub-Earth-mass planet that was discovered orbiting Barnard’s star. Its signal was detected with the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), and astronomers were able to confirm it with data from other instruments. An earlier promising detection in 2018 around the same star could not be confirmed by these data. On this newly discovered exoplanet, which has at least half the mass of Venus but is too hot to support liquid water, a year lasts just over three Earth days.Crediti: ESO/M. Kornmesser
Impressione artistica del pianeta Barnard b.
Crediti: ESO/M. Kornmesser

Utilizzando il VLT (Very Large Telescope) dell’ESO (Osservatorio Europeo Australe), alcuni astronomi hanno scoperto un esopianeta in orbita intorno alla stella di Barnard, la stella singola più vicina al Sole. Su questo esopianeta appena scoperto, che ha una massa pari ad almeno la metà di quella di Venere, un anno dura poco più di tre giorni terrestri. Le osservazioni dell’équipe suggeriscono anche l’esistenza di altri tre candidati esopianeti, in orbite diverse intorno alla stella.

Situata a soli sei anni luce di distanza, la stella di Barnard è il secondo sistema stellare, dopo il gruppo di tre stelle di Alpha Centauri, e la stella singola più vicina a noi. Grazie alla sua vicinanza, è un obiettivo primario nella ricerca di esopianeti simili alla Terra. Nonostante una promettente riveazione nel 2018, finora nessun pianeta era stato confermato in orbita intorno alla stella di Barnard.

Rappresentazione grafica delle distanze relative tra le stelle più vicine e il Sole.
Crediti: IEEC/Science-Wave – Guillem Ramisa
Il grafico mostra la costellazione di Ofiuco (o Serpentario), a cavallo dell'equatore celeste. È indicata la posizione della stella di Barnard, così come l'ubicazione della maggior parte delle stelle visibili a occhio nudo in una notte buia e serena. Crediti: ESO, IAU and Sky & Telescope
Il grafico mostra la costellazione di Ofiuco (o Serpentario), a cavallo dell’equatore celeste. È indicata la posizione della stella di Barnard, così come l’ubicazione della maggior parte delle stelle visibili a occhio nudo in una notte buia e serena.
Crediti: ESO, IAU and Sky & Telescope

La scoperta di questo nuovo esopianeta, annunciata in un articolo pubblicato oggi sulla rivista Astronomy & Astrophysics, è il risultato di osservazioni effettuate negli ultimi cinque anni con il VLT dell’ESO, situato presso l’Osservatorio del Paranal in Cile.

Anche se ci è voluto molto tempo, siamo sempre stati fiduciosi di poter trovare qualcosa“,

afferma Jonay González Hernández, ricercatore presso l’Instituto de Astrofísica de Canarias in Spagna e autore principale dell’articolo. L’équipe stava cercando segnali da possibili esopianeti all’interno della zona abitabile o temperata della stella di Barnard, l’intervallo in cui l’acqua può essere liquida sulla superficie del pianeta. Le nane rosse come la stella di Barnard sono spesso considerate dagli astronomi poiché lì i pianeti rocciosi di piccola massa sono più facili da rilevare che intorno a stelle più grandi, simili al Sole. [1]

Barnard b [2], come viene chiamato l’esopianeta appena scoperto, è venti volte più vicino alla stella di Barnard di quanto Mercurio lo sia al Sole. Orbita intorno alla stella in 3,15 giorni terrestri e ha una temperatura superficiale di circa 125 °C.

Barnard b è uno degli esopianeti di massa più piccola trovati finora e uno dei pochi noti con una massa inferiore a quella della Terra. Ma il pianeta è troppo vicino alla stella ospite, più vicino rispetto alla zona abitabile“, spiega González Hernández. “Anche se la stella è circa 2500 gradi più fredda del Sole, in quella posizione fa troppo caldo perchè si possa mantenere acqua liquida sulla superficie“.

Per le osservazioni, il gruppo di lavoro ha utilizzato ESPRESSO, uno strumento molto preciso progettato per misurare l’oscillazione di una stella causata dall’attrazione gravitazionale di uno o più pianeti in orbita intorno ad essa. I risultati ottenuti da queste osservazioni sono stati confermati dai dati di altri strumenti specializzati nella caccia agli esopianeti: HARPS presso l’Osservatorio di La Silla dell’ESO, HARPS-N e CARMENES. I nuovi dati, tuttavia, non supportano l’esistenza dell’esopianeta segnalato nel 2018.

Oltre al pianeta confermato, l’équipe internazionale ha anche trovato indizi di altri tre candidati esopianeti in orbita intorno alla stessa stella. Serviranno ulteriori osservazioni con ESPRESSO per la conferma.

Ora dobbiamo continuare a osservare questa stella per confermare gli altri segnali candidati“, afferma Alejandro Suárez Mascareño, anch’egli ricercatore presso l’Instituto de Astrofísica de Canarias e coautore dello studio. “Ma la scoperta di questo pianeta, insieme con altre scoperte precedenti come Proxima b e d, dimostra che il nostro angolino cosmico è pieno di pianeti di piccola massa“.

L’Extremely Large Telescope (ELT) dell’ESO, attualmente in costruzione, è destinato a trasformare il campo della ricerca sugli esopianeti. Lo strumento ANDES dell’ELT consentirà di rivelare un numero sempre maggiore di questi piccoli pianeti rocciosi nella zona temperata intorno a stelle vicine, oltre la portata degli attuali telescopi, e di studiarne la composizione dell’atmosfera.

La panoramica mostra i dintorni della nana rossa nota come stella di Barnard, nella costellazione dell'Ofiuco. L'immagine è stata prodotta a partire dai dati della DSS2 (Digitized Sky Survey 2). Nel centro dell'immagine si trova la stella di Barnard, catturata in tre diverse esposizioni. La stella è la più veloce nel cielo notturno e il suo grande moto proprio - lo spostamento apparente sulla volta celeste - viene evidenziato dal fatto che la posizione cambi tra osservazioni successive - mostrate in rosso, giallo e blu. Crediti: ESO/Digitized Sky Survey 2 Acknowledgement: Davide De Martin E — Red Dots
La panoramica mostra i dintorni della nana rossa nota come stella di Barnard, nella costellazione dell’Ofiuco. L’immagine è stata prodotta a partire dai dati della DSS2 (Digitized Sky Survey 2). Nel centro dell’immagine si trova la stella di Barnard, catturata in tre diverse esposizioni. La stella è la più veloce nel cielo notturno e il suo grande moto proprio – lo spostamento apparente sulla volta celeste – viene evidenziato dal fatto che la posizione cambi tra osservazioni successive – mostrate in rosso, giallo e blu.
Crediti:
ESO/Digitized Sky Survey 2 Acknowledgement: Davide De Martin
E — Red Dots

Note

[1] Gli astronomi osservano preferenzialmente le stelle fredde, come le nane rosse, perché la loro zona temperata è molto più vicina alla stella rispetto alle stelle più calde, come il Sole. Ciò significa che i pianeti che orbitano all’interno della zona temperata hanno periodi orbitali più brevi, consentendo agli astronomi di monitorarli per diversi giorni o settimane, anziché anni. Inoltre, le nane rosse sono molto meno massicce del Sole, quindi sono più facilmente disturbate dall’attrazione gravitazionale dei loro pianeti  e quindi oscillano maggiormente.
[2] È pratica comune nella scienza dare agli esopianeti il nome della stella ospite seguito da una lettera minuscola: “b” indica il primo pianeta identificato, “c” il successivo e così via. Il nome Barnard b è stato quindi dato anche a un candidato pianeta precedentemente identificato, ma non confermato, intorno alla stella di Barnard.

Ulteriori Informazioni

Questo risultato è stato presentato nell’articolo “A sub-Earth-mass planet orbiting Barnard’s star” pubblicato su Astronomy & Astrophysics. (https://www.aanda.org/10.1051/0004-6361/202451311)

L’équipe è composta da J. I. González Hernández (Instituto de Astrofísica de Canarias, Spagna [IAC] e Departamento de Astrofísica, Universidad de La Laguna, Spagna [IAC-ULL]), A. Suárez Mascareño (IAC e IAC-ULL), A. M. Silva (Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portogallo [IA-CAUP] e Departamento de Física e Astronomia Faculdade de Ciências, Universidade do Porto, Portogallo [FCUP]), A. K. Stefanov (IAC e IAC-ULL), J. P. Faria (Observatoire de Genève, Université de Genève, Svizzera [UNIGE]; IA-CAUP e FCUP), H. M. Tabernero (Departamento de Física de la Tierra y Astrofísica & Instituto de Física de Partículas y del Cosmos, Universidad Complutense de Madrid, Spagna), A. Sozzetti (INAF – Osservatorio Astrofisico di Torino, Italia [INAF-OATo]), R. Rebolo (IAC; IAC-ULL e Consejo Superior de Investigaciones Científicas, Spagna [CSIC]), F. Pepe (UNIGE), N. C. Santos (IA-CAUP; FCUP), S. Cristiani (INAF – Osservatorio Astronomico di Trieste, Italia [INAF-OAT] e Institute for Fundamental Physics of the Universe, Trieste, Italia [IFPU]), C. Lovis (UNIGE), X. Dumusque (UNIGE), P. Figueira (UNIGE e IA-CAUP), J. Lillo-Box (Centro de Astrobiología, CSIC-INTA, Madrid, Spagna [CAB]), N. Nari (IAC; Light Bridges S. L., Canarias, Spagna e IAC-ULL), S. Benatti (INAF – Osservatorio Astronomico di Palermo, Italia [INAF-OAPa]), M. J. Hobson (UNIGE), A. Castro-González (CAB), R. Allart (Institut Trottier de Recherche sur les Exoplanètes, Université de Montréal, Canada e UNIGE), V. M. Passegger (National Astronomical Observatory of Japan, Hilo, USA; IAC; IAC-ULL e Hamburger Sternwarte, Hamburg, Germania), M.-R. Zapatero Osorio (CAB), V. Adibekyan (IA-CAUP e FCUP), Y. Alibert (Center for Space and Habitability, University of Bern, Svizzera e Weltraumforschung und Planetologie, Physikalisches Institut, University of Bern, Svizzera), C. Allende Prieto (IAC e IAC-ULL), F. Bouchy (UNIGE), M. Damasso (INAF-OATo), V. D’Odorico (INAF-OAT e IFPU), P. Di Marcantonio (INAF-OAT), D. Ehrenreich (UNIGE), G. Lo Curto (European Southern Observatory, Santiago, Cile [ESO Chile]), R. Génova Santos (IAC e IAC-ULL), C. J. A. P. Martins (IA-CAUP e Centro de Astrofísica da Universidade do Porto, Portogallo), A. Mehner (ESO Chile), G. Micela (INAF-OAPa), P. Molaro (INAF-OAT), N. Nunes (Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Portogallo), E. Palle (IAC e IAC-ULL), S. G. Sousa (IA-CAUP e FCUP), e S. Udry (UNIGE).

L’ESO (European Southern Observatory o Osservatorio Europeo Australe) consente agli scienziati di tutto il mondo di scoprire i segreti dell’Universo a beneficio di tutti. Progettiamo, costruiamo e gestiamo da terra osservatori di livello mondiale – che gli astronomi utilizzano per affrontare temi interessanti e diffondere il fascino dell’astronomia – e promuoviamo la collaborazione internazionale per l’astronomia. Fondato come organizzazione intergovernativa nel 1962, oggi l’ESO è sostenuto da 16 Stati membri (Austria, Belgio, Danimarca, Francia, Finlandia, Germania, Irlanda, Italia, Paesi Bassi, Polonia, Portogallo, Regno Unito, Repubblica Ceca, Spagna, Svezia e Svizzera), insime con il paese che ospita l’ESO, il Cile, e l’Australia come partner strategico. Il quartier generale dell’ESO e il Planetario e Centro Visite Supernova dell’ESO si trovano vicino a Monaco, in Germania, mentre il deserto cileno di Atacama, un luogo meraviglioso con condizioni uniche per osservare il cielo, ospita i nostri telescopi. L’ESO gestisce tre siti osservativi: La Silla, Paranal e Chajnantor. Sul Paranal, l’ESO gestisce il VLT (Very Large Telescope) e il VLTI (Very Large Telescope Interferometer), così come due telescopi per survey, VISTA, che lavora nell’infrarosso, e VST (VLT Survey Telescope) in luce visibile. Sempre a Paranal l’ESO ospiterà e gestirà la schiera meridionale di telescopi di CTA, il Cherenkov Telescope Array Sud, il più grande e sensibile osservatorio di raggi gamma del mondo. Insieme con partner internazionali, l’ESO gestisce APEX e ALMA a Chajnantor, due strutture che osservano il cielo nella banda millimetrica e submillimetrica. A Cerro Armazones, vicino a Paranal, stiamo costruendo “il più grande occhio del mondo rivolto al cielo” – l’ELT (Extremely Large Telescope, che significa Telescopio Estremamente Grande) dell’ESO. Dai nostri uffici di Santiago, in Cile, sosteniamo le operazioni nel paese e collaboriamo con i nostri partner e la società cileni.

La traduzione dall’inglese dei comunicati stampa dell’ESO è un servizio dalla Rete di Divulgazione Scientifica dell’ESO (ESON: ESO Science Outreach Network) composta da ricercatori e divulgatori scientifici da tutti gli Stati Membri dell’ESO e altri paesi. Il nodo italiano della rete ESON è gestito da Anna Wolter.

Testo, video e immagini dall’Osservatorio Europeo Australe – ESO.

METIS OSSERVA COME SI PROPAGA LA TURBOLENZA NEL VENTO SOLARE

Grazie alle riprese del coronografo Metis a bordo della missione europea Solar Orbiter, un gruppo internazionale coordinato da ricercatori INAF è riuscito ad osservare la propagazione dei moti turbolenti del vento solare dalle zone più interne della corona del Sole fino allo spazio. La conoscenza dei meccanismi che guidano l’evoluzione e la propagazione di questi fenomeni nel vento solare aiuterà a migliorare le previsioni sul potenziale impatto che esso può avere nel nostro Sistema planetario e soprattutto sulla Terra. Lo studio a cui hanno collaborato anche ricercatori e ricercatrici di ASI, CNR e delle Università di Firenze, Padova, Urbino, Genova, Catania, Palermo e della Calabria, è stato pubblicato oggi sulla rivista The Astrophysical Journal Letters.

Il vento solare è un flusso incessante di particelle cariche provenienti dal Sole, il cui andamento è tutt’altro che costante. Nel loro moto nello spazio, le particelle del vento solare interagiscono con il campo magnetico variabile del Sole, seguendo traiettorie caotiche e fluttuanti, un fenomeno che prende il nome di turbolenza.

Le riprese ottenute dalla missione Solar Orbiter dell’Agenzia Spaziale Europea grazie al coronografo Metis progettato da Istituto Nazionale di Astrofisica (INAF), Università di Firenze, Università di Padova, CNR-Ifn, e realizzato dall’Agenzia Spaziale Italiana con la collaborazione dell’industria italiana, confermano qualcosa che si sospettava da tempo: il moto turbolento del vento solare inizia molto vicino al Sole, all’interno della porzione di atmosfera solare nota come corona. Piccoli disturbi che influenzano il vento solare nella corona vengono trasportati verso l’esterno e si espandono, generando un flusso turbolento più lontano nello spazio.

“Questo risultato ha aperto una nuova finestra sulla fisica del vento solare grazie a Metis, il coronografo di nuova concezione – tutta italiana – a bordo del Solar Orbiter, che ha permesso acquisizioni ad alta cadenza di immagini coronali con un contrasto senza precedenti tra segnale coronale e background”

commenta Silvano Fineschi dell’INAF e Responsabile Scientifico del contributo italiano alla missione. Bloccando la luce diretta proveniente dal Sole, il coronografo Metis è in grado di catturare la luce visibile e ultravioletta più debole proveniente dalla corona solare. Le sue immagini ad alta risoluzione e ad alta cadenza mostrano la struttura dettagliata e il movimento all’interno della corona, rivelando come il movimento del vento solare diventi già turbolento alle sue radici. Le riprese utilizzate dal team di ricerca per osservare in dettaglio la propagazione della turbolenza sono state ottenute il 12 ottobre 2022 e messe in sequenza per realizzare una animazione video. In particolare, l’anello color rosso nel video mostra le osservazioni di Metis. A quella data, la sonda si trovava a soli 43,4 milioni di km dal Sole, meno di un terzo della distanza Sole-Terra. L’immagine del Sole al centro del video è stata scattata dall’Extreme Ultraviolet Imager (EUI) di Solar Orbiter, lo stesso giorno delle osservazioni di Metis.

“L’elevata risoluzione spaziale e temporale di Metis sta gettando nuova luce sui meccanismi fisici che regolano il vento solare e la sua propagazione, consentendo una migliore comprensione dei processi attraverso i quali il Sole determina le condizioni fisiche dello spazio interplanetario con effetti anche a Terra” dice Marco Stangalini, ricercatore e Responsabile di Programma ASI della missione Solar Orbiter. “Questo significativo risultato è solo l’ultimo di una lunga serie di successi e offre grandi speranze per il futuro. Nei prossimi anni, infatti, Solar Orbiter inclinerà la sua orbita, permettendoci di osservare il Sole da una prospettiva completamente nuova per la prima volta”.

La turbolenza influenza il modo in cui il vento solare viene riscaldato, il modo in cui si muove attraverso il Sistema solare e il modo in cui interagisce con i campi magnetici dei pianeti e delle lune che attraversa. Comprendere la turbolenza del vento solare è fondamentale per prevedere la meteorologia spaziale e i suoi effetti sulla Terra.

L’articolo “Metis observation of the onset of fully developed turbulence in the solar corona” di Daniele Telloni, Luca Sorriso-Valvo, Gary P. Zank, Marco Velli , Vincenzo Andretta, Denise Perrone, Raffaele Marino, Francesco Carbone, Antonio Vecchio, Laxman Adhikari, Lingling Zhao, Sabrina Guastavino, Fabiana Camattari, Chen Shi, Nikos Sioulas, Zesen Huang, Marco Romoli, Ester Antonucci, Vania Da Deppo, Silvano Fineschi, Catia Grimani, Petr Heinzel, John D. Moses, Giampiero Naletto, Gianalfredo Nicolini, Daniele Spadaro, Marco Stangalini, Luca Teriaca, Michela Uslenghi, Lucia Abbo, Frederic Auchere, Regina Aznar Cuadrado, Arkadiusz Berlicki, Roberto Bruno, Aleksandr Burtovoi, Gerardo Capobianco, Chiara Casini, Marta Casti,  Paolo Chioetto, Alain J. Corso, Raffaella D’Amicis, Yara De Leo, Michele Fabi, Federica Frassati, Fabio Frassetto, Silvio Giordano, Salvo L. Guglielmino, Giovanna Jerse, Federico Landini, Alessandro Liberatore, Enrico Magli, Giuseppe Massone, Giuseppe Nisticò, Maurizio Pancrazzi, Maria G. Pelizzo, Hardi Peter, Christina Plainaki, Luca Poletto, Fabio Reale, Paolo Romano, Giuliana Russano, Clementina Sasso, Udo Schuhle, Sami K. Solanki, Leonard Strachan, Thomas Straus, Roberto Susino, Rita Ventura, Cosimo A. Volpicelli, Joachim Woch, Luca Zangrilli, Gaetano Zimbardo e Paola Zuppella è stato pubblicato oggi sulla rivista The Astrophysical Journal Letters.

Immagine satellitare dal Solar Dynamics Observatory - SDO della NASA. Foto di Amy Moran
questa immagine satellitare dal Solar Dynamics Observatory – SDO della NASA mostra la luce ultravioletta in marrone chiaro. Foto NASA di Amy Moran, in pubblico dominio

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF).