News
Ad
Ad
Ad
Tag

The Astrophysical Journal

Browsing

SPIRALI DI PLASMA NELLO SPAZIO: LO STRUMENTO METIS A BORDO DELLA MISSIONE SOLAR ORBITER SVELA LA NATURA CONTORTA DEL VENTO SOLARE, OSSERVANDO UNA STRUTTURA RADIALE NELLA CORONA SOLARE CHE EVOLVE PER DIVERSE ORE 

Osservata per la prima volta dallo strumento Metis a bordo della missione Solar Orbiter, con una risoluzione spaziale e temporale mai raggiunta prima, una struttura radiale nella corona solare che evolve per diverse ore fino a distanze di tre raggi solari.

Immagine in luce visibile ottenuta dal coronografo Metis il 12 ottobre 2022, durante il passaggio al perielio della sonda Solar Orbiter. Al centro del campo di vista, il Sole ripreso dallo strumento EUI nella lunghezza d'onda di 174 Angstrom. Il riquadro giallo ritrae la struttura elicoidale oggetto dello studio.Crediti: Metis e EUI (Solar Orbiter/ESA). L'immagine è stata realizzata da Vincenzo Andretta (INAF di Napoli)
Immagine in luce visibile ottenuta dal coronografo Metis il 12 ottobre 2022, durante il passaggio al perielio della sonda Solar Orbiter. Al centro del campo di vista, il Sole ripreso dallo strumento EUI nella lunghezza d’onda di 174 Angstrom. Il riquadro giallo ritrae la struttura elicoidale oggetto dello studio.
Crediti: Metis e EUI (Solar Orbiter/ESA). L’immagine è stata realizzata da Vincenzo Andretta (INAF di Napoli)

Roma, 26 marzo 2025 – Il 12 ottobre 2022, durante un passaggio ravvicinato al Sole, le riprese ottenute dal coronografo italiano Metis a bordo della missione Solar Orbiter dell’Agenzia Spaziale Europea (ESA) hanno catturato un fenomeno spettacolare e inedito per livello di dettaglio: l’evoluzione, nella corona solare, di una lunga struttura radiale che si anima di un moto elicoidale persistente per diverse ore. Per la prima volta, con una risoluzione spaziale e temporale mai raggiunte prima, è stato possibile osservare direttamente l’espulsione di strutture a spirale dalla corona solare, compatibili con le torsioni magnetiche che i modelli teorici associano all’origine del vento solare.

Grazie alla combinazione di immagini in luce visibile e tecniche di elaborazione avanzate, Metis – progettato da Istituto Nazionale di Astrofisica (INAF), Università di Firenze, Università di Padova, CNR-IFN, e realizzato dall’Agenzia Spaziale Italiana (ASI) con la collaborazione dell’industria italiana – ha mostrato come il Sole possa trasferire energia e materia verso lo spazio in forma di onde e plasma intrecciati tra loro, rivelando un meccanismo fondamentale nella dinamica dell’eliosfera.

Alla guida dello studio, pubblicato oggi sul sito web della rivista The Astrophysical Journal, c’è Paolo Romano, primo ricercatore dell’INAF di Catania. Romano, che ha coordinato il lavoro di un ampio team internazionale, afferma:

“È la prima volta che osserviamo direttamente un fenomeno così esteso e duraturo, compatibile con la riconnessione magnetica in una struttura chiamata pseudostreamer. Questa osservazione offre una finestra inedita sulla fisica che sta alla base della formazione del vento solare. Questo risultato non solo conferma teorie elaborate da anni, ma fornisce finalmente un riscontro visivo diretto”.

Ma cos’è uno pseudostreamer? Si tratta di una configurazione del campo magnetico solare in cui due regioni chiuse di polarità opposta sono immerse in un ambiente di campo magnetico aperto. Nella corona, gli pseudostreamer sono le “canne del vento” del Sole: regioni da cui, in seguito a un’eruzione, possono aprirsi nuovi canali per il flusso del plasma verso lo spazio interplanetario.

Nel caso dell’evento ripreso da Metis, tutto ha avuto inizio con l’eruzione di una protuberanza polare – un gigantesco arco di plasma “appeso” ai campi magnetici nella regione nord del Sole – che ha innescato una piccola espulsione di massa coronale (CME). Ma il vero spettacolo è arrivato dopo, nella lunga fase di rilassamento che ha seguito l’eruzione. È lì che Metis ha osservato il susseguirsi di strutture filamentose, luminose e scure, che si attorcigliano lungo la linea radiale della corona, a distanze comprese tra 1,5 e 3 raggi solari.

Il team ha interpretato questi segnali come la firma visibile di un processo previsto da tempo: la riconnessione magnetica, che trasferisce il plasma e la torsione magnetica dalle regioni chiuse del campo solare verso quelle aperte, innescando onde di tipo torsionale – le onde di Alfvén – e lanciandole nello spazio.

Un tassello fondamentale è arrivato dal confronto con sofisticate simulazioni numeriche condotte da Peter Wyper, della Durham University, in collaborazione con Spiro Antiochos del NASA Goddard Space Flight Center. Le immagini sintetiche prodotte da queste simulazioni mostrano un’evoluzione sorprendentemente simile a quella ripresa da Metis: strutture elicoidali che si propagano lungo il campo aperto, con caratteristiche geometriche e dinamiche in forte accordo con i dati osservati.

“Le prestazioni uniche di Metis in termini di risoluzione spaziale e temporale aprono una nuova finestra sulla comprensione dell’origine del vento solare”, commenta Marco Romoli, dell’Università di Firenze e responsabile scientifico dello strumento Metis. “Per la prima volta vediamo l’intera evoluzione di un processo di rilascio di energia magnetica, dalle sue radici nel Sole fino all’apertura nello spazio interplanetario”.

“Le onde di Alfvén torsionali e in generale i meccanismi fisici che innescano fluttuazioni magnetiche di questo tipo – dichiara Marco Stangalini responsabile del programma Solar Orbiter per l’Agenzia Spaziale Italiana – sono da tempo ritenuti tra i principali meccanismi alla base dell’accelerazione del vento solare. Metis, grazie alla elevata cadenza temporale delle sue immagini, ci offre la possibilità di osservare direttamente questi processi fisici, consentendo anche un miglioramento della modellistica fisica ad essi associata”.

Le osservazioni di Metis non solo confermano i modelli teorici più avanzati, ma suggeriscono che lo stesso meccanismo – la riconnessione magnetica a piccola scala – possa avvenire continuamente sulla superficie del Sole, generando quei “microgetti” che alimentano il vento solare Alfvénico rivelato anche dalla sonda Parker Solar Probe.

In altre parole, quella spirale luminosa che Metis ha visto danzare nella corona potrebbe essere solo la versione gigante di un processo che avviene ovunque, continuamente, e che rende possibile l’esistenza stessa del vento solare.

Per maggiori informazioni:

Il video pubblicato dall’ESA con immagini composite del Sole che evidenziano la presenza di spirali di plasma in propagazione nella corona solare (Crediti: V. Andretta e P. Romano (INAF), ESA & NASA/Solar Orbiter/Metis/EUI).

L’articolo Metis Observations of Alfvenic Outflows Driven by Interchange Reconnection in a Pseudostreamer di P. Romano, P. Wyper, V. Andretta, S. Antiochos, G. Russano, D. Spadaro, L. Abbo, L. Contarino, A. Elmhamdi, F. Ferrente, R. Lionello, B.J. Lynch, P. MacNeice, M. Romoli, R. Ventura, N. Viall, A. Bemporad, A. Burtovoi, V. Da Deppo, Y. De Leo, S. Fineschi, F. Frassati, S. Giordano, S.L. Guglielmino, C. Grimani, P. Heinzel, G. Jerse, F. Landini, G. Naletto, M. Pancrazzi, C. Sasso, M. Stangalini, R. Susino, D. Telloni, L. Teriaca, M. Uslenghi è stato pubblicato online sulla rivista The Astrophysical Journal.

 

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica – INAF e dall’Agenzia Spaziale Italiana – ASI

VLT E ALMA CATTURANO RAFFICHE DI VENTO RELATIVISTICO DAL QUASAR DELLA GALASSIA J0923+0402, IN PIENA ATTIVITÀ

Un team di ricerca guidato dall’Istituto Nazionale di Astrofisica (INAF) e dall’Università degli studi di Trieste ha di nuovo imbrigliato i lontanissimi ed energici venti relativistici generati da un quasar lontano ma decisamente attivo (uno dei più luminosi finora scoperti). In uno studio pubblicato sulla rivista The Astrophysical Journal viene riportata la prima osservazione a diverse lunghezze d’onda dell’interazione tra buco nero e il quasar della galassia ospite durante le fasi iniziali dell’Universo, circa 13 miliardi di anni fa. Oltre all’evidenza di una tempesta di gas generata dal buco nero, gli esperti hanno scoperto per la prima volta un alone di gas che si estende ben oltre la galassia, suggerendo la presenza di materiale espulso dalla galassia stessa tramite i venti generati dal buco nero.

alone quasar della galassia J0923+0402 Alone gigante di gas freddo, esteso quasi 50 mila anni luce, rivelato attorno ad una galassia dell’Universo di circa 13 miliardi di anni fa tramite osservazioni multibanda. Questa scoperta fornisce informazioni chiave su come il gas venga espulso o catturato dalle galassie dell’Universo giovane. Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani, J. da Silva & M. Bischetti
Alone gigante di gas freddo, esteso quasi 50 mila anni luce, rivelato attorno ad una galassia dell’Universo di circa 13 miliardi di anni fa tramite osservazioni multibanda. Questa scoperta fornisce informazioni chiave su come il gas venga espulso o catturato dalle galassie dell’Universo giovane. Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani, J. da Silva & M. Bischetti

La galassia protagonista dello studio è J0923+0402, un oggetto lontanissimo da noi, per la precisione a redshift z = 6.632 (ossia la sua radiazione che osserviamo è stata emessa quando l’Universo aveva meno di un miliardo di anni) con al centro un quasar. La luce dei quasar (o quasi-stellar radio source) viene prodotta quando il materiale galattico che circonda il buco nero supermassiccio si raccoglie in un disco di accrescimento. Infatti, nell’avvicinarsi al buco nero per poi esserne inghiottita, la materia si scalda emettendo grandi quantità di radiazione brillante nella luce visibile e ultravioletta.

“L’utilizzo congiunto di osservazioni multibanda ha permesso di studiare, in un range di scale spaziali molto ampio e dalle regioni più nucleari fino al mezzo circumgalatico, il quasar più lontano con misura di vento nucleare e l’alone di gas più esteso rilevato in epoche remote (circa 50 mila anni luce)”, spiega Manuela Bischetti, prima autrice dello studio e ricercatrice presso l’INAF e l’Università degli studi di Trieste.

I dati descritti nell’articolo sono frutto della collaborazione di gruppi di ricerca che lavorano su frequenze diverse dello spettro elettromagnetico. In primis lo spettrografo X-Shooter, installato sul Very Large Telescope (VLT) dell’ESO, ha captato raffiche di materia, in gergo BAL winds (dall’inglese venti con righe di assorbimento larghe o broad absorption line), in grado di raggiungere velocità relativistiche fino a decine di migliaia di chilometri al secondo, misurandone e calcolandone le caratteristiche. Le potenti antenne cilene di ALMA (l’Atacama Large Millimeter/submillimeter Array sempre dell’ESO), ricevendo frequenze dai 242 ai 257 GHz provenienti dall’alba del Cosmo, sono state attivate per cercare la controparte nel gas freddo dei venti BAL e capire se si estendesse oltre la scala della galassia.

La ricercatrice sottolinea: “I BAL sono venti che si osservano nello spettro ultravioletto del quasar che, data la grande distanza da noi, osserviamo a lunghezze d’onda dell’ottico e vicino infrarosso. Per fare queste osservazioni abbiamo usato lo spettrografo X-Shooter del Very Large Telescope. Avevamo già scoperto il BAL di questo quasar due anni fa. Il problema è che non sapevamo quantificare quanto fosse energetico. Questo vento BAL è un vento di gas caldo (decine di migliaia di gradi) che si muove a decine di migliaia di km/s. Allo stesso tempo le osservazioni in banda millimetrica di ALMA ci hanno permesso di capire cosa stia succedendo nella galassia e attorno a essa andando a vedere cosa succede al gas freddo (qualche centinaio di gradi). Abbiamo trovato che il vento si estende anche sulla scala della galassia (ma ha delle velocità più basse, 500 km/s. Questa è una cosa aspettata, il vento decelera man mano che si espande), il che ci ha fatto pensare che questo mega alone di gas sia stato creato dal materiale che i venti hanno espulso dalla galassia”.

La posizione della sorgente energetica è stata poi “immortalata” dapprima dalla Hyper Suprime-Cam (HSC), una gigantesca fotocamera installata sul telescopio Subaru e sviluppata dall’Osservatorio Astronomico Nazionale del Giappone (National Astronomical Observatory of Japan – NAOJ), e – con una misura molto più accurata – dalla NIRCam, una fotocamera a raggi infrarossi installata sul telescopio spaziale James Webb (JWST delle agenzie spaziali NASA, ESA e CSA).

“Questo quasar verrà osservato nuovamente dal JWST in futuro per studiare meglio sia il vento che l’alone”, annuncia Bischetti.

La ricercatrice prosegue spiegando il perché di questa survey: “Ci siamo chiesti se l’attività del buco nero potesse avere un impatto sulle fasi iniziali di evoluzione delle galassie, e tramite quali meccanismi questo avvenga. Vincente è stata la combinazione di dati multibanda che vanno dall’ottico e vicino infrarosso – per misurare le proprietà del buco nero, e cosa avviene nel nucleo della galassia – fino alle osservazioni in banda millimetrica – per studiare cosa avviene all’interno e attorno alla galassia”. Le misure effettuate “sono di routine nell’Universo locale, ma questi risultati non erano mai stati ottenuti prima a redshift z>6”, aggiunge.

“Il nostro studio ci aiuta a capire come il gas venga espulso o catturato dalle galassie dell’Universo giovane e come i buchi neri crescono e possono avere un impatto sull’evoluzione delle galassie. Sappiamo che il fato delle galassie come la Via Lattea è strettamente legato a quello dei buchi neri, poiché questi possono generare tempeste galattiche in grado di spegnere la formazione di nuove stelle. Studiare le epoche primordiali ci permette di capire le condizioni iniziali dell’Universo che vediamo oggi”, conclude Bischetti.


 

Per altre informazioni:

L’articolo “Multi-phase black-hole feedback and a bright [CII] halo in a Lo-BAL quasar at z∼6.6”, di Manuela Bischetti, Hyunseop Choi, Fabrizio Fiore, Chiara Feruglio, Stefano Carniani, Valentina D’Odorico, Eduardo Bañados, Huanqing Chen, Roberto Decarli, Simona Gallerani, Julie Hlavacek-Larrondo, Samuel Lai, Karen M. Leighly, Chiara Mazzucchelli, Laurence Perreault-Levasseur, Roberta Tripodi, Fabian Walter, Feige Wang, Jinyi Yang, Maria Vittoria Zanchettin, Yongda Zhu, è stato pubblicato sulla rivista The Astrophysical Journal.

 

 

Testo e immagine dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

AMMASSO DELLA VERGINE: DISTANZE GALATTICHE MAI COSÌ PRECISE

Misurate con grande accuratezza le distanze di circa 300 galassie con il metodo cosiddetto delle fluttuazioni di brillanza superficiale

Un nuovo studio, accettato per la pubblicazione sulla rivista The Astrophysical Journal, getta nuova luce sulle caratteristiche delle galassie che costituiscono l’ammasso della Vergine e soprattutto sulla loro distanza dalla Terra, sfruttando il metodo delle fluttuazioni di brillanza superficiale (SBF, dall’acronimo inglese surface brightness fluctuations) delle galassie ospiti. Il team di ricerca, guidato dall’Istituto Nazionale di Astrofisica (INAF) e composto da scienziati di varie istituzioni internazionali, ha condotto un’analisi dettagliata su un campione di circa 300 galassie nell’ambito della Next Generation Virgo Cluster Survey (NGVS). A parte il valore intrinseco della misura di distanze, con l’accuratezza permessa dal metodo SBF, l’analisi della distribuzione 3D delle galassie, anche di quelle più deboli e quindi meno luminose, è la più precisa mai realizzata su questo ammasso di galassie.

NGVS è un programma di osservazioni realizzato con il Canada France Hawaii Telescope (CFHT), guidato da Laura Ferrarese del Centro di Rircerca di Astronomia e Astrofisica Herzberg, di Victoria (Canada), volto a esaminare un’area di 104 gradi quadrati nella regione dell’Ammasso della Vergine, ossia la più grande concentrazione di galassie nell’universo vicino. La survey copre una vasta area dell’ammasso, dalle regioni centrali sino a quelle periferiche, e viene eseguita in cinque bande ottiche a cavallo fra la radiazione ultravioletta e il vicino infrarosso.

“Le fluttuazioni di brillanza superficiale derivano dalle fluttuazioni casuali di stelle non risolte all’interno della galassia osservata”, spiega Michele Cantiello, primo autore dell’articolo e ricercatore presso INAF d’Abruzzo. “Qualitativamente, per la stima delle distanze, l’idea alla base del metodo è piuttosto semplice: una popolazione di stelle più vicina appare più ‘granulosa’ rispetto a una popolazione lontana, il cui profilo di luminosità appare invece relativamente liscio. Questo metodo risulta particolarmente efficace in galassie ellittiche molto massicce, dominate da stelle vecchie ad alta metallicità, dove l’accuratezza del metodo può essere migliore del 2% sulla distanza per singole galassie”.

Attualmente, con questo metodo, è possibile misurare distanze fino a circa 600 milioni di anni luce (potenzialmente oltre un miliardo di anni luce con il James Webb Space Telescope), e non solo per galassie ellittiche, ma anche per galassie nane, nuclei di spirale, galassie peculiari, e altri oggetti celesti.

“La forza di questo metodo risiede nel fatto che le misure di fluttuazioni di brillanza superficiale non richiedono lunghe campagne osservative, ma rivaleggiano per precisione con metodi che utilizzano le stelle variabili di tipo Cefeide e le supernove del tipo Ia”, aggiunge Cantiello.

Il catalogo, pubblicato inizialmente con 89 galassie, fa riferimento adesso a un altro campione di ben 300 oggetti, tutti nell’ammasso della Vergine. Questo agglomerato galattico è caratterizzato dalla presenza di numerose sotto-strutture, oggetto di studio da diversi decenni.

“Attraverso il nostro lavoro, siamo riusciti ad esplorare la struttura tridimensionale dell’ammasso con un livello di precisione mai raggiunto prima su un così ampio campione di galassie. Questo ammasso, il più ricco di galassie entro i 50 milioni di anni luce dal Gruppo Locale, rappresenta un punto di particolare interesse. Il nostro lavoro ha permesso di evidenziare chiaramente, ad esempio, una struttura ‘filamentosa’ che collega il nucleo principale e più vicino dell’ammasso a una struttura più distante, nota come la nube W”, aggiunge il ricercatore.

Durante la fase conclusiva dell’analisi, i ricercatori hanno notato che, esaminando le distanze delle galassie nel gruppo principale dell’ammasso (comunemente noto come sotto-ammasso A e considerato una struttura unica e “rilassata”), si individua per la prima volta un sotto-raggruppamento di galassie posizionato circa il 15% più lontano rispetto all’ammasso principale.

“In pratica, sembra che il sotto-ammasso A ospiti un ulteriore piccolo gruppo lungo la stessa linea di vista, ma leggermente più distante. Per dare un’immagine visiva, potremmo pensare al sotto-ammasso A come ad una forma ‘a pera’, con una parte più larga rivolta verso l’osservatore e una parte più stretta, che ospita questo piccolo gruppo aggiuntivo”, sottolinea Cantiello.

La misura delle distanze è di fondamentale importanza in qualsiasi campo dell’astronomia, sia che si tratti dello studio di pianeti, stelle, galassie o delle costanti del modello cosmologico. Una stima affidabile delle distanze è un prerequisito essenziale per conoscere le caratteristiche fisiche fondamentali dell’oggetto studiato, come le dimensioni fisiche, la luminosità, la massa, e così via.

Lo studio rappresenta un passo significativo verso una comprensione più approfondita della formazione e dell’evoluzione delle galassie e degli ammassi galattici.

“Da questo lavoro seguirà una serie di studi dello stesso tipo realizzati con i dati dal satellite Euclid, dal telescopio LSST e altri, che copriranno però l’intero cielo”.

Cantiello conclude: “Attualmente, la comunità mondiale che si occupa di misure di SBF è numericamente esigua, e le persone coinvolte possono essere contate sulle dita di due mani. Oggi, nella comunità italiana, con il coinvolgimento del gruppo Euclid di Roma e Firenze, insieme alla partecipazione italiana alle attività di LSST, l’interesse e la discussione su questo argomento sono decisamente più ampi”.

una visuale sull'Ammasso della Vergine con alcune delle stelle più brillanti evidenziate. Crediti per l'immagine: Sloan Digital Sky Survey, Canada-France-Hawaii Telescope and the NGVS team
Ammasso della Vergine: distanze galattiche mai così precise grazie al metodo delle fluttuazioni di brillanza superficiale. Una visuale sull’Ammasso della Vergine con alcune delle stelle più brillanti evidenziate. Crediti per l’immagine: Sloan Digital Sky Survey, Canada-France-Hawaii Telescope and the NGVS team

 

Per altre informazioni:

L’articolo “The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond)”, di Michele Cantiello, J.P. Blakeslee, L. Ferrarese, P. Cote, J.C. Roediger, G. Raimondo, E.W. Peng, S. Gwyn, P.R. Durrell, J.C. Cuillandre, è stato accettato per la pubblicazione sulla rivista The Astrophysical Journal.

Testo dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF). Immagine dal Canada France Hawaii Telescope (CFHT).

LA TEMPESTA GEOMAGNETICA PERFETTA DEL 1872. COSA SUCCEDEREBBE SE CAPITASSE OGGI?

Un team internazionale composto da fisici solari, geofisici e storici ha analizzato le osservazioni e i documenti che descrivono una tempesta geomagnetica che si è verificata nel febbraio 1872. I risultati dello studio pubblicato oggi su The Astrophysical Journal mostrano che un gruppo di macchie solari di moderate dimensioni ha innescato una delle più grandi tempeste geomagnetiche mai registrate, che ha prodotto aurore osservate anche a basse latitudini in entrambi gli emisferi terrestri. Se una tempesta simile si verificasse oggi danneggerebbe gravemente le infrastrutture tecnologiche della società moderna, arrecando ingenti perdite economiche e notevoli disagi.

Nei primi giorni di novembre sono stati osservati fenomeni atmosferici associati all’aurora boreale a latitudini sorprendentemente basse, anche nelle regioni meridionali dell’Italia e del Texas. I fenomeni osservati manifestano le relazioni Sole-Terra che si stabiliscono quando un’espulsione di massa coronale del Sole produce effetti sul campo magnetico e l’atmosfera della Terra. I fenomeni osservati lo scorso novembre, seppur spettacolari, sono stati di piccola entità rispetto a quelli prodotti da una tempesta geomagnetica che si è verificata nel febbraio 1872. Gli effetti di quella tempesta riguardarono l’intero globo terrestre, con aurore osservate anche in località prossime all’equatore, quali Bombay e Khartum. Un gruppo di ricerca internazionale composto da 22 ricercatori di 16 istituti in 9 nazioni e a cui ha partecipato anche Ilaria Ermolli dell’Istituto Nazionale di Astrofisica (INAF), ha analizzato osservazioni e documenti dell’epoca per ricostruire l’origine nell’atmosfera solare e gli effetti a terra della tempesta del febbraio 1872.

Quella tempesta danneggiò le reti telegrafiche e disturbò le comunicazioni per molte ore, ad esempio tra Bombay (Mumbai) e Aden, tramite il cavo sottomarino posizionato nell’Oceano Indiano, e nelle linee a terra tra Il Cairo e Khartum. Oggi tempeste simili produrrebbero danni e malfunzionamenti alle infrastrutture tecnologiche della società moderna, in particolare alle reti di distribuzione elettrica a terra, ai sistemi di comunicazione e navigazione, ai satelliti nello spazio, arrecando ingenti perdite economiche e notevoli disagi.

tempesta geomagnetica 1872 mappa delle aurore nel 1872
mappa delle aurore nel 1872

Alla luce delle conoscenze scientifiche attuali, i ricercatori hanno analizzato dati di macchie solari provenienti da archivi di osservazioni storiche del Sole, effettuate in Italia da Angelo Secchi, Francesco Denza e Pietro Tacchini e in Belgio da Gustave Bernaerts, al fine di ricostruire l’origine solare della tempesta. Per valutare l’evoluzione e l’intensità degli effetti a terra della tempesta hanno inoltre analizzato misure del campo magnetico terrestre registrate in varie località, tra le quali Bombay (Mumbai), Tiflis (Tbilisi) e Greenwich. Hanno infine esaminato anche centinaia di resoconti di aurore osservate durante la tempesta, conservati nelle biblioteche, negli archivi e negli osservatori di tutto il mondo.

tempesta geomagnetica 1872 disegni del Sole di Angelo Secchi
disegni del Sole di Angelo Secchi

Uno degli aspetti più interessanti emerso dallo studio riguarda l’origine solare della tempesta, individuata nell’evoluzione di un gruppo di macchie di modeste dimensioni osservato vicino al centro del disco solare. Per quanto modesto, quel gruppo di macchie è stato in grado di innescare una delle tempeste geomagnetiche più estreme della storia.

“I risultati ottenuti mostrano che la tempesta del febbraio 1872 è tra le più estreme avvenute nella storia recente. Le sue caratteristiche sono paragonabili a quelle della tempesta Carrington del settembre 1859 e della tempesta della New York Railroad nel maggio 1921”

afferma Hisashi  Hayakawa, assistente professore designato dell’Università di Nagoya e primo autore dello studio.

“Ora sappiamo che negli ultimi due secoli si sono verificate tre tempeste geomagnetiche estreme e queste sono avvenute nell’arco di soli sei decenni: la minaccia per la società moderna legata a queste tempeste è reale” aggiunge Hayakawa.

Ilaria Ermolli, ricercatrice dell’INAF a Roma e parte del team che ha condotto lo studio ricorda che

“L’INAF, con strumentazione dedicata in funzione presso vari osservatori a terra e in orbita, è molto attivo nel monitoraggio continuo del Sole, dell’eliosfera, della magnetosfera e della ionosfera terrestre, con l’obiettivo di migliorare le conoscenze dei processi che determinano lo Space Weather, cioè le caratteristiche di quegli ambienti, e sviluppare competenze e modelli utili a mitigare gli effetti di eventi simili alla tempesta del febbraio 1872. L’INAF, che coordinerà l’attività relativa allo Space Weather nel programma PNRR SPACE IT UP, conserva inoltre nei suoi archivi osservazioni storiche uniche per avanzare la conoscenza degli eventi estremi di Space Weather”.

Il Sole si sta avvicinando al massimo del Ciclo Solare 25, previsto nel 2024-2025. A seguito della maggiore attività solare nei prossimi anni sarà possibile osservare più facilmente regioni instabili nell’atmosfera del Sole e fenomeni aurorali nell’atmosfera terrestre.

Per ulteriori informazioni:

L’articolo The Extreme Space Weather Event of 1872 February: Sunspots, Magnetic Disturbance, and Auroral Displays di Hisashi Hayakawa, Edward W. Cliver, Frédéric Clette, Yusuke Ebihara, Shin Toriumi, Ilaria Ermolli, Theodosios Chatzistergos, Kentaro Hattori, Delores J. Knipp, Séan P. Blake, Gianna Cauzzi, Kevin Reardon, Philippe-A. Bourdin, Dorothea Just15, Mikhail Vokhmyanin, Keitaro Matsumoto, Yoshizumi Miyoshi, José R. Ribeiro, Ana P. Correia, David M. Willis, Matthew N. Wild, e Sam M. Silverman è stato pubblicato online sul sito web della rivista The Astrophysical Journal.

 

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)

“ESSERE (POLARIZZATI) O NON ESSERE (POLARIZZATI)?”

La missione NASA-ASI IXPE svela i misteri di una storica supernova, Tycho

supernova Tycho
Immagine composita del resto di supernova Tycho con riprese dei raggi X delle missioni IXPE e Chandra e nel visibile del progetto NASA Digital Sky Survey. Crediti: X-ray: Chandra: Nasa/Cxc/Sao, Ixpe: Nasa/Msfc/Ferrazzoli et al.; Optical: Nasa/DSS

È una missione da record quella dell’osservatorio spaziale IXPE, nata dalla collaborazione tra la NASA e l’Agenzia Spaziale Italiana (ASI). La sonda sta sfornando nuove immagini che sono una fonte inesauribile di preziosi dati per i ricercatori di tutto il mondo. Infatti è stato proprio un team internazionale di scienziati che ha scoperto nuove informazioni sui resti di una stella esplosa nel 1572. I risultati hanno fornito nuovi indizi sulle condizioni fisiche presenti nelle onde d’urto create in queste titaniche esplosioni stellari chiamate supernove.

Il resto della supernova si chiama Tycho, in onore dell’astronomo danese Tycho Brahe che notò il bagliore luminoso di questa nuova “stella” situata in direzione della costellazione di Cassiopea più di 450 anni fa. Nel nuovo studio, gli astronomi hanno utilizzato l’Imaging X-Ray Polarimetry Explorer (IXPE) per studiare i raggi X polarizzati emessi dal resto della supernova Tycho, scoprendo nuove informazioni sulla geometria dei suoi campi magnetici che sono una componente essenziale per l’accelerazione di particelle ad alta energia.

Lanciata nello spazio il 9 dicembre 2021, IXPE è una missione interamente dedicata allo studio dell’Universo attraverso la misura della polarizzazione dei raggi X. Utilizza tre telescopi installati a bordo con rivelatori finanziati dall’ASI e sviluppati da un team di scienziati dell’Istituto Nazionale di Fisica Nucleare (INFN) e dell’Istituto Nazionale di Astrofisica (INAF), con il supporto industriale di OHB-Italia.

“L’importanza del resto di supernova di Tycho va al di là del suo interesse scientifico”, dice Riccardo Ferrazzoli, ricercatore presso l’INAF di Roma. “Essendo una delle cosiddette supernove storiche, Tycho è stata osservata dall’umanità in passato e ha avuto un duraturo impatto sociale e persino artistico. È emozionante essere qui, 450 anni dopo la sua prima apparizione nel cielo, rivedere questo oggetto con occhi nuovi e imparare da esso”. Ferrazzoli è il primo autore del lavoro che appare nell’ultimo numero della rivista The Astrophysical Journal.

La polarizzazione in banda X indica agli scienziati la direzione e l’ordine del campo magnetico della radiazione proveniente da una sorgente altamente energetica come Tycho. I raggi X polarizzati sono prodotti dagli elettroni che si muovono nel campo magnetico in un processo chiamato “emissione di sincrotrone”. La direzione di polarizzazione X può essere ricondotta alla direzione dei campi magnetici nel punto in cui sono stati generati i raggi X. Queste informazioni aiutano gli scienziati ad affrontare alcune delle più grandi domande in astrofisica, come il modo in cui Tycho e altri oggetti accelerano le particelle fino a velocità prossime a quelle della luce.

IXPE ha aiutato a mappare la forma del campo magnetico di Tycho con una chiarezza e un livello di dettaglio senza precedenti. L’osservatorio ha misurato la forma del campo magnetico a scale più piccole di un parsec ossia circa 3 anni luce – una dimensione enorme in termini umani, ma tra le più piccole mai raggiunte nelle osservazioni di queste sorgenti. Queste informazioni sono preziose per comprendere come le particelle vengano accelerate sulla scia dell’onda d’urto dell’esplosione iniziale.

I ricercatori hanno anche documentato somiglianze e differenze sorprendenti tra le scoperte di IXPE fra Tycho e il resto di supernova Cassiopea A, osservato in precedenza dall’osservatorio spaziale e studiato dal suo team scientifico. La forma complessiva del campo magnetico di entrambi i resti di supernova sembra essere radiale, estendendosi verso l’esterno. Ma Tycho ha prodotto un grado di polarizzazione dei raggi X molto più elevato rispetto a Cassiopea A, suggerendo che potrebbe possedere un campo magnetico più ordinato e meno turbolento.

“Dopo un anno di osservazioni, IXPE non smette di stupirci. Abbiamo osservato solo due resti di supernova, e già con così poco è emersa una diversità. La polarimetria X sta davvero aggiungendo tasselli mancanti alla nostra comprensione degli oggetti cosmici. Questo ci ripaga dell’investimento fatto sul lavoro di ricercatori e ricercatrici, che ha reso IXPE la magnifica realtà che è oggi” commenta Laura Di Gesu, ricercatrice ASI e co-autrice dell’articolo.

La supernova Tycho è classificata come tipo I-a, evento che si verifica quando una stella nana bianca in un sistema binario fa a pezzi la sua stella compagna, catturandone parte della massa ed innescando una violenta esplosione. L’annientamento della nana bianca scaglia i detriti nello spazio ad altissime velocità. Si ritiene comunemente che tali eventi siano la fonte della maggior parte dei raggi cosmici galattici trovati nello spazio, compresi quelli che bombardano continuamente l’atmosfera terrestre.

“Il processo mediante il quale un resto di supernova diventa un gigantesco acceleratore di particelle richiede una delicata danza tra ordine e caos”,

afferma l’astrofisico Patrick Slane dell’Harvard & Smithsonian Center for Astrophysics a Cambridge nel Massachusetts, Stati Uniti.

“Sono necessari campi magnetici forti e turbolenti, ma IXPE ci sta mostrando che è coinvolta anche un’uniformità o coerenza su larga scala, che si estende fino ai siti in cui si verifica l’accelerazione”.

L’esplosione della supernova stessa rilasciò un’energia pari a quella prodotta dal Sole nel corso di 10 miliardi di anni. Quella brillantezza rese la supernova di Tycho visibile ad occhio nudo qui sulla Terra nel 1572, quando fu avvistata da Brahe e da molti altri personaggi dell’epoca, incluso potenzialmente il giovanissimo William Shakespeare, che l’avrebbe poi descritta in un passaggio “dell’Amleto” all’inizio del XVII secolo.

“La Supernova Tycho è stata la sfida perfetta per gli strumenti di IXPE” conclude Enrico Costa dell’INAF, coautore dell’articolo: “I luoghi del fronte d’urto dove i Raggi Cosmici vengono accelerati vanno individuati con un’attenta analisi dell’immagine, dominata dall’emissione non polarizzata dei filamenti termalizzati. Ciò è possibile grazie alle buone proprietà di imaging dei rivelatori e all’eccellente qualità del telescopio, entrambi eccezionali per una piccola missione di massa così ridotta. Alla fine abbiamo trovato qualcosa di molto diverso dalle previsioni e questa è la migliore ricompensa per un astronomo”.

 

Per ulteriori informazioni:

L’articolo “X-ray polarimetry reveals the magnetic field topology on sub-parsec scales in Tycho’s supernova remnant“, di Riccardo Ferrazzoli, Patrick Slane, Dmitry Prokhorov, Ping Zhou, Jacco Vink, Niccolò Bucciantini, Enrico Costa, Niccolò Di Lalla, Alessandro Di Marco, Paolo Soffitta, Martin C. Weisskopf, Kazunori Asakura, Luca Baldini, Jeremy Heyl, Philip E. Kaaret, Frédéric Marin, Tsunefumi Mizuno, C.-Y. Ng, Melissa Pesce-Rollins, Stefano Silvestri, Carmelo Sgrò, Douglas A. Swartz, Toru Tamagawa, Yi-Jung Yang, Iván Agudo, Lucio A. Antonelli, Matteo Bachetti, Wayne H. Baumgartner, Ronaldo Bellazzini, Stefano Bianchi, Stephen D. Bongiorno, Raffaella Bonino, Alessandro Brez, Fiamma Capitanio, Simone Castellano, Elisabetta Cavazzuti, Chien-Ting Chen, Stefano Ciprini, Alessandra De Rosa, Ettore Del Monte, Laura Di Gesu, Immacolata Donnarumma, Victor Doroshenko, Michal Dovčiak, Steven R. Ehlert, Teruaki Enoto, Yuri Evangelista, Sergio Fabiani, Javier A. Garcia, Shuichi Gunji, Kiyoshi Hayashida, Wataru Iwakiri, Svetlana G. Jorstad, Fabian Kislat, Vladimir Karas, Takao Kitaguchi, Jeffery J. Kolodziejczak, Henric Krawczynski, Fabio La Monaca, Luca Latronico, Ioannis Liodakis, Simone Maldera, Alberto Manfreda, Andrea Marinucci, Alan P. Marscher, Herman L. Marshall, Giorgio Matt, Ikuyuki Mitsuishi, Fabio Muleri, Michela Negro, Stephen L. O’Dell, Nicola Omodei, Chiara Oppedisano, Alessandro Papitto, George G. Pavlov, Abel L. Peirson, Matteo Perri, Pierre-Olivier Petrucci, Maura Pilia, Andrea Possenti, Juri Poutanen, Simonetta Puccetti, Brian D. Ramsey, John Rankin, Ajay Ratheesh, Oliver Roberts, Roger W. Romani, Gloria Spandre, Fabrizio Tavecchio, Roberto Taverna, Yuzuru Tawara, Allyn F. Tennant, Nicholas E. Thomas, Francesco Tombesi, Alessio Trois, Sergey S. Tsygankov, Roberto Turolla, Kinwah Wu, Fei Xie, Silvia Zane è stato pubblicato sulla rivista The Astrophysical Journal.

 

Testo e immagine dagli Uffici Stampa Istituto Nazionale di Astrofisica (INAF) e Agenzia Spaziale Italiana (ASI).

NELLA VIA LATTEA, NATALITÀ STELLARE NELLA MEDIA, MA SI POTREBBE FARE DI PIÙ

Una nuova analisi dei dati raccolti dal satellite Herschel dell’Agenzia Spaziale Europea ha stimato il tasso di formazione stellare della nostra galassia, la Via Lattea, stabilendo che in media produce nuove stelle per un ammontare pari a due volte la massa del Sole ogni anno. Questo fa della Via Lattea una galassia “mediamente attiva”. Lo studio, guidato da ricercatori dell’Istituto Nazionale di Astrofisica, getta un ponte tra l’astrofisica galattica e quella extragalattica.

Mappa della densità del tasso di formazione stellare nella Via Lattea. I valori più alti sono rappresentati in bianco e giallo, mentre valori più moderati sono indicati in arancione, rosso, viola, blu e nero. Il centro galattico è riportato al centro dell’immagine, mentre la X in grigio nella parte inferiore indica la posizione del Sole. Sono indicati (in quattro diversi toni di verde) quattro bracci della spirale galattica.
Crediti: D. Elia et al. (2022)

Hanno contato tutti i clump, grumi di gas e polvere dispersi nel mezzo interstellare che pervade la Via Lattea, identificando quali tra essi ospitano formazione stellare e misurando la loro massa. Così, un team internazionale guidato da ricercatori dell’Istituto Nazionale di Astrofisica (INAF) ha stimato il tasso di formazione stellare della nostra galassia, ovvero quanto rapidamente produce nuove stelle: con una natalità stellare pari a circa due masse solari l’anno, la Via Lattea risulta essere una galassia “mediamente attiva”.

Il risultato si basa sulle osservazioni del piano galattico – dove risiede la maggior parte delle stelle della Via Lattea – condotte tra il 2009 e il 2013 dal telescopio spaziale Herschel dell’Agenzia Spaziale Europea nell’ambito della survey a guida italiana Hi-GAL ed è in accordo con le poche stime precedenti di questa grandezza, che facevano uso di tecniche completamente diverse. Questo lavoro permette di consolidare quanto noto finora sulla capacità della Via Lattea di convertire il gas freddo in stelle ed è stato pubblicato oggi su The Astrophysical Journal.

“In primo luogo, stimare il tasso di formazione stellare della Via Lattea ci consente di operare confronti tra essa e le altre galassie”, spiega Davide Elia, ricercatore INAF a Roma e primo autore del nuovo studio. “In secondo luogo, consente di affrontare un annoso dilemma nell’astrofisica galattica, ossia il fatto che il tasso di formazione stellare osservato, di poche masse solari per anno, risulta piuttosto esiguo rispetto alla quantità di materia disponibile. Produrre una stima aggiornata di questa quantità fornisce dunque un dato di riferimento ai colleghi che cercano di spiegare per via teorica questo inatteso comportamento”.

NELLA VIA LATTEA, NATALITÀ STELLARE NELLA MEDIA
La regione di formazione stellare Westerhout 43, a circa 20mila anni luce da noi, nella costellazione dell’Aquila, in un’immagine realizzata dal telescopio spaziale Herschel. Questa regione ospita oltre 20 “culle” di formazione stellare, evidenti in blu all’interno delle nubi di gas e polvere che pervadono l’immagine. Si stima che la regione coperta da questa immagine ospiti circa il 3,5 per cento del tasso di formazione stellare dell’intera Via Lattea.
Crediti: ESA/Herschel/PACS, SPIRE/Hi-GAL Project. Acknowledgement: UNIMAP / L. Piazzo, La Sapienza – Università di Roma; E. Schisano / G. Li Causi, IAPS/INAF, Italy

La velocità con cui una galassia produce nuove stelle, che dipende dalla massa di gas freddo disponibile e quantifica il suo grado di attività in termini di formazione stellare, non è un parametro facile da misurare: negli ultimi 45 anni sono state pubblicate solo una quindicina di stime di questa grandezza. Il team è riuscito nell’impresa partendo da un’idea di Sergio Molinari, dirigente di ricerca INAF a Roma, principal investigator di Hi-GAL e secondo autore dell’articolo. Dopo aver selezionato dal catalogo della survey, pubblicato lo scorso anno, gli oltre 150mila clump all’interno dei quali stanno nascendo nuove stelle, è stato possibile, a partire dalla loro massa e per confronto con i modelli teorici, stimare la frazione di massa che verrà convertita in stelle e il tempo necessario affinché ciò accada. Il valore trovato, ottenuto per la prima volta a partire dai dati di Herschel, rappresenta uno dei prodotti finali attesi da una importante survey del piano galattico come Hi-GAL.

“Stime di questo genere sono molto “attese” dalla comunità e quindi riteniamo di aver fissato una nuova pietra miliare nella storia delle misurazioni di questa grandezza”, chiarisce Elia.

Questo metodo ha permesso anche di mappare, come mai prima d’ora, il tasso di formazione stellare nel piano galattico, delineando il suo comportamento dal centro alla periferia della Via Lattea e il suo legame con il ruolo dei bracci di spirale. Si è stimato che l’84% del tasso di formazione stellare della Via Lattea è contenuto entro l’orbita del Sole attorno al centro galattico, e solo il 16% al di fuori di essa.

“Per le galassie esterne alla nostra, e in particolare quelle molto lontane e non osservabili in dettaglio con gli strumenti a disposizione, il tasso di formazione stellare è spesso una delle poche quantità globalmente misurabili”, aggiunge Elia. “Calcolarlo anche per la galassia in cui viviamo, la Via Lattea, ci consente di operare un confronto tra essa e le altre galassie, per capire se la nostra abbia un comportamento “usuale” o in qualche modo peculiare. La tecnica usata, oltretutto, ci consente non solo di stimare il tasso di formazione stellare globale, ma anche di mapparlo zona per zona. Naturalmente esistono varie difficoltà dovute al fatto che possiamo osservare la Via Lattea solo dal di dentro e, oltretutto, da una posizione relativamente defilata”.


 

Per ulteriori informazioni: L’articolo “The Star Formation Rate of the Milky Way as seen by Herschel” di D. Elia, S. Molinari, E. Schisano, J. D. Soler, M. Merello, D. Russeil, M. Veneziani, A. Zavagno, A. Noriega-Crespo, L. Olmi, M. Benedettini, P. Hennebelle, R. S. Klessen, S. Leurini, R. Paladini, S. Pezzuto, A. Traficante, D. J. Eden, P. G. Martin, M. Sormani, A. Coletta, T. Colman, R. Plume, Y. Maruccia, C. Mininni, S. J. Liu, è stato pubblicato online su The Astrophysical Journal.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza
Istituto Nazionale di Astrofisica – INAF