News
Ad
Ad
Ad
Tag

Università della British Columbia

Browsing

CAMBIAMENTI CLIMATICI ED EVOLUZIONE DEI FIUMI ARTICI UNA “SORPRESA” DAL DISGELO DEL PERMAFROST 

Dalla ricerca pubblicata su «Nature Climate Change» emerge che una temperatura più alta modifica la vegetazione e l’infiltrazione d’acqua nelle pianure fluviali artiche, portando ad un rallentamento dell’erosione dei fiumi.

Il riscaldamento globale sta cambiando i paesaggi artici a causa del disgelo del permafrost, lo strato di terreno perennemente ghiacciato che ha ricoperto la tundra artica per millenni. Il disgelo del permafrost causa frane e smottamenti e, in casi estremi, può persino portare al prosciugamento di interi laghi. L’aspetto più allarmante però è il potenziale rilascio in atmosfera di enormi quantità di gas serra – tra cui metano, anidride carbonica e protossido di azoto – rimaste intrappolate nel permafrost per secoli. Si stima infatti che nel permafrost siano congelati 1400 miliardi di tonnellate di carbonio – una quantità quattro volte superiore a quella emessa dall’uomo dalla rivoluzione industriale ad oggi – e quasi il doppio di quella attualmente contenuta nell’atmosfera.

Emissioni significative di gas serra nelle regioni artiche sono generate dall’azione dei fiumi che, spostandosi lateralmente con velocità che possono arrivare a decine di metri all’anno, erodono terreni ricchi di permafrost. Infatti, l’acqua che scorre lungo un fiume tende a erodere sedimenti lungo le sponde concave e ri-depositarli lungo le sponde convesse, determinando così una migrazione laterale del fiume nel corso degli anni. L’indebolimento delle sponde dei fiumi a causa del disgelo del permafrost, nonché l’aumento dei flussi di acqua e sedimenti dovuti al degrado della criosfera, potrebbe favorire l’erosione delle sponde, aumentando la mobilità laterale dei fiumi e modificando ulteriormente le emissioni in atmosfera.

Ma l’aumento delle temperature e dell’umidità atmosferica che favoriscono lo scioglimento del permafrost hanno solo effetti negativi sul paesaggio artico? Per rispondere a questa domanda, un team di ricerca internazionale ha monitorato l’evoluzione dei grandi fiumi dell’Alaska e del Canada e svelato come, a seguito del forte riscaldamento della regione, i fiumi non si muovano come gli scienziati si aspettavano.

Lo studio, dal titolo “Large sinuous rivers are slowing down in a warming Arctic” e pubblicato su «Nature Climate Change», ha analizzato l’evoluzione dei 10 maggiori fiumi artici in Alaska (Stati Uniti), nello Yukon e nei Territori del Nord-Ovest (Canada) durante gli ultimi 50 anni. La ricerca, coordinata da Alessandro Ielpi dell’Università della British Columbia e frutto della collaborazione tra il Dipartimento di Geoscienze dell’Università di Padova, l’Università della British Columbia (Canada), l’Università di Stanford (USA) e l’Università Laval (Canada), rivela che una temperatura più alta modifica anche la vegetazione e i flussi d’acqua superficiali nelle pianure fluviali artiche: ciò rallenterebbe l’erosione dei fiumi e potrebbe influenzare il rilascio di gas serra causato dal disgelo del permafrost.

«Abbiamo testato l’ipotesi, ampiamente accettata dalla comunità scientifica, che il riscaldamento atmosferico e il conseguente disgelo del permafrost indeboliscano le sponde e provochino un aumento dei tassi di migrazione laterale dei fiumi artici. Per fare ciò – dice Alvise Finotello, ricercatore del Dipartimento di Geoscienze dell’Università di Padova e autore della pubblicazione – abbiamo utilizzato sequenze di immagini satellitari ad alta risoluzione che coprono un periodo temporale di circa mezzo secolo. In totale, abbiamo analizzato più di mille chilometri di sponde distribuiti lungo 10 corsi d’acqua, tutti caratterizzati da larghezze comprese tra 100 e 1000 metri, così da poter essere facilmente identificabili anche nelle immagini satellitari più datate e risalenti agli anni Settanta. Lo studio è stato possibile grazie alle metodologie di analisi da remoto che il nostro gruppo di ricerca ha sviluppato nel corso degli anni, e che possono essere applicate a sistemi fluviali in diversi contesti climatici, dalle foreste tropicali ai deserti, fino appunto agli ambienti artici. Contrariamente a quanto ci aspettavamo di osservare, i nostri risultati mostrano una sorprendente riduzione dei tassi di migrazione laterale di dei fiumi nell’ordine del 20% negli ultimi 50 anni, una stima che potrebbe addirittura essere conservativa date le metodologie di analisi che abbiamo utilizzato».

Alvise Finotello
Alvise Finotello

«Tale rallentamento è con ogni probabilità dovuto ad una serie di effetti indiretti legati al riscaldamento atmosferico e al conseguente scioglimento del permafrost. Temperature più alte favoriscono lo sviluppo della vegetazione grazie a stagioni di crescita più calde e lunghe, un processo noto come inverdimento artico. Inoltre – spiega Alessandro Ielpi dell’Università della British Columbia e già visiting scientist al Dipartimento di Geoscienze dell’Università di Padova nel 2019 – lo scioglimento del permafrost permette alle radici delle specie arbustive di penetrare più in profondità nel terreno rispetto a quanto accadeva nel passato. Radici più profonde aumentano la resistenza delle sponde e la capacità di ritenzione idrica delle piane alluvionali, riducendo così i tassi di erosione e la velocità di migrazione laterale dei fiumi».

Alessandro Ielpi
Cambiamenti climatici ed evoluzione dei fiumi artici, una “sorpresa” dal disgelo del permafrost. In foto, Alessandro Ielpi

Poiché una ridotta mobilità dei fiumi ha un impatto diretto sui flussi di gas serra rilasciati dall’erosione di terreni ricchi di permafrost, i risultati dello studio avranno importanti ramificazioni per quanto riguarda i bilanci delle emissioni globali e i cambiamenti climatici futuri ad essi connessi.

Link alla ricerca: https://doi.org/10.1038/s41558-023-01620-9

Titolo: “Large sinuous rivers are slowing downin a warming Arctic” – «Nature Climate Change» – 2023

Autori: Alessandro Ielpi, Mathieu G.A. Lapôtre, Alvise Finotello, Pascale Roy-Léveillée

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Padova.

Andromeda a 6.6 GHz: un’immagine unica della galassia sorella della Via Lattea 

galassia di Andromeda immagine
Image credits, Radio:WSRT/R. Braun (https://www.astron.nl/); Microwave:SRT/S.Fatigoni et al. (http://www.srt.inaf.it/); Infrared:NASA/Spitzer/K. Gordon (https://www.spitzer.caltech.edu/); Visible: Robert Gendler (http://www.robgendlerastropics.com/); Ultraviolet: NASA/GALEX (http://www.galex.caltech.edu/); X-ray: ESA/XMM/W. Pietsch (https://www.cosmos.esa.int/web/xmm-newton)

L’immagine ottenuta a tale frequenza, oltre a essere senza precedenti, ha permesso di definire nel dettaglio la morfologia della galassia e in particolare di individuare le regioni dove nascono le nuove stelle.

galassia di Andromeda immagine
Image credits, Radio:WSRT/R. Braun (https://www.astron.nl/); Microwave:SRT/S.Fatigoni et al. (http://www.srt.inaf.it/); Infrared:NASA/Spitzer/K. Gordon (https://www.spitzer.caltech.edu/); Visible: Robert Gendler (http://www.robgendlerastropics.com/); Ultraviolet: NASA/GALEX (http://www.galex.caltech.edu/); X-ray: ESA/XMM/W. Pietsch (https://www.cosmos.esa.int/web/xmm-newton)

I risultati dello studio, frutto della collaborazione fra la Sapienza e l’lstituto Nazionale di Astrofisica sono stati pubblicati sulla rivista Astronomy & Astrophysics.

Andromeda è una delle galassie più studiate di tutti i tempi e probabilmente anche la più conosciuta al grande pubblico per la sua prossimità e somiglianza con la nostra galassia, la Via Lattea. Infatti, una conoscenza della natura dei processi fisici che avvengono al suo interno permetterebbe di capire meglio cosa avviene nella nostra galassia, come se la guardassimo dall’esterno.

Paradossalmente, proprio ciò che finora ha ostacolato una osservazione approfondita di Andromeda nelle microonde è la sua stessa conformazione. Infatti, a causa delle sua prossimità alla Via Lattea questa ha una dimensione angolare di diversi gradi in cielo, il che la mette fuori dalla portata degli interferometri costituiti da schiere di antenne di piccola taglia. Per poter osservare Andromeda a frequenze di 6.6 GHz e superiori è indispensabile disporre di un unico radiotelescopio a disco singolo dotato di una grande area efficace.

Oggi, una collaborazione scientifica fra la Sapienza Università di Roma e l’Istituto Nazionale di Astrofisica – INAF, ha permesso di ottenere con il Sardinia Radio Telescope una immagine della galassia di Andromeda completamente nuova, a 6.6 GHz, una frequenza mai sondata prima d’ora.

L’ottima risoluzione angolare del telescopio ha permesso di definire nel dettaglio la morfologia e di ampliare così le conoscenze finora disponibili su questa galassia.

I risultati dello studio, realizzato con la partecipazione anche di numerosi enti e università internazionali come la University of British Columbia, l’Instituto de Radioastronomia y Astrofisica – UNAM in Messico, l’Instituto de Astrofisica de Canarias, l’Infrared Processing Analysis Center – IPAC in California, sono stati pubblicati sulla rivista Astronomy & Astrophysics. 

A questa frequenza (6.6 GHz) l’emissione della galassia è vicina al suo minimo, complicando la possibilità di ottenere una immagine così definita. Nonostante ciò, grazie alle 66 ore di osservazione con il Sardinia Radio Telescope e a un consistente lavoro di elaborazione dei dati, i ricercatori sono riusciti a mappare la galassia con alta sensibilità.

“Il Sardinia Radio Telescope è una grande antenna a disco singolo in grado di operare ad alte frequenze radio – sottolinea Matteo Murgia dell’INAF di Cagliari- e di produrre dati di elevatissima importanza scientifica e immagini di assoluta qualità”.

 “Combinando questa nuova immagine con quelle precedentemente acquisite – aggiunge Elia Battistelli del Dipartimento di Fisica della Sapienza e coordinatore dello studio – abbiamo fatto significativi passi in avanti nel chiarire la natura della emissione di microonde di Andromeda, distinguendo i processi fisici che avvengono in diverse regioni della galassia”

Andromeda galassia immagine

“In particolare siamo riusciti a determinare la frazione di emissione dovuta ai processi termici legati alle prime fasi della formazione di nuove stelle, e la frazione di segnale radio imputabile ai meccanismi non-termici dovuti a raggi cosmici che spiraleggiano nel campo magnetico presente nel mezzo interstellare” concludono Federico Radiconi del Dipartimento di Fisica della Sapienza e Sofia Fatigoni della Università della British Columbia.

Andromeda galassia immagine

Con i dati ottenuti, per i ricercatori è stato possibile così stimare il ritmo di formazione stellare di Andromeda e produrre una mappa dettagliata che ha messo in evidenza il disco della galassia come regione d’elezione per la nascita di nuove stelle.

Per ottenere questa immagine unica di Andromeda il team ha sviluppato e implementato dei software ad hoc che hanno permesso, tra le altre cose, di testare nuovi algoritmi per la identificazione di sorgenti a più bassa emissione nel campo di vista attorno ad Andromeda, il più vasto mai esaminato a una frequenza di 6.6 GHz: in questo modo i ricercatori hanno estratto dalla mappa un catalogo di circa un centinaio di sorgenti puntiformi, ovvero stelle, galassie e altri oggetti, sullo sfondo di Andromeda.

Andromeda galassia immagine

Riferimenti:

Study of the thermal and non-thermal emission components in M31: the Sardinia Radio Telescope view at 6.6 GHz – S. Fatigoni, F. Radiconi, E.S. Battistelli, M. Murgia, E. Carretti, P. Castangia, R. Concu, P. de Bernardis, J. Fritz, R. Genova-Santos, F. Govoni, F. Guidi, L. Lamagna, S. Masi, A. Melis, R. Paladini, F.M. Perez-Toledo, F. Piacentini, S. Poppi, R. Rebolo, J.A. Rubino-Martin, G. Surcis, A. Tarchi, V. Vacca – Astronomy & Astrophysics 2021

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma