News
Ad
Ad
Ad
Tag

Università di Aarhus

Browsing

Le basi della musicalità nella connessione delle reti cerebrali 

Un nuovo studio, frutto della collaborazione tra Sapienza Università di Roma e l’Università di Aarhus in Danimarca, ha adottato un approccio innovativo nell’analisi delle basi neurobiologiche delle abilità musicali e ha dimostrato che le differenze individuali dipendono da connessioni più o meno forti tra le regioni frontali e parietali del cervello aventi un ruolo cruciale nella memoria di lavoro.

L’attitudine umana alla musica è un fenomeno affascinante e complesso che ha stimolato l’interesse scientifico per decenni. Nel tentativo di analizzare le basi neurobiologiche delle abilità musicali, molti ricercatori hanno focalizzato l’attenzione sulle differenze individuali nella struttura e nella funzione di specifiche aree cerebrali, come le aree uditive per l’analisi dei suoni. Questo approccio, mirato a correlare variazioni in regioni cerebrali isolate con la diversità delle competenze musicali nelle popolazioni umane, ha tuttavia prodotto risultati insoddisfacenti e difficili da replicare.

Un recente studio, frutto della collaborazione fra il Dipartimento di Neuroscienze umane della Sapienza Università di Roma e il Dipartimento di Medicina clinica dell’Università di Aarhus in Danimarca, pubblicato sulla rivista Nature Communications, ha adottato un approccio innovativo. Anziché concentrarsi su singole aree cerebrali, il team ha esaminato l’organizzazione della connettività tra queste regioni, ossia come le diverse parti del cervello comunicano tra loro.

Analizzando immagini cerebrali insieme a dati cognitivi e musicali provenienti da un ampio campione di oltre 200 individui, i ricercatori hanno ricostruito le reti di connettività cerebrale. Utilizzando la teoria dei grafi – un metodo matematico che studia le proprietà delle reti – hanno scoperto una relazione significativa tra le abilità musicali e l’organizzazione di una rete che collega le regioni frontali e parietali del cervello, note per il loro ruolo cruciale nella memoria di lavoro. Minime differenze nell’organizzazione del nostro cervello potrebbero manifestarsi come variazioni nel comportamento musicale. Queste differenze, amplificate attraverso la trasmissione culturale, potrebbero contribuire alla diversità delle tradizioni musicali che osserviamo nelle varie culture umane.

“Abbiamo osservato – spiega Massimo Lumaca dell’Università di Aarhus – che la capacità di una specifica regione frontale di comunicare efficacemente con altre aree della rete cerebrale è significativamente associata sia alle prestazioni nella memoria di lavoro sia alle competenze musicali. Questo suggerisce che i meccanismi neurali alla base della musicalità non sono isolati al dominio musicale, ma coinvolgono processi cognitivi generali utilizzati in vari contesti”.

“Questo é un primo passo verso un quadro multidisciplinare della musica umana – commenta Andrea Ravignani della Sapienza – Ai secoli di ricerca delle scienze umane in tema musica, si aggiungono i nostri risultati che offrono una prospettiva complementare su cosa significhi biologicamente fare o percepire la musica”.

La ricerca apre nuove prospettive nello studio sulle fondamenta biologiche della musicalità umana e sulla sua variabilità tra individui e culture. Inoltre questi risultati potrebbero avere importanti applicazioni pratiche in ambiti quali l’educazione musicale e la neuroterapia e guidare lo sviluppo di interventi mirati, attraverso tecniche di stimolazione cerebrale per potenziare le competenze musicali o migliorare le funzioni cognitive.

Riferimenti bibliografici:

Frontoparietal network topology as a neural marker of musical perceptual abilities – Lumaca, M., Keller, P.E., Baggio, G., Pando-Naude, V., Bajada, C.J., Martinez, M.A., Hansen, J.H., Ravignani, A., Joe, N., Vuust, P. and Vulić, K., Nature Communications 2024, DOI: https://doi.org/10.1038/s41467-024-52479-z

Le basi della musicalità nella connessione delle reti cerebrali, secondo un nuovo studio pubblicato su Nature Communications. Immagine di Tumisu

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

MATERIALI QUANTISTICI: SCOPERTO UN NUOVO STATO DELLA MATERIA CONTRADDISTINTO DAL FENOMENO QUANTISTICO CHIAMATO CORRENTE CHIRALE
Su Nature studio guidato da Ca’ Foscari che potrà avere applicazioni basate su nuovi dispositivi nei campi della sensoristica, biomedicale e delle rinnovabili. Scoperta possibile grazie al Sincrotrone italiano Elettra.

mercoledì 7 febbraio 2024

Interno del Sincrotrone Elettra, a Basovizza, Triestefisica quantistica corrente chirale
Interno del Sincrotrone Elettra, a Basovizza, Trieste. Foto di Betta27, in pubblico dominio

VENEZIA – Un gruppo internazionale di ricerca ha scoperto un nuovo stato della materia contraddistinto dall’esistenza di un fenomeno quantistico chiamato corrente chirale. Tali correnti sono generate su scala atomica da un movimento cooperativo di elettroni, che è all’origine della nuova fase della materia appena scoperta, a differenza dei materiali magnetici convenzionali le cui proprietà hanno origine dalla caratteristica quantistica di un elettrone nota come spin e dal loro ordinamento nel cristallo.

La chiralità è una proprietà di estrema importanza nelle scienze, per esempio è anche fondamentale per capire il DNA. Nel fenomeno quantistico scoperto la chiralità delle correnti è stata rilevata studiando un processo di interazione tra luce e materia nel quale un fotone opportunamente polarizzato è in grado di emettere un elettrone dalla superficie del materiale con uno stato di spin ben definito.

La nuova scoperta, pubblicata oggi sulla prestigiosa rivista Nature, arricchisce in modo significativo la conoscenza sui materiali quantistici, in particolar modo sulla ricerca di fasi quantistiche chirali e sui fenomeni che avvengono alla superficie dei materiali.

“La rivelazione dell’esistenza di questi stati quantistici – spiega Federico Mazzola, ricercatore in Fisica dei materiali all’Università Ca’ Foscari Venezia e leader dello studio – può aprire la strada per lo sviluppo di un nuovo tipo di elettronica che impieghi correnti chirali come portatori di informazioni al posto della carica dell’elettrone. Inoltre, tali fenomeni potrebbero avere un importante risvolto per applicazioni future basate su nuovi dispositivi optoelettronici chirali, e un grande impatto nel campo delle tecnologie quantistiche per nuovi sensori, così come nel campo biomedico ed in quello delle energie rinnovabili”.

Nato da una predizione teorica, questo studio ha verificato in modo diretto e per la prima volta l’esistenza di questo stato quantistico, fino ad ora enigmatico ed elusivo, grazie all’utilizzo del Sincrotrone italiano Elettra. Finora la conoscenza circa l’esistenza di questo fenomeno era infatti limitata a predizioni teoriche per alcuni materiali. La sua osservazione sulle superfici dei solidi lo rende estremamente interessante per lo sviluppo di nuovi dispositivi elettronici ultra sottili.

Il gruppo di ricerca, che comprende partner nazionali e internazionali tra cui l’Università Ca‘ Foscari di Venezia, l’Istituto Spin e l’Istituto Officina dei Materiali del CNR e l’Università di Salerno, ha investigato il fenomeno su un materiale già noto alla comunità scientifica per le sue proprietà elettroniche e per applicazioni di spintronica superconduttiva, ma la nuova scoperta ha un respiro più ampio, essendo molto più generale ed applicabile ad una vasta gamma di materiali quantistici.

Questi materiali stanno rivoluzionando la fisica quantistica e l’attuale sviluppo di nuove tecnologie, con proprietà che vanno ben oltre quelle descritte dalla fisica classica.

Hanno partecipato allo studio ricercatrici e ricercatori dal Dipartimento di Scienze Molecolari e Nanosistemi di Ca’ Foscari, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Istituto di Fisica Teoretica dell’Università Jagellonica (Polonia), Istituto di Fisica dell’Accademia Polacca delle Scienze, Dipartimento di Fisica “E. R. Caianiello” dell’Università di Salerno, Istituto SPIN del Consiglio Nazionale delle Ricerche, Sincrotrone SOLEIL, Interdisciplinary Nanoscience Center dell’Università di Aarhus, Dipartimento di Fisica del Politecnico di Milano, Dipartimento di Fisica dell’Università degli Studi di Milano, Dipartimento di Fisica e Astronomia Department of Physics and Astronomy dell’Università Nazionale di Seul, Seul, Korea.

Riferimenti bibliografici:

Mazzola, F., Brzezicki, W., Mercaldo, M.T. et al. Signatures of a surface spin–orbital chiral metal, Nature (2024), DOI: https://doi.org/10.1038/s41586-024-07033-8

 

Testo dall’Ufficio Comunicazione e Promozione di Ateneo Università Ca’ Foscari Venezia