News
Ad
Ad
Ad
Tag

Via Lattea

Browsing

PROGETTO ALMAGAL: COSÌ SI FORMANO E SI ACCENDONO LE STELLE, OSSERVANDO OLTRE 1000 REGIONI DI FORMAZIONE STELLARE, CON UN LIVELLO DI DETTAGLIO SENZA PRECEDENTI

Arrivano i primi risultati del progetto ALMAGAL, il più esteso censimento finora realizzato con ALMA delle regioni di formazione stellare, guidato dall’Istituto Nazionale di Astrofisica. Le prime analisi, in pubblicazione sulla rivista Astronomy & Astrophysics, rivelano che le stelle si formano più numerose e più grandi in aree delle nebulose con una maggiore concentrazione di materiale.

Il progetto ALMAGAL inizia a fornire nuove e decisive informazioni su come si formano le stelle nella nostra Galassia, osservando più di 1000 regioni di formazione stellare con un livello di dettaglio senza precedenti. Grazie alla potenza del radiotelescopio ALMA (Atacama Large Millimeter/Submillimeter Array) situato sull’altopiano di Chajnantor, nel deserto di Atacama in Cile, il team di ALMAGAL è riuscito a esplorare queste enormi “fucine” cosmiche in maniera completamente nuova, offrendo una visione impareggiabile dei processi che portano alla nascita delle stelle. Il progetto ALMAGAL, una collaborazione internazionale guidata dall’Istituto Nazionale di Astrofisica, insieme all’Università di Colonia, l’Università del Connecticut e all’Academia Sinica, è nato per gettare nuova luce sui processi che portano le nubi molecolari a frammentarsi nei nuclei elementari da cui poi si formano le singole stelle.

“ALMAGAL rappresenta un salto quantico rispetto ad altri progetti che studiano la nascita di nuovi ammassi stellari” dice Sergio Molinari, responsabile italiano del progetto e ricercatore dell’INAF di Roma. “Osservando più di 1000 di queste regioni, ALMAGAL da solo è 4 volte più grande di tutti gli altri programmi simili messi insieme permettendo per la prima volta studi quantitativi statisticamente significativi”.

Collage di alcune fra le più di 1000 regioni di formazione stellare osservate in ALMAGAL. Le immagini rappresentano l'emissione termica della polvere fredda nel continuo alla lunghezza d'onda di 1.38mmCrediti: ESO/ALMA/ALMAGAL. Creato da C. Mininni
Collage di alcune fra le più di 1000 regioni di formazione stellare osservate in ALMAGAL. Le immagini rappresentano l’emissione termica della polvere fredda nel continuo alla lunghezza d’onda di 1.38mm
Crediti: ESO/ALMA/ALMAGAL. Creato da C. Mininni

Le nubi molecolari – enormi agglomerati di gas e polveri presenti nello spazio interstellare – sono le fucine in cui si generano le stelle. Da decenni i ricercatori che studiano la formazione stellare stanno cercando di comprendere perché le nebulose, pur utilizzando elementi costitutivi simili – per lo più idrogeno, elio e piccole quantità di elementi più pesanti – producono stelle con masse molto diverse da caso a caso. Il radiotelescopio ALMA osserva la radiazione cosmica a lunghezze d’onda millimetriche e submillimetriche molto più lunghe di quella visibile. Questo lo rende perfetto per osservare oggetti celesti freddi, proprio come la polvere e il gas delle nubi molecolari, che emettono proprio a quelle lunghezze d’onda. Inoltre, poiché ALMA combina la luce di 66 antenne situate anche a chilometri di distanza l’una dall’altra, è in grado di distinguere dettagli in questa finestra osservativa come nessun altro strumento oggi operativo.

All’interno delle nubi molecolari, polvere e gas si addensano per creare strutture più piccole chiamate “grumi” (clumps in inglese), di dimensioni fino a qualche anno-luce. Questi grumi si frazionano ulteriormente in ammassi di oggetti più piccoli chiamati “nuclei” (o cores), densi agglomerati in cui si formano le stelle singole. Oltre alla gravità, si pensa che diversi processi come la turbolenza nel gas o i campi magnetici controllino il modo in cui le nebulose si frammentano in grumi e nuclei.

ALMAGAL è progettato per capire meglio come tutto ciò avviene: è il primo censimento completo che ha osservato grumi di tutte le età, masse e ubicazioni in tutti i quartieri della nostra Galassia, fornendo un quadro imparziale. I risultati iniziali basati sull’analisi di 800 grumi e più di 6000 nuclei, evidenziano che non tutte le regioni di formazione stellare sono uguali. Le analisi presentate in questi primi articoli suggeriscono che i grumi più densi tendono a produrre un numero maggiore di nuclei, e quindi di stelle. Curiosamente è la maggiore concentrazione di materiale presente in un grumo, e non solo la sua quantità, che determina una sua maggiore capacità di formare nuove stelle. I nuclei hanno bisogno del materiale dei loro grumi iniziali per crescere, ed i grumi più densi e massicci sono in grado di produrre un maggior numero di nuclei che sono anche più ricchi di massa.

“La vastità del campione di strutture analizzato ci ha permesso di rivelare e di descrivere con un livello di dettaglio mai raggiunto prima la varietà delle caratteristiche fisiche (oltre che statistiche) di questi nuclei, ad esempio in termini di massa, dimensioni e densità” spiega Alessandro Coletta, dottorando dell’INAF di Roma. “Inoltre, è stato possibile indagare se, ed in quale misura, tali caratteristiche siano legate alle proprietà dei grumi ospitanti: ciò ci ha consentito di interpretare i risultati ricavati dalle osservazioni nel più ampio contesto del processo di formazione stellare, formulando dei primi scenari coerenti per arrivare a spiegarne i meccanismi”.

Osservando infatti regioni di età diverse, ALMAGAL ha scoperto che queste fucine si trasformano nel tempo. La maggior parte dei grumi più giovani mostrano solo pochissimi nuclei, e con il procedere del tempo la frammentazione ne produce un numero sempre crescente, che si distribuiscono nel modo più vario: da strutture circolari a distribuzioni filamentari, sviluppando geometrie più intricate.

“Questo è solo l’inizio” continua Sergio Molinari. “Per comprendere davvero quali siano i meccanismi fisici dominanti che giustifichino questi risultati è di fondamentale importanza il confronto con predizioni teoriche. Con il progetto Rosetta Stone sviluppato all’interno del progetto ERC Synergy ECOGAL (di cui ALMAGAL è parte) siamo pronti per il confronto delle immagini ALMAGAL con un’ampia gamma di simulazioni numeriche in cui i processi di frammentazione e formazione stellare vengono riprodotti al computer”.


 

Riferimenti bibliografici:

L’articolo “ALMAGAL I. The ALMA evolutionary study of high mass protocluster formation in the Galaxy. Presentation of the survey and early results”, di Molinari, S., et al. è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

L’articolo “ALMAGAL II. The ALMA evolutionary study of high-mass protocluster formation in the Galaxy. ALMA data processing and pipeline”, di Sánchez-Monge, Á., et al. è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

L’articolo “ALMAGAL III. Compact source catalog: fragmentation statistics and physical evolution of the core population”, di Coletta, A., et al. è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

 

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica – INAF.

CINQUINA DI GALASSIE PER IL VST

Cinque straordinarie galassie nelle nuove, dettagliatissime immagini realizzate dal VST, il telescopio italiano gestito dall’Istituto Nazionale di Astrofisica presso l’Osservatorio ESO di Paranal, in Cile

L’Istituto Nazionale di Astrofisica (INAF) rilascia oggi le immagini di cinque galassie dell’universo locale, riprese con il telescopio italiano VST (VLT Survey Telescope) gestito da INAF in Cile. Le nuove immagini mostrano queste iconiche galassie nei minimi dettagli, immortalandone la forma, i colori e la distribuzione delle stelle fino a grandi distanze dal centro. Due di esse, la galassia irregolare NGC 3109 e la irregolare nana Sestante A, si trovano ai confini del cosiddetto Gruppo Locale, di cui fa parte anche la nostra galassia, la Via Lattea, e si trovano a circa quattro milioni di anni luce da noi. Altre due galassie, la splendida galassia a spirale nota come Girandola del Sud (ma anche NGC 5236 o M 83) e la irregolare NGC 5253, si trovano, rispettivamente, a circa quindici e undici milioni di anni luce dalla nostra, mentre la quinta e più lontana, la galassia a spirale IC 5332, dista circa trenta milioni di anni luce.

Le osservazioni sono state realizzate in tre filtri, o colori, nell’ambito della survey VST-SMASH (VST Survey of Mass Assembly and Structural Hierarchy), un progetto guidato da Crescenzo Tortora, ricercatore dell’INAF a Napoli, per comprendere i meccanismi che portano alla formazione delle tante e diverse galassie che popolano il cosmo. Le cinque galassie di cui oggi vengono diffuse le immagini sono parte di un campione di 27 galassie che il team sta studiando con il VST, telescopio dotato di uno specchio dal diametro di 2,6 metri, costruito in Italia e ospitato dal 2012 presso l’Osservatorio ESO di Cerro Paranal, in Cile. Queste galassie sono state selezionate accuratamente nella porzione di cielo che, nel corso dei prossimi anni, sarà osservata anche dal satellite Euclid dell’Agenzia Spaziale Europea (ESA) per fornire una controparte ottica più dettagliata (fino a lunghezze d’onda corrispondenti al colore blu) ai dati spaziali raccolti dallo strumento VIS (a lunghezze d’onda corrispondenti al colore rosso) e dallo strumento NISP nel vicino infrarosso. Il gruppo ha presentato la survey in un articolo pubblicato sulla rivista The Messenger dell’ESO.

“Cerchiamo di capire come si formano le galassie, in funzione della loro massa e del loro tipo morfologico. Questo significa chiedersi come si formano le stelle in situ, all’interno delle galassie, ma anche come vengono accumulate (ex situ) attraverso processi di merging, cioè di fusione, con altre galassie” spiega Tortora, alla guida di un team internazionale che coinvolge molti ricercatori e ricercatrici di svariate sedi INAF. “Per fare questo, dobbiamo tracciare i colori di queste galassie fino alle regioni periferiche, per poter investigare la presenza di strutture molto deboli appartenenti a queste galassie, e popolazioni di galassie poco brillanti che vi orbitano attorno. Questo è utile per poter tracciare i residui delle interazioni galattiche, e quindi vincolare il processo gerarchico della formazione delle strutture cosmiche”.

L’analisi dei dati raccolti è ancora all’inizio, ma le osservazioni si sono già dimostrate efficaci, permettendo al team di esaminare le galassie fino a brillanze superficiali molto basse, che fino a qualche anno fa erano difficili da osservare. Il telescopio VST, grazie al suo grande campo di vista di un grado quadrato, pari a circa quattro volte l’area della luna piena nel cielo, è stato lo strumento fondamentale che ha permesso di realizzare queste immagini in un tempo relativamente breve – osservando il campo intorno a queste galassie, nei tre filtri, con 10 ore di osservazioni per grado quadrato. In confronto, realizzare una sola di queste immagini con il telescopio spaziale Hubble avrebbe richiesto molti puntamenti consecutivi.

“È la prima volta che tutte queste galassie vengono osservate in maniera così profonda e dettagliata, e con dati omogenei”, aggiunge Tortora. “Negli anni a venire, solo Euclid raggiungerà le nostre profondità ottiche, ma non potrà contare sulla vasta copertura nelle lunghezze ottiche del VST. Il Vera Rubin Observatory, invece, pur osservando in regioni spettrali simili alle nostre, raggiungerà profondità simili solo dopo molti anni di osservazione. Questo rende VST uno strumento che può ancora dire la sua, e dà speranze per interessanti risultati all’interno della nostra survey”, conclude.


Riferimenti bibliografici:

L’articolo “VST-SMASH: the VST survey of Mass Assembly and Structural Hierarchy”, di Crescenzo Tortora, Rossella Ragusa, Massimiliano Gatto, Marilena Spavone, Leslie Hunt, Vincenzo Ripepi, Massimo Dall’Ora, Abdurro’uf, Francesca Annibali, Maarten Baes, Francesco Michel Concetto Belfiore, Nicola Bellucco, Micol Bolzonella, Michele Cantiello, Paola Dimauro, Mathias Kluge, Federico Lelli, Nicola R. Napolitano, Achille Nucita, Mario Radovich, Roberto Scaramella, Eva Schinnerer, Vincenzo Testa e Aiswarya Unni, è stato pubblicato online sulla rivista The Messenger dell’ESO.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

COL PROGETTO BREAKTHROUGH LISTEN, L’INAF ALLA RICERCA DI VITA EXTRATERRESTRE: ECCO I PRIMI RISULTATI DEL SARDINIA RADIO TELESCOPE

In occasione del Congresso Internazionale di Astronautica (IAC) in corso a Milano fino al 18 ottobre 2024, la collaborazione tra l’Istituto Nazionale di Astrofisica (INAF) e il progetto Breakthrough Listen presenta i primi risultati scientifici ottenuti con le osservazioni dedicate al programma Search for Extra Terrestrial Intelligence (SETI) effettuate con il Sardinia Radio Telescope (SRT) dell’INAF in Sardegna. Lo studio, in cui sono state investigate nuove frequenze di osservazione, è stato condotto a partire dal 2022 da un team di quattro giovani studenti di Cagliari e Bologna.

Breakthrough Listen, Sardinia Radio Telescope: una immagine artistica (crediti: Danielle Futselaar / Breakthrough Listen)
Breakthrough Listen, Sardinia Radio Telescope: una immagine artistica (crediti: Danielle Futselaar / Breakthrough Listen)

Con la sua parabola di 64 metri di diametro, il Sardinia Radio Telescope è uno dei dieci radiotelescopi più grandi del pianeta posizionandosi, inoltre, tra i più performanti e tecnologicamente avanzati in quanto in grado di ricevere un ampio spettro di frequenze radio, da 300 MHz a 116 GHz. Caratteristiche che lo rendono ideale anche per la ricerca di vita intelligente. Da qui la nascita di una specifica partnership tra INAF e Breakthrough Listen, che ha portato alle prime osservazioni, effettuate durante il 2021.

Il team che nel 2022 ha analizzato questi dati è composto da Lorenzo Manunza, Monica Mulas, Luca Pizzuto e Alice Vendrame, quattro studenti delle Università di Cagliari e di Bologna che nell’estate di due anni fa – sotto la supervisione degli esperti INAF Andrea Melis e Maura Pilia e di alcuni colleghi americani – hanno condotto uno studio (il primo congiunto tra INAF e Breakthrough Listen) intitolato “The First High Frequency Technosignature Search Survey with the Sardinia Radio Telescope”, sottomesso alla rivista Acta Astronautica.

Il contributo del radiotelescopio italiano è stato quello di osservare a particolari frequenze – in banda C (6,5 GHz) e in banda K (18 GHz) – la regione centrale della nostra Via Lattea, in cui si concentra una grande quantità di stelle e relativi sistemi planetari, oltre a 72 stelle designate come “sorgenti di interesse” dalla missione TESS (Transiting Exoplanet Survey Satellite) della NASA.

“Ci sono buone ragioni per pensare che un ingegnere extraterrestre possa conoscere e utilizzare la tecnologia radio, ma non possiamo fare ipotesi sulle frequenze a cui potrebbe farlo”, spiega Lorenzo Manunza, primo autore del nuovo articolo. “Ecco perché è fondamentale che copriamo quanti più canali radio possibile utilizzando una gamma quanto più variegata di strutture osservative”.

“Il Breakthrough Listen ha precedentemente pubblicato i risultati delle osservazioni di target TESS e del Centro Galattico utilizzando altri telescopi”, afferma il Project Scientist responsabile delle relazioni internazionali di Breakthrough Listen Vishal Gajjar, coautore del nuovo studio. “Le nuove osservazioni SRT sono complementari, coprono alcune delle frequenze precedentemente scansionate, ma si estendono anche a nuove parti dello spettro radio, attorno ai 18 GHz”.

Con sede presso l’Università di Oxford, le ricercatrici e i ricercatori che lavorano al progetto Breakthrough Listen hanno l’obiettivo di portare avanti la più massiccia ricerca di “tecno-firme” – o segnali di vita intelligente nell’Universo – mai condotta prima. Strutture in tutto il mondo collaborano al progetto, tra cui molti dei più potenti radiotelescopi, nonché osservatori all’avanguardia che operano in altre regioni dello spettro elettromagnetico. L’obiettivo è esaminare un milione di stelle vicine, l’intero piano galattico e 100 galassie circostanti.

“È emozionante vedere le ricerche di tecno-firme espandersi a nuove strutture ed è fantastico che i ricercatori all’inizio della loro carriera abbiano l’opportunità di lavorare sulle importanti sfide scientifiche e ingegneristiche per rendere queste ricerche una realtà”,

osserva Karen Perez, ricercatrice che lavora con Breakthrough Listen presso la Columbia University. Perez, anche lei co-autrice della pubblicazione, ha guidato l’analisi dei dati del Centro Galattico osservati con SRT, ed ha fatto da mentore formando gli studenti italiani grazie proprio alla sua esperienza come ex stagista estiva Breakthrough Listen.

“La ricerca di intelligenza extraterrestre fornisce notevoli ritorni scientifici” – aggiunge l’astrofisica dell’INAF di Cagliari Maura Pilia, co-autrice dell’articolo nonché responsabile scientifica dei tirocinanti SETI presso SRT – “Ma oltre ad aiutarci a rispondere alla profonda domanda: ‘Siamo soli?’, possiamo utilizzare gli stessi set di dati per fare scienza ausiliaria quasi gratuitamente. Ciò potrebbe includere ricerche di sorgenti radio transitorie come i lampi radio veloci, così come studi di esopianeti, che non sono stati sufficientemente esplorati a queste alte frequenze radio fino a oggi”.

“Nonostante non siano stati rilevati segnali extraterrestri confermati nelle nuove osservazioni”, conclude il coordinatore SRT SETI e coautore dello studio, Andrea Melis, dell’INAF di Cagliari, “SRT sta contribuendo a ridurre le incertezze sulla potenza che dovrebbero avere eventuali trasmettitori extraterrestri per poterci raggiungere nelle frequenze finora osservate. I risultati saranno un prezioso contributo alla letteratura scientifica”.

L’interesse internazionale per il programma SETI sta indubbiamente crescendo. Solo pochi giorni fa si è concluso a Cagliari il terzo SETI Italy Workshop 2024, che ha riunito oltre cento ricercatori da tutto il mondo compresi i vertici di INAF, Breakthrough Listen e SETI Institute. Ora, anche al Congresso Internazionale di Astronautica sarà dedicata un’intera giornata alla ricerca di intelligenza extraterrestre.

Testo e immagine dall’Ufficio Stampa INAF

IDENTIFICATO UN ALONE MAGNETICO NELLA VIA LATTEA: RIVELAZIONI SUI DEFLUSSI GALATTICI E SULL’ORIGINE DELLE BOLLE eROSITA
Un team guidato dall’INAF ha scoperto strutture magnetizzate su larga scala attorno alla Via Lattea, la nostra Galassia, probabilmente causate da flussi galattici provenienti da regioni attive di formazione stellare. Queste strutture sono allineate con le bolle eROSITA, suggerendo un’origine comune e collegando gli aloni magnetizzati all’attività di formazione stellare nelle galassie.

Una vista schematica dell'alone della Via Lattea. I deflussi del Centro Galattico corrispondono alle bolle di Fermi. Tuttavia, le bolle eROSITA corrispondono ai deflussi esterni che hanno origine dall'anello di formazione stellare nel disco, a più di diecimila anni luce dal Centro Galattico. Crediti: H.-S. Zhang (INAF) et al. 2024, Nature Astronomy
Una vista schematica dell’alone della Via Lattea. I deflussi del Centro Galattico corrispondono alle bolle di Fermi. Tuttavia, le bolle eROSITA corrispondono ai deflussi esterni che hanno origine dall’anello di formazione stellare nel disco, a più di diecimila anni luce dal Centro Galattico. Crediti: H.-S. Zhang (INAF) et al. 2024, Nature Astronomy

Un nuovo studio guidato dall’Istituto Nazionale di Astrofisica (INAF) ha rivelato importanti novità che potrebbero riscrivere la nostra conoscenza della Via Lattea: un alone galattico magnetizzato. Questa scoperta mette in discussione i modelli precedenti sulla struttura ed evoluzione della nostra Galassia. I ricercatori hanno identificato diverse strutture magnetizzate che si estendono ben oltre il piano galattico, raggiungendo altezze superiori a 16 mila anni luce. Tali strutture rivelano una delle origini delle cosiddette bolle di eROSITA, alimentate su scala galattica da intensi flussi di gas ed energia, generati dalla fine esplosiva delle stelle di grande massa come supernove. Sorprendentemente, queste bolle — osservate dal satellite eROSITA (un telescopio a raggi X a bordo della missione spaziale russo-tedesca Spectr-Roentgen-Gamma SRG) — si estendono da un orizzonte all’altro, offrendo le prime misurazioni dettagliate dell’alone magnetico della Via Lattea. I risultati sono stati pubblicati oggi sulla rivista Nature Astronomy.

Questa immagine confronta le bolle eROSITA a raggi X (in verde) e il campo magnetico nell'alone (in bianco). L'intensità polarizzata per la radiazione di sincrotrone è in rosso. I cerchi celesti sono le bolle di Fermi a raggi gamma. Le creste magnetiche associate alle bolle di Fermi sembrano emanare dal Centro Galattico. Al contrario, le creste nella regione esterna hanno origine nel disco galattico, a più di diecimila anni luce dal Centro Galattico. Crediti: H.-S. Zhang (INAF) et al. 2024, Nature Astronomy
Questa immagine confronta le bolle eROSITA a raggi X (in verde) e il campo magnetico nell’alone (in bianco). L’intensità polarizzata per la radiazione di sincrotrone è in rosso. I cerchi celesti sono le bolle di Fermi a raggi gamma. Le creste magnetiche associate alle bolle di Fermi sembrano emanare dal Centro Galattico. Al contrario, le creste nella regione esterna hanno origine nel disco galattico, a più di diecimila anni luce dal Centro Galattico. Crediti: H.-S. Zhang (INAF) et al. 2024, Nature Astronomy

Lo studio rivela che i campi magnetici all’interno di queste bolle formano strutture filamentose che si estendono per una distanza pari a circa 150 volte il diametro della Luna piena, dimostrando la loro immensa scala. I filamenti sono correlati a venti caldi, con una temperatura di 3,5 milioni kelvin, espulsi dal disco galattico e alimentati dalle regioni di formazione stellare.

He-Shou Zhang, primo autore dell’articolo e ricercatore presso l’INAF di Milano sottolinea: “I nostri risultati indicano che l’intensa formazione stellare alla fine del Centro Galattico contribuisce in modo significativo a questi ampi deflussi multifase”. Aggiunge inoltre: “Questo lavoro fornisce le prime misurazioni dettagliate dei campi magnetici nell’alone della Via Lattea, che emette raggi X e svela nuove connessioni tra le attività di formazione stellare e i deflussi galattici. I nostri risultati mostrano che le creste magnetiche osservate non sono semplici strutture casuali, ma sono strettamente legate alle regioni di formazione stellare della nostra Galassia”.

Il team di ricerca ha sfruttato l’intero spettro elettromagnetico, coprendo frequenze dalle onde radio ai raggi gamma, per analizzare queste strutture usando più di dieci diverse indagini all-sky. Un approccio così dettagliato ha permesso di confermare la natura estesa di queste strutture magnetiche. In particolare, lo studio rappresenta la prima evidenza osservativa che collega l’anello di formazione stellare della Via Lattea, situato alla fine del Centro Galattico, alla produzione di deflussi su larga scala.

“Questo studio rappresenta un significativo passo avanti nella nostra comprensione della Via Lattea”, afferma Gabriele Ponti, ricercatore INAF a Milano. “È ormai ben noto che una piccola frazione di galassie ‘attive’ può generare deflussi di materia alimentati dall’accrescimento su buchi neri supermassicci o da eventi di formazione stellare intensi, che influenzano profondamente la loro galassia ospite. Si ritiene che tali deflussi siano elementi fondamentali per regolare la crescita delle galassie e dei buchi neri al loro centro. Ciò che trovo affascinante in questo caso è notare che anche la Via Lattea, una galassia quiescente come molte altre, può espellere potenti deflussi, e in particolare che l’anello di formazione stellare alla fine del centro rotazionale contribuisce significativamente al flusso galattico. Forse la Via Lattea ci sta svelando un fenomeno comune nelle galassie simili alla nostra, aiutandoci così a far luce sulla crescita ed evoluzione di questi oggetti”.

Ettore Carretti, ricercatore INAF a Bologna, spiega il metodo di ricerca: “i nostri primi tentativi di confrontare le emissioni dell’intera volta celeste non hanno avuto successo, poiché le emissioni provenienti dalle strutture locali spesso si sovrapponevano a queste strutture più grandi. Tuttavia, abbiamo dedicato molto tempo all’uso di osservazioni multi-lunghezza d’onda per misurare le distanze delle creste magnetiche e delle bolle di eROSITA che emettono raggi X. L’analisi teorica per comprendere queste strutture, che emettono in modo termico e non-termico nell’alone galattico, è stata anch’essa molto complessa, richiedendo conoscenze sui deflussi galattici, sui campi magnetici e sul trasporto e l’accelerazione dei raggi cosmici. Fortunatamente, la nostra collaborazione include esperti di livello mondiale in tutti questi campi”.

L’INAF ha giocato un ruolo cruciale in questa scoperta, in collaborazione con molte istituzioni internazionali, tra cui gli Istituti Max Planck per la Fisica Extraterrestre e per la Fisica Nucleare, l’Università della California, la Scuola di Astronomia e Scienza Spaziale dell’Università di Nanchino, il Dipartimento di Astrofisica/IMAPP dell’Università di Radboud, l’Istituto di Dublino per gli Studi Avanzati, l’Università Statale di Yerevan, l’Università di Guangxi e l’Università dell’Insubria. Oltre al team di autori principali dell’INAF sopra menzionato, anche Ruoyu Liu (Università di Nanchino, Cina) e Mark Morris (UCLA, Stati Uniti) hanno contribuito in modo sostanziale a questo lavoro.

He-Shou Zhang conclude: “Il nostro lavoro è il primo studio multi-lunghezza d’onda completo sulle bolle di eROSITA dalla loro scoperta nel 2020. Lo studio apre nuove frontiere nella nostra comprensione dell’alone galattico e contribuirà ad approfondire la nostra conoscenza del complesso e impetuoso ecosistema di formazione stellare della Via Lattea”.


 

Riferimenti bibliografici:

L’articolo “A magnetised Galactic halo from inner Galaxy outflows“, di He-Shou Zhang, Gabriele Ponti, Ettore Carretti, Ruo-Yu Liu, Mark R. Morris, Marijke Haverkorn, Nicola Locatelli, Xueying Zheng, Felix Aharonian, Haiming Zhang, Yi Zhang, Giovanni Stel, Andrew Strong, Micheal Yeung, Andrea Merloni, pubblicato sulla rivista Nature Astronomy.

Testo e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

PORFIRIONE: DA UN BUCO NERO, LA COPPIA DI GETTI RECORD, LUNGA 23 MILIONI DI ANNI LUCE

Scoperta la più grande coppia di getti emessi da un buco nero mai osservata: si estende per 23 milioni di anni luce, una distanza equivalente a 140 galassie come la Via Lattea, allineate una dopo l’altra. A individuarle è stato il radiotelescopio europeo LOFAR. Nel team che ha scoperto queste megastrutture e che ha firmato un articolo apparso oggi sulla rivista Nature ci sono due ricercatori INAF.

Rappresentazione artistica del più esteso sistema di getti emessi da buchi neri mai osservato. Denominato Porfirione, dal nome di un gigante mitologico greco, questi getti si estendono per circa 7 megaparsec, ovvero 23 milioni di anni luce. La stessa distanza che coprirebbero 140 galassie come la Via Lattea allineate una dietro l'altra. Crediti: E. Wernquist / D. Nelson (IllustrisTNG Collaboration) / M. Oei
Rappresentazione artistica del più esteso sistema di getti emessi da buchi neri mai osservato. Denominato Porfirione, dal nome di un gigante mitologico greco, questi getti si estendono per circa 7 megaparsec, ovvero 23 milioni di anni luce. La stessa distanza che coprirebbero 140 galassie come la Via Lattea allineate una dietro l’altra. Crediti: E. Wernquist / D. Nelson (IllustrisTNG Collaboration) / M. Oei

Scoperti da un team internazionale di ricerca due giganteschi getti di gas e particelle prodotti da un remoto buco nero supermassiccio, che si estendono per una distanza di 23 milioni di anni luce, ovvero quanto il diametro di 140 galassie come la Via Lattea. La megastruttura, la più grande di questo tipo finora nota, è stata soprannominata Porfirione in onore di un gigante della mitologia greca. Questi getti risalgono a un’epoca in cui il nostro universo aveva 6,3 miliardi di anni, ovvero meno della metà della sua attuale età, pari a 13,8 miliardi di anni. Si stima che l’energia che alimenta i getti sia equivalente a quella di migliaia di miliardi di soli.

Prima di questa scoperta, il più grande sistema di getti mai osservato era Alcioneo, individuato nel 2022, con una estensione di circa 100 volte la grandezza della Via Lattea. Ma la scoperta di Porfirione suggerisce che questi giganteschi sistemi di getti potrebbero aver influenzato la formazione delle galassie nell’universo giovane più di quanto si pensasse in precedenza.

“La scoperta di Porfirione rappresenta un passo molto importante nella comprensione dell’evoluzione dei buchi neri e delle galassie, con implicazioni potenzialmente rilevanti anche per le proprietà dell’universo su grandissima scala”, commenta Andrea Botteon, ricercatore INAF coinvolto nello studio. “Questo risultato è stato possibile grazie all’utilizzo della vasta rete di antenne che compongono LOFAR, la quale ci ha permesso per la prima volta di individuare Porfirione e quindi di condurre osservazioni di follow-up con altri telescopi per determinarne le proprietà fisiche”.

Questa immagine, ottenuta dal radiotelescopio europeo LOFAR (LOw Frequency ARray), mostra la più estesa coppia di getti di buchi neri ad oggi conosciuta. Soprannominato Porfirione dal nome di un mitologico gigante greco, il sistema di getti si estende per 23 milioni di anni luce. La galassia che ospita il buco nero supermassiccio, distante 7,5 miliardi di anni luce, è il punto al centro dell'immagine. La struttura luminosa più grande, vicina al centro, è un altro getto più piccolo
Questa immagine, ottenuta dal radiotelescopio europeo LOFAR (LOw Frequency ARray), mostra la più estesa coppia di getti di buchi neri ad oggi conosciuta. Soprannominato Porfirione dal nome di un mitologico gigante greco, il sistema di getti si estende per 23 milioni di anni luce. La galassia che ospita il buco nero supermassiccio, distante 7,5 miliardi di anni luce, è il punto al centro dell’immagine. La struttura luminosa più grande, vicina al centro, è un altro getto più piccolo

Grazie al telescopio radio Europeo LOFAR (LOw Frequency ARray), oltre a Porfirione, sono state scoperte oltre 10.000 megastrutture poco visibili. Sebbene centinaia di grandi sistemi di getti fossero già noti prima delle osservazioni del LOFAR, si pensava fossero rari e in media di dimensioni più piccole rispetto ai migliaia di sistemi scoperti.

“Questa coppia non è solo delle dimensioni di un sistema solare o di una Via Lattea; stiamo parlando di 140 diametri della Via Lattea in totale,” afferma Martijn Oei, ricercatore post-dottorato al Caltech e autore principale di un nuovo articolo pubblicato su Nature. “La Via Lattea sarebbe un piccolo punto in queste due gigantesche eruzioni”.

Per localizzare la galassia da cui proviene Porfirione, il team ha utilizzato il Giant Metrewave Radio Telescope (GMRT) in India insieme ai dati provenienti da un progetto chiamato Dark Energy Spectroscopic Instrument (DESI), che opera dal Kitt Peak National Observatory in Arizona. Le osservazioni hanno individuato l’origine dei getti: una galassia circa dieci volte più massiccia della nostra Via Lattea.

Il team ha poi utilizzato l’Osservatorio W. M. Keck alle Hawaii per mostrare che Porfirione si trova a 7,5 miliardi di anni luce dalla Terra. Questo risultato suggerisce che se i getti distanti come questi possono raggiungere la scala della rete cosmica, allora ogni luogo nell’universo potrebbe essere stato influenzato dall’attività dei buchi neri a un certo punto nella storia cosmica.

Le osservazioni dal telescopio Keck hanno anche rivelato che Porfirione proviene da quello che è chiamato un buco nero attivo in modalità radiativa, piuttosto che in modalità getto. In questo particolare stato, il buco nero supermassiccio emette energia sotto forma di radiazioni e getti quando attira a sé e riscalda il materiale circostante: una sorpresa per i ricercatori, che non ritenevano possibile l’emissione di getti così potenti da un buco nero in questa modalità. La scoperta suggerisce quindi che nell’universo distante, dove abbondano i buchi neri in modalità radiativa, potrebbero esserci molti altri getti così potenti ancora da scoprire.

Come possano i getti estendersi così lontano oltre le loro galassie ospitanti senza destabilizzarsi è ancora poco chiaro. L’ipotesi più plausibile è che nella galassia ospite avvenga un evento di accrescimento insolitamente duraturo e stabile attorno al buco nero supermassiccio centrale per consentirgli di rimanere attivo così a lungo – circa un miliardo di anni – e garantire che i getti continuino a puntare nella stessa direzione durante tutto quel tempo.

“Le osservazioni a bassa frequenza continuano a mostrare il loro incredibile potenziale”, afferma Francesco de Gasperin, co-autore dello studio e ricercatore INAF. “Riuscire a osservare ed elaborare correttamente questi dati è estremamente complesso, ma negli ultimi anni sono stati fatti grossi passi avanti che hanno permesso un elevato numero di scoperte importanti tra cui molte sulla fisica dei buchi neri supermassicci e sul loro impatto nel modificare la vita delle galassie ospitanti”.

Il prossimo passo per i ricercatori sarà quello di approfondire come queste megastrutture influenzano il loro ambiente e, in particolare, come i getti diffondono raggi cosmici, calore, atomi pesanti e campi magnetici nello spazio intergalattico. Altro obiettivo degli scienziati è anche comprendere i meccanismi che sono legati alla propagazione dei campi magnetici associati a questi enormi getti, il modo in cui essi influenzano la distribuzione dei campi magnetici nella grande rete cosmica e il ruolo che i campi magnetici possono avere sulla formazione e il mantenimento delle condizioni favorevoli alla vita, così come accade sul nostro pianeta.

Per ulteriori informazioni:

L’articolo “Black hole jets on the scale of the cosmic web”, di Martijn S. S. L. Oei, Martin J. Hardcastle, Roland Timmerman, Aivin R. D. J. G. I. B. Gast, Andrea Botteon, Antonio C. Rodriguez, Daniel Stern, Gabriela Calistro Rivera, Reinout J. van Weeren, Huub J. A. Röttgering, Huib T. Intema, Francesco de Gasperin, S. G. Djorgovski è stato pubblicato online sulla rivista Nature. DOI: https://www.nature.com/articles/s41586-024-07879-y

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

Celebrando le nuove stelle di Gaia: il nuovo catalogo del satellite Gaia rivela nuove e inaspettate scoperte nell’ammasso Omega Centauri e nel Sistema solare

A poco più di un anno dalla pubblicazione del suo ultimo catalogo contenente due miliardi di stelle, il satellite europeo Gaia torna a far parlare di sé con la pubblicazione di nuovi ed esaltanti risultati che vanno dalle misure di più di mezzo milione di stelle nascoste nell’ammasso Omega Centauri alla determinazione della posizione di oltre 150.000 asteroidi all’interno del Sistema solare con una precisione mai ottenuta prima. Risultati che vedono in prima linea il Dipartimento di Fisica e Astronomia dell’Università di Padova e l’INAF – Osservatorio Astronomico di Padova. Per celebrare questo nuovo importante risultato venerdì 13 ottobre 2023alle ore 18:30, la Specola di Padova aprirà le sue porte per brindare insieme e raccontare questo nuovo capitolo della ricerca astronomica.

satellite Gaia osserva la Via Lattea
rappresentazione artistica del satellite Gaia che osserva la Via Lattea

Da quasi dieci anni il satellite europeo Gaia scruta costantemente il firmamento, mappandolo con una precisione senza precedenti. Infatti, le osservazioni e le informazioni raccolte dall’astrometro più avanzato mai lanciato nello spazio, ci hanno consentito di fare passi da gigante nella nostra comprensione dell’ambiente galattico. Eppure i nuovi dati ci promettono di svelare dettagli ancor più straordinari andando ben oltre gli obiettivi iniziali di Gaia.

Oggi, a poco più di un anno dalla pubblicazione del suo ultimo catalogo, che contiene le posizioni e le caratteristiche di quasi due miliardi di stelle, il satellite dell’Agenzia Spaziale Europea è pronto ad aprire una nuova finestra sulla nostra galassia, la Via Lattea. Gaia, infatti, è riuscita a determinare le posizioni di oltre mezzo milione di astri tutti contenuti in un solo ammasso stellare, ovvero un’area di cielo particolarmente densa di stelle fino a oggi impossibile da osservare con il satellite europeo. Queste zone, tra le più antiche dell’Universo, sono dei veri e propri fossili cosmici e possono fornire preziose informazioni sull’origine della nostra galassia. Oltre a ciò, Gaia è riuscita a determinare le posizioni e le orbite di più di 150.000 asteroidi nel Sistema solare con un’accuratezza mai vista prima e ha scovato oltre 380 potenziali lenti gravitazionali, nelle quali oggetti massicci, come stelle o galassie, agiscono proprio come delle lenti di ingrandimento capaci di mostrarci scorci di universo lontanissimo. Oltre ciò Gaia ha prodotto il più vasto catalogo delle velocità con cui le stelle si avvicinano o si allontanano da noi, essenziale per ricostruire il movimento in 3D dei dintorni solari. In particolare, sono state studiare alcune stelle che variano la loro luminosità su un lungo lasso di tempo, il cui studio contribuirà a chiarire alcuni aspetti, poco noti ma fondamentali, della vita e dell’evoluzione stellare. Una nuova ricca mole di informazioni che “contribuirà a svelare alcuni aspetti misteriosi della vita della nostra Galassia, delle sue stelle e dell’Universo” commenta Michele Trabucchi, ricercatore dell’Università di Padova e primo autore di uno dei lavori pubblicati.

Per celebrare al meglio questo straordinario traguardo della missione Gaia, l’INAF – Osservatorio Astronomico di Padova e il Dipartimenti di Fisica e Astronomica dell’Università di Padova G. Galilei, che sono da sempre in prima linea nello studio del Cosmo, stanno organizzando per venerdì 13 ottobre 2023, un evento pubblico, dal titolo “Aperitivo con Gaia”, volto a svelare i dettagli nascosti dietro questi nuovissimi e preziosissimi dati. A partire dalle 18:30 la Specola aprirà le sue porte al pubblico offendo, a tutti i partecipanti, un aperitivo per celebrare insieme i successi della missione e, a seguire, un incontro con tre astronomi d’eccezione coinvolti direttamente nelle ultime scoperte: Antonella Vallenari, co-responsabile di tutto il consorzio Gaia, Michele Trabucchi, ricercatore presso l’università di Padova e leader di uno dei gruppi di ricerca, e Paola Sartoretti dell’Osservatorio di Parigi–Meudon, astronoma padovana facente parte di uno dei più rilevanti gruppi di lavoro nel consorzio Gaia. Infine, la serata si concluderà, per chi lo desidera, con una suggestiva visita alla Specola in una meravigliosa cornice serale.

Grazie alla missione Gaia stiamo mappando la nostra Galassia con un dettaglio straordinario, che ci consente di continuare a svelare i segreti più profondi del Cosmo. Con le sue ultime rivelazioni Gaia ci ha permesso di gettare uno sguardo più profondo nel nostro passato cosmico aprendo un futuro di scoperte ancora più sorprendenti. Con il suo impegno instancabile nella ricerca dell’ignoto, il satellite europeo ci ha ispirato a sognare in grande e a continuare a esplorare l’infinito. Alzando lo sguardo al cielo, sappiamo che non siamo soli nell’Universo, ma parte di una vasta e meravigliosa danza celeste.

Per partecipare all’evento, è necessario registrarsi, per dettagli e iscrizioni https://www.oapd.inaf.it/seminari-ed-eventi/aperitivo-con-gaia

Testo, video e foto dall’Ufficio Stampa dell’Università di Padova

LA DANZA DELLE STELLE DA DUE MILIONI E MEZZO DI EURO: IL PROGETTO STARDANCE DELLA RICERCATRICE ELENA PANCINO SI AGGIUDICA L’ERC ADVANCED GRANT

 Elena Pancino, ricercatrice dell’Istituto Nazionale di Astrofisica si aggiudica un finanziamento di 2,5 milioni di euro dal Consiglio Europeo delle Ricerche. Il progetto vincitore del grant Advanced si chiama StarDance e metterà alla prova delle osservazioni l’ipotesi innovativa secondo cui molte popolazioni esotiche – finora incomprese – negli ammassi stellari e nella Via Lattea, sono il risultato di scambio di massa e fusione tra coppie di stelle.

Elena Pancino
Elena Pancino. Crediti: INAF

Dal primo novembre prossimo e per i successivi cinque anni, Elena Pancino – ricercatrice INAF a Firenze – guiderà il progetto europeo StarDance che, con un budget di due milioni e mezzo di euro messo a disposizione dall’European Research Council (ERC), il Consiglio Europeo delle Ricerche, cercherà di dare risposta a una domanda fondamentale aperta da decenni: “Come si formano le stelle?
StarDance studierà le proprietà fisiche e chimiche delle popolazioni stellari esotiche negli ammassi stellari e nella popolazione di campo della Via Lattea, per comprovare la nuova ipotesi proposta da Elena Pancino basata sullo studio di un tipo di stelle “non-canoniche”, risultato di interazioni tra stelle binarie che si fonderebbero dando origine a un’unica stella più massiccia. Queste popolazioni di stelle verranno studiate soprattutto negli ammassi stellari, sia aperti che globulari, ovvero le “culle” entro cui la maggior parte delle stelle si forma, rendendoli quindi ambienti molto attivi dal punto di vista chimico e dinamico. Proprio di questi ammassi, a oggi non è ancora del tutto chiaro quale sia il meccanismo di formazione, soprattutto per i più antichi (i globulari), né se la formazione stellare nell’universo primordiale fosse diversa da quella che è possibile osservare oggi.

Alcune di queste stelle esotiche attendono da decenni una interpretazione certa della loro origine. La definizione deriva da alcune loro caratteristiche peculiari: per esempio una composizione chimica anomala, il tipo di rotazione o la loro estrema ricchezza di litio, oppure la perdita di una parte importante della loro atmosfera.

Il titolo accattivante del progetto StarDance richiama la danza delle stelle, un concetto spesso usato per descrivere il percorso di oggetti che gravitano l’uno attorno all’altro.

“Nel mio progetto, metterò assieme la danza delle stelle che da sole ruotano molto velocemente sul loro asse, delle stelle binarie che ruotano l’una attorno all’altra, e degli ammassi stellari in cui migliaia o addirittura milioni di stelle seguono i loro percorsi non-deterministici, solitarie o in coppie e multipli, sotto l’azione del comune campo gravitazionale” spiega Elena Pancino, che continua: “Con StarDance avrò la possibilità di mettere alla prova una mia nuova ipotesi, secondo cui le interazioni tra stelle molto vicine tra loro, con scambio di massa e anche con la fusione delle due stelle, possono spiegare tutte le osservazioni in maniera naturale e organica. L’ambizione sta nel fatto che il progetto richiede una batteria di test ad ampio spettro, con osservazioni che vanno dalla banda dei raggi X fino all’infrarosso, ottenute per di più con tecniche diversissime, dalle più classiche fino all’intelligenza artificiale, e richiede anche competenze astrofisiche molto variegate. In sostanza, per la prima volta si guarderà il problema da diversi angoli in maniera organica e spaziando tra diversi campi di ricerca che tradizionalmente non comunicano molto tra loro”.

Questa ricerca si inserisce in un contesto scientifico già in grande fermento nel campo della formazione e dell’evoluzione stellare, grazie anche al contributo della missione astrometrica europea Gaia e altre missioni spaziali e grandi survey da Terra, che stanno producendo una enorme mole di dati di altissima qualità ancora lontana, però, dall’essere interpretata in modo soddisfacente. In questo contesto, gli ammassi stellari si confermano come potenti laboratori astrofisici da utilizzare per testare i modelli teorici.

“Io e il mio gruppo potremo contare su una enorme mole di lavoro fatta dalla comunità a cui apparteniamo. Tuttavia, l’ERC finanzia progetti alla cui base c’è un elemento di novità o di rottura con il passato, soprattutto dove ci sono grandi problemi aperti da lungo tempo, a cui le tecniche tradizionali non hanno saputo dare finora una risposta, proprio come nel nostro caso” conclude Pancino.

Elena Pancino
Elena Pancino. Crediti: INAF

Testo e foto dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)

DA RIVEDERE L’EQUAZIONE DELLA “LEGGE DI REDDENING” SULLA MATERIA INTERSTELLARE 

 Pubblicato su Monthly Notices of the Royal Astronomical Society lo studio di un team di ricercatori dell’Università di Padova in cui è emerso che “legge di reddening”, l’equazione matematica in grado di predire come la materia interstellare modifichi la luminosità e il colore dei corpi celesti, sia molto diversa da quella che fino ad oggi era ritenuta valida.

Sulla base della nuova ricerca, un gran numero di studi basati sull’equazione tradizionale dovrebbe essere rivisto.

Equazione legge di reddening materia interstellare
Forma della materia interstellare

Prima del XX secolo l’umanità riteneva che lo spazio che separa gli astri celesti fosse vuoto. Il famoso astronomo americano Edward Emerson Barnard (1857-1923) fu il primo a comprendere che le regioni di cielo apparentemente vuote di materia non lo erano affatto. Lo spazio tra le stelle, detto interstellare, è permeato da una miriade di particelle che interagiscono con la luce delle stelle situate al di là di esse.

La materia interstellare si trova ovunque nella Via Lattea, persino in quei remoti pezzetti di cielo che, pur osservati con i più grandi telescopi, ci appaiono completamente oscuri. Queste microscopiche particelle di polveri e gas rarefatti che permeano le galassie danno origine a nubi oscure e informi. Sebbene intangibile, la materia interstellare interagisce con la luce emessa dai corpi celesti e ne cambia drammaticamente le proprietà: li rende meno luminosi e ne altera i colori. Di conseguenza queste nubi interstellari influenzano la nostra comprensione di una vasta gamma di fenomeni astrofisici che va dallo studio dei pianeti extrasolari, alle reazioni termonucleari che avvengono nelle stelle, fino alle proprietà dell’Universo su larga scala e al suo destino finale.

È essenziale, infatti, capire quanta luce sia stata assorbita dalle nubi interstellari per poter studiare qualsiasi corpo celeste. Tracciare con precisione la distribuzione della materia interstellare nella via Lattea e comprenderne le proprietà rappresenta, quindi, una delle sfide più avvincenti dell’astrofisica. Ma anche tra le più impegnative, proprio per il fatto che le nubi sono invisibili all’occhio dell’uomo e ai suoi telescopi.

Recentemente, una ricerca pubblicata sulla rivista «Monthly Notices of the Royal Astronomical Society» dal titolo “Differential reddening in the direction of 56 Galactic globular clusters” ha permesso di compiere un grosso balzo in avanti in questo settore. Si tratta del lavoro condotto da oltre due anni da un gruppo di ricerca guidato da Maria Vittoria Legnardi, una giovane dottoranda al dipartimento di Fisica e Astronomia dell’Università di Padova. Il team di Legnardi ha messo a punto una tecnica innovativa che sfrutta le straordinarie capacità del telescopio spaziale Hubble per ricavare delle mappe ad altissima risoluzione delle nubi interstellari.

Maria Vittoria Legnardi e Sohee Jang
Maria Vittoria Legnardi e Sohee Jang

«Le immagini di Hubble che usiamo – dice Maria Vittoria Legnardi – riprendono un gran numero di ammassi stellari, ovvero agglomerati di decine di migliaia di stelle gemelle, che si trovano oltre le nubi. Le nubi interstellari non sono affatto visibili nelle immagini, ma siamo riusciti a ricostruirle grazie a una lunga e laboriosa analisi della luce proveniente dalle stelle che le attraversa».

«La materia interstellare può assumere delle forme molto bizzarre – continua Sohee Jang, astronoma dell’Università di Seoul che ha trascorso gli ultimi due anni a Padova per studiare gli ammassi stellari e la materia interstellare –.  È un po’ come sdraiarsi su un prato a sognare e guardare le nuvole: animali, volti di persone, o persino un grande cuore che batte possono apparire ai nostri occhi».

«Il risultato più sorprendente – commenta Emanuele Dondoglio, coautore dell’articolo e anche lui dottorando a Padova – riguarda però la cosiddetta “legge di reddening”, ovvero l’equazione matematica in grado di predire come la materia interstellare modifichi la luminosità e il colore dei corpi celesti».

Un risultato emozionante riguarda questa legge matematica. Infatti dallo studio del gruppo di Legnardi è emerso che tale legge, ricavata dalle loro mappe ad alta risoluzione, sia molto diversa dall’equazione che fino ad oggi era ritenuta valida.

«Alla luce di questa nuova scoperta – conclude Maria Vittoria Legnardi – un gran numero di studi basati sull’equazione tradizionale dovrà essere rivisto. È possibile dunque che alcune nozioni sull’Universo locale e a larga scala potrebbero subire importanti cambiamenti nei prossimi mesi o anni».

Link alla ricerca: https://academic.oup.com/mnras/article/522/1/367/7111343

Titolo: “Differential reddening in the direction of 56 Galactic globular clusters” – «Monthly Notices of the Royal Astronomical Society» 2023

Autori: M. V. Legnardi, A. P. Milone, G. Cordoni, E. P. Lagioia, E. Dondoglio, A. F. Marino, S. Jang, A. Mohandasan, T. Ziliotto.

 

Testo e immagini (ove non indicato diversamente) dall’Ufficio Stampa dell’Università di Padova

CON PEGASUS LA MAPPA DELL’1% DEL PIANO GALATTICO

Sfruttando i telescopi Parkes e ASKAP in Australia, è stata realizzata un’immagine ad altissima definizione dei campi magnetici nella Via Lattea, la nostra galassia. I dati arrivano dal progetto PEGASUS guidato dall’INAF, parte del più ampio programma EMU.

Portate a termine le osservazioni radio di una vasta sezione del piano galattico della Via Lattea (circa l’1%) con i radiotelescopi ASKAP e Parkes (Murriyang), entrambi sviluppati e gestiti dall’Agenzia scientifica australiana CSIRO. Radioastronomi dell’Istituto Nazionale di Astrofisica (INAF) hanno coordinato il gruppo internazionale di ricerca che ha utilizzato il “grande disco” di Parkes per “fotografare” una porzione del disco della nostra galassia, nell’ambito del progetto di ricerca PEGASUS (POSSUM EMU GMIMS All Sky UWL Survey). PEGASUS è uno dei numerosi progetti di esplorazione del più ampio programma Evolutionary Map of the Universe (EMU), che consiste nell’osservazione di tutto l’emisfero sud con ASKAP, uno dei precursori del progetto SKA. L’immagine è stata unita a quella realizzata con le antenne ASKAP per il progetto EMU, guidato dalla Università Macquarie a Sydney, Australia, ottenendo un risultato di straordinaria qualità.

L’immagine,  ampia circa 6-7 gradi o come 12-14 volte il diametro apparente della Luna, mostra una regione caratterizzata da un’emissione estesa associata all’idrogeno gassoso che riempie lo spazio tra le stelle, stelle alla fine del loro ciclo evolutivo chiamate resti di supernova e bolle calde di idrogeno gassoso ionizzato legate alla nascita di nuove stelle. Le stelle non sono visibili in questa immagine poiché la loro luce contiene emissioni radio minime. Questa nuova fotografia della nostra Galassia mostra aspetti dell’evoluzione delle stelle visibili solo ai radiotelescopi.

CON PEGASUS LA MAPPA DELL’1% DEL PIANO GALATTICO
Crediti: R. Kothes (NRC), the EMU and POSSUM teams

Ettore Carretti, dell’INAF di Bologna, è il responsabile della survey PEGASUS insieme a Tom Landecker del National Research Council of Canada e a Xiaohui Sun dell’Università dello Yunnan, in Cina. PEGASUS intende sfruttare le potenzialità del telescopio Parkes (pathfinder del progetto SKA) per mappare tutto il cielo australe a 700-1440 MHz con circa 2100 ore di osservazione. PEGASUS contribuirà a tre progetti: EMU, POSSUM e GMIMS per studiare il magnetismo della Via Lattea. Il progetto PEGASUS ha appena completato le sue osservazioni pilota e mira a osservare l’intero cielo australe nei prossimi due anni.

Il radioastronomo dell’INAF spiega: “Con questa prima fase di PEGASUS abbiamo studiato un’ampia regione del piano Galattico della nostra Galassia. Gli oggetti visibili nell’immagine possono essere studiati nelle onde radio con altissima precisione e accuratezza grazie alla combinazione di dati dei radiotelescopi ASKAP e Parkes. Abbiamo poi combinato la mappa ottenuta con quella dei progetti EMU e POSSUM: il risultato è strabiliante, quando abbiamo aperto l’immagine per la prima volta siamo rimasti meravigliati da tanta qualità e bellezza”.

Carretti aggiunge: “L’obiettivo della survey è duplice. In primo luogo comprendere e studiare i campi magnetici della nostra Galassia, la loro origine e i loro effetti su vari fenomeni come resti di supernove e le grandi strutture della Via Lattea, come il Grande Sperone settentrionale, ma anche galassie, radiogalassie e ammassi di galassie. In secondo luogo, essendo ASKAP, come tutti gli interferometri, poco sensibile alle grandi scale angolari, i dati del progetto PEGASUS raccolti con Parkes completeranno quelli di ASKAP, aggiungendo ai dettagli finissimi già esistenti la forma, le dimensioni e la potenza totale emessa da questi oggetti. Tutto ciò per poter studiare la fisica dei fenomeni che li governano”.

Le survey come PEGASUS osservano l’intero cielo, incluso il cosiddetto Piano Galattico, vale a dire il luogo della Via Lattea in cui risiede il Sistema solare. Si tratta di una regione che contiene innumerevoli stelle, polveri e nubi di gas, nonché una notevole quantità di materia oscura. Studiare il piano della Via Lattea è da sempre uno degli obiettivi più importanti dei radioastronomi, ma la presenza di emissione diffusa nella Galassia rende difficile ottenere immagini prive di artefatti: ciò riduce di fatto la qualità delle immagini finali rendendo l’analisi dei dati un compito particolarmente impegnativo.

Tom Landecker spiega: “Il progetto GMIMS esplora le forze magnetiche nella Via Lattea. Oltre a plasmare la Via Lattea, le forze magnetiche sono coinvolte nella formazione della sua struttura a spirale e nella nascita e morte delle stelle all’interno dei suoi bracci a spirale. I dati principali che otteniamo sono le osservazioni della polarizzazione dell’emissione radio dalla Via Lattea effettuate con grandi radiotelescopi negli emisferi Sud e Nord. In dodici anni, abbiamo effettuato con successo rilevamenti del cielo con il telescopio Parkes, Murriyang, a frequenze radio sia più basse che più alte di quelle di PEGASUS. PEGASUS colmerà una lacuna nei nostri dati, fornendo una visione senza precedenti degli effetti magnetici in tre dimensioni. Osservazioni parallele sono state effettuate utilizzando telescopi canadesi, e altre sono in corso, fornendo una prospettiva globale”.

Andrew Hopkins, a capo del progetto EMU per l’Università Macquarie, afferma: “Il risultato finale della collaborazione PEGASUS/EMU sarà una vista senza precedenti di quasi tutta la Via Lattea, un’immagine circa cento volte più grande di quella realizzata in questa prima fase da PEGASUS, ma con lo stesso livello di dettaglio e sensibilità”.

CON PEGASUS LA MAPPA DELL’1% DEL PIANO GALATTICO. GALLERY


 

Per saperne di più:

ASKAP e Parkes sono gestiti da CSIRO, l’agenzia scientifica nazionale australiana, nell’ambito dell’Australia Telescope National Facility. CSIRO riconosce il popolo Wajarri Yamatji come proprietario storico e detentore del titolo nativo di Inyarrimanha Ilgari Bundara, l’Osservatorio radioastronomico Murchison dove si trova ASKAP, e il popolo Wiradjuri come proprietario storico dell’Osservatorio Parkes.

Testo, video e immagini dall’Ufficio stampa – Struttura per la Comunicazione dell’Istituto Nazionale di Astrofisica – INAF

NELLA VIA LATTEA, NATALITÀ STELLARE NELLA MEDIA, MA SI POTREBBE FARE DI PIÙ

Una nuova analisi dei dati raccolti dal satellite Herschel dell’Agenzia Spaziale Europea ha stimato il tasso di formazione stellare della nostra galassia, la Via Lattea, stabilendo che in media produce nuove stelle per un ammontare pari a due volte la massa del Sole ogni anno. Questo fa della Via Lattea una galassia “mediamente attiva”. Lo studio, guidato da ricercatori dell’Istituto Nazionale di Astrofisica, getta un ponte tra l’astrofisica galattica e quella extragalattica.

Mappa della densità del tasso di formazione stellare nella Via Lattea. I valori più alti sono rappresentati in bianco e giallo, mentre valori più moderati sono indicati in arancione, rosso, viola, blu e nero. Il centro galattico è riportato al centro dell’immagine, mentre la X in grigio nella parte inferiore indica la posizione del Sole. Sono indicati (in quattro diversi toni di verde) quattro bracci della spirale galattica.
Crediti: D. Elia et al. (2022)

Hanno contato tutti i clump, grumi di gas e polvere dispersi nel mezzo interstellare che pervade la Via Lattea, identificando quali tra essi ospitano formazione stellare e misurando la loro massa. Così, un team internazionale guidato da ricercatori dell’Istituto Nazionale di Astrofisica (INAF) ha stimato il tasso di formazione stellare della nostra galassia, ovvero quanto rapidamente produce nuove stelle: con una natalità stellare pari a circa due masse solari l’anno, la Via Lattea risulta essere una galassia “mediamente attiva”.

Il risultato si basa sulle osservazioni del piano galattico – dove risiede la maggior parte delle stelle della Via Lattea – condotte tra il 2009 e il 2013 dal telescopio spaziale Herschel dell’Agenzia Spaziale Europea nell’ambito della survey a guida italiana Hi-GAL ed è in accordo con le poche stime precedenti di questa grandezza, che facevano uso di tecniche completamente diverse. Questo lavoro permette di consolidare quanto noto finora sulla capacità della Via Lattea di convertire il gas freddo in stelle ed è stato pubblicato oggi su The Astrophysical Journal.

“In primo luogo, stimare il tasso di formazione stellare della Via Lattea ci consente di operare confronti tra essa e le altre galassie”, spiega Davide Elia, ricercatore INAF a Roma e primo autore del nuovo studio. “In secondo luogo, consente di affrontare un annoso dilemma nell’astrofisica galattica, ossia il fatto che il tasso di formazione stellare osservato, di poche masse solari per anno, risulta piuttosto esiguo rispetto alla quantità di materia disponibile. Produrre una stima aggiornata di questa quantità fornisce dunque un dato di riferimento ai colleghi che cercano di spiegare per via teorica questo inatteso comportamento”.

NELLA VIA LATTEA, NATALITÀ STELLARE NELLA MEDIA
La regione di formazione stellare Westerhout 43, a circa 20mila anni luce da noi, nella costellazione dell’Aquila, in un’immagine realizzata dal telescopio spaziale Herschel. Questa regione ospita oltre 20 “culle” di formazione stellare, evidenti in blu all’interno delle nubi di gas e polvere che pervadono l’immagine. Si stima che la regione coperta da questa immagine ospiti circa il 3,5 per cento del tasso di formazione stellare dell’intera Via Lattea.
Crediti: ESA/Herschel/PACS, SPIRE/Hi-GAL Project. Acknowledgement: UNIMAP / L. Piazzo, La Sapienza – Università di Roma; E. Schisano / G. Li Causi, IAPS/INAF, Italy

La velocità con cui una galassia produce nuove stelle, che dipende dalla massa di gas freddo disponibile e quantifica il suo grado di attività in termini di formazione stellare, non è un parametro facile da misurare: negli ultimi 45 anni sono state pubblicate solo una quindicina di stime di questa grandezza. Il team è riuscito nell’impresa partendo da un’idea di Sergio Molinari, dirigente di ricerca INAF a Roma, principal investigator di Hi-GAL e secondo autore dell’articolo. Dopo aver selezionato dal catalogo della survey, pubblicato lo scorso anno, gli oltre 150mila clump all’interno dei quali stanno nascendo nuove stelle, è stato possibile, a partire dalla loro massa e per confronto con i modelli teorici, stimare la frazione di massa che verrà convertita in stelle e il tempo necessario affinché ciò accada. Il valore trovato, ottenuto per la prima volta a partire dai dati di Herschel, rappresenta uno dei prodotti finali attesi da una importante survey del piano galattico come Hi-GAL.

“Stime di questo genere sono molto “attese” dalla comunità e quindi riteniamo di aver fissato una nuova pietra miliare nella storia delle misurazioni di questa grandezza”, chiarisce Elia.

Questo metodo ha permesso anche di mappare, come mai prima d’ora, il tasso di formazione stellare nel piano galattico, delineando il suo comportamento dal centro alla periferia della Via Lattea e il suo legame con il ruolo dei bracci di spirale. Si è stimato che l’84% del tasso di formazione stellare della Via Lattea è contenuto entro l’orbita del Sole attorno al centro galattico, e solo il 16% al di fuori di essa.

“Per le galassie esterne alla nostra, e in particolare quelle molto lontane e non osservabili in dettaglio con gli strumenti a disposizione, il tasso di formazione stellare è spesso una delle poche quantità globalmente misurabili”, aggiunge Elia. “Calcolarlo anche per la galassia in cui viviamo, la Via Lattea, ci consente di operare un confronto tra essa e le altre galassie, per capire se la nostra abbia un comportamento “usuale” o in qualche modo peculiare. La tecnica usata, oltretutto, ci consente non solo di stimare il tasso di formazione stellare globale, ma anche di mapparlo zona per zona. Naturalmente esistono varie difficoltà dovute al fatto che possiamo osservare la Via Lattea solo dal di dentro e, oltretutto, da una posizione relativamente defilata”.


 

Per ulteriori informazioni: L’articolo “The Star Formation Rate of the Milky Way as seen by Herschel” di D. Elia, S. Molinari, E. Schisano, J. D. Soler, M. Merello, D. Russeil, M. Veneziani, A. Zavagno, A. Noriega-Crespo, L. Olmi, M. Benedettini, P. Hennebelle, R. S. Klessen, S. Leurini, R. Paladini, S. Pezzuto, A. Traficante, D. J. Eden, P. G. Martin, M. Sormani, A. Coletta, T. Colman, R. Plume, Y. Maruccia, C. Mininni, S. J. Liu, è stato pubblicato online su The Astrophysical Journal.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza
Istituto Nazionale di Astrofisica – INAF