News
Ad
Ad
Ad
Tag

Teresa Fornaro

Browsing

INDIVIDUATE NUOVE TRACCE DI SOSTANZE ORGANICHE NEI SOLFATI SU MARTE

Tracce di composti organici associati a solfati sono state individuate sulla superficie di Marte. A riportare la scoperta è un articolo pubblicato oggi sulla rivista Nature Astronomy, basato su dati raccolti dallo spettrometro Sherloc a bordo del rover Perseverance della NASA, in campioni prelevati nel cratere marziano Jezero. Non è possibile escludere che queste molecole organiche siano residui derivanti dalla degradazione di materia microbica antica, sebbene l’origine più probabile sia considerata abiotica, più specificamente attraverso reazioni di gas magmatici con ossidi di ferro presenti nelle rocce vulcaniche. A guidare il team è Teresa Fornaro, dell’Istituto Nazionale di Astrofisica (INAF).

Vista 3D del target Pilot Mountain, situato sulla sommità del ventaglio deltizio di Jezero crater, dove lo strumento Sherloc del rover Perseverance della NASA ha rilevato firme spettrali compatibili con idrocarburi policiclici aromatici all’interno di grani di solfato, suggerendo la preservazione di molecole organiche complesse in matrici minerali evaporitiche. Crediti: Teresa Fornaro, Andrew Alberini, Giovanni Poggiali, con modello 3D del target Pilot Mountain da: "M2020 WATSON -- Pilot Mountain, sol 874" (https://skfb.ly/oJWWx) by Mastcam-Z is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/)
Vista 3D del target Pilot Mountain, situato sulla sommità del ventaglio deltizio di Jezero crater, dove lo strumento Sherloc del rover Perseverance della NASA ha rilevato firme spettrali compatibili con idrocarburi policiclici aromatici all’interno di grani di solfato, suggerendo la preservazione di molecole organiche complesse in matrici minerali evaporitiche. Crediti: Teresa Fornaro, Andrew Alberini, Giovanni Poggiali, con modello 3D del target Pilot Mountain da: “M2020 WATSON — Pilot Mountain, sol 874” (https://skfb.ly/oJWWx) by Mastcam-Z is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/)

La ricerca di molecole organiche su Marte è centrale per capire se il pianeta abbia mai offerto condizioni favorevoli alla vita. Alcuni composti organici possono infatti rappresentare nutrienti, mentre altri, più complessi, potrebbero costituire vere e proprie biofirme. Nonostante in passato siano già state individuate molecole organiche, la loro origine e conservazione restano ancora poco chiare.

Proprio per questo il cratere Jezero, antica area deltizia che un tempo ospitava un lago e che potrebbe aver avuto un alto potenziale di abitabilità, è oggi uno dei luoghi più interessanti da studiare. Qui, lo strumento Sherloc (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) a bordo del rover Perseverance ha rilevato segnali Raman forti e complessi associati a solfati, in particolare nelle aree denominate Quartier e Pilot Mountain, rispettivamente sul fondo del cratere e sul ventaglio deltizio.

“Quando Sherloc ha rivelato forti segnali Raman nella regione spettrale degli organici nel target Quartier, ci siamo entusiasmati. Questi segnali erano associati spazialmente a solfati di magnesio e calcio, che sulla Terra mostrano grandi capacità di preservazione della materia organica”, sottolinea Teresa Fornaro. “L’associazione con i solfati era davvero un enigma affascinante e mi ha spinta a esaminare uno per uno gli 839 spettri acquisiti da Sherloc in cui sono stati rilevati solfati sul fondo del cratere e sul ventaglio deltizio di Jezero, alla ricerca di segnali potenzialmente indicativi di composti organici. In questo modo, ho scoperto che il target Pilot Mountain, situato sulla sommità del ventaglio, mostra segnali Raman simili a quelli osservati in Quartier”.

Per verificare l’ipotesi che i segnali osservati sono effettivamente dovuti a molecole organiche, il team ha condotto esperimenti nel Laboratorio di Astrobiologia dell’INAF a Firenze. Sono stati utilizzati materiali analoghi marziani e strumenti simili a Sherloc, riproducendo processi naturali in condizioni controllate. Il confronto con i dati acquisiti in situ ha permesso di consolidare l’interpretazione organica.

“Il Laboratorio di Astrobiologia di Arcetri, grazie al supporto dell’INAF e dell’Agenzia Spaziale Italiana, ha acquisito nel corso degli anni strumentazioni all’avanguardia che ci hanno permesso di ritagliarci un ruolo di rilievo nel contesto internazionale per quanto riguarda i temi dell’astrobiologia” spiega John Brucato dell’INAF, responsabile del laboratorio e coautore dello studio. “Siamo in grado di caratterizzare i composti organici presenti nei materiali che ci giungono dallo spazio, come le meteoriti o i campioni riportati a terra dalle missioni, e di simulare le condizioni e i processi chimico-fisici che possono verificarsi sulla superficie di Marte. Grazie alla partecipazione alle missioni marziane con i rover Perseverance della NASA e Rosalind Franklin dell’ESA, il nostro ambizioso obiettivo è riuscire a trovare le biofirme di una vita extraterrestre”.

“Nello specifico, abbiamo mescolato minerali solfati con molecole organiche aromatiche facilmente rilevabili da Sherloc, utilizzando metodi che imitano processi naturali potenzialmente avvenuti in passato in un ambiente acquoso a Jezero, seguiti da essiccazione. Successivamente, abbiamo analizzato i campioni preparati con strumenti analoghi a Sherloc”, spiega ancora Fornaro. “Questo metodo ci ha permesso di acquisire un set di dati di riferimento da confrontare direttamente con le osservazioni in situ, essenziali per interpretare correttamente i complessi segnali provenienti da Marte. Sulla base di queste indagini, abbiamo potuto attribuire questi segnali a idrocarburi policiclici aromatici preservati all’interno dei solfati”.

Il Cratere Jezero su Marte ripreso dalla sonda Mars Express dell'Agenzia Spaziale Europea (ESA). Crediti: ESA/DLR/FU Berlin
Il Cratere Jezero su Marte ripreso dalla sonda Mars Express dell’Agenzia Spaziale Europea (ESA). Crediti: ESA/DLR/FU Berlin

Il rilevamento in rocce vulcaniche suggerisce che gli idrocarburi policiclici aromatici possano essersi formati attraverso processi magmatici e, in seguito, essere stati mobilizzati dall’acqua e intrappolati nei solfati. I fluidi circolanti, comprese possibili acque idrotermali, avrebbero favorito il loro accumulo selettivo e la conservazione nelle rocce del cratere Jezero. Questi risultati si aggiungono a precedenti evidenze da meteoriti e dal cratere Gale, rafforzando il ruolo dei solfati nella conservazione della materia organica marziana.

“Sebbene non siano state trovate prove che questa materia organica sia di origine biologica, non è possibile escludere completamente che le sostanze organiche rilevate in queste rocce possano derivare dall’alterazione chimica di antichi composti biotici” conclude Fornaro“In attesa di un possibile futuro ritorno di questi campioni marziani per analisi più dettagliate sulla Terra, stiamo continuando a indagare sulla natura delle altre componenti di questi segnali complessi, la cui origine è ancora da chiarire del tutto”.

Riferimenti bibliografici:
L’articolo Evidence for polycyclic aromatic hydrocarbons detected in sulfates at Jezero crater by the Perseverance rover, di Teresa Fornaro, Sunanda Sharma, Ryan S. Jakubek, Giovanni Poggiali, John Robert Brucato, Rohit Bhartia, Andrew Steele, Ashley E. Murphy, Mike Tice, Mitchell D. Schulte, Kevin P. Hand, Marc D. Fries, William J. Abbey, Andrew Alberini, Daniela Alvarado-Jiménez, Kathleen C. Benison, Eve L. Berger, Sole Biancalani, Adrian J. Brown, Adrian Broz, Wayne P. Buckley, Denise K. Buckner, Aaron S. Burton, Sergei V. Bykov, Emily L. Cardarelli, Edward Cloutis, Stephanie A. Connell, Cristina Garcia-Florentino, Felipe Gómez, Nikole C. Haney, Carina Lee, Valeria Lino, Paola Manini, Francis M. McCubbin, Michelle Minitti, Richard V. Morris, Yu Yu Phua, Nicolas Randazzo, Joseph Razzell Hollis, Francesco Renzi, Sandra Siljeström, Justin I. Simon, Anushree Srivastava, Nicola Tasinato, Kyle Uckert, Roger C. Wiens, Amy J. Williams, è stato pubblicato su Nature Astronomy.

 

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

DA ATACAMA A MARTE IN CERCA DI VITA

Identificare segni inequivocabili di vita su Marte è uno degli obiettivi che spinge gli scienziati a inviare missioni spaziali sul Pianeta Rosso. Studi effettuati in uno dei luoghi più aridi del nostro pianeta – Piedra Roja, in Cile – suggeriscono che scoprire le tracce di vita su Marte sarà più difficile del previsto. Da quanto è emerso, gli attuali strumenti di rilevamento di tracce biologiche già presenti sulla superficie di Marte o in fase di progettazione, potrebbero non essere abbastanza sensibili per mettere in evidenza tracce di vita estinta. Questo è quanto mette in luce sostanzialmente uno studio appena pubblicato sulla rivista Nature Communications firmato da un team internazionale di ricercatori di istituti sparsi in tutto il mondo, tra cui l’Istituto Nazionale di Astrofisica (INAF).

deserto di Atacama vita Piedras Rojas. Crediti: Armando Azua-Bustos
Da Piedras Rojas, nel deserto di Atacama, a Marte, in cerca di vita. Crediti: Armando Azua-Bustos

Piedra Roja è una regione estremamente inospitale per la vita: si tratta del delta di un ventaglio alluvionale formatosi in condizioni aride nel deserto di Atacama in un periodo che si estende dal Cretaceo inferiore al Giurassico superiore (163-100 milioni di anni).  Il sito è caratterizzato da rocce sedimentarie ricche di ossidi di ferro, ematite e fanghi contenenti argille come vermiculite e smectiti, e quindi geologicamente analogo a Marte.  I campioni prelevati presentano un numero importante di microrganismi con un insolito alto tasso di indeterminazione filogenetica – ciò che viene definito microbioma oscuro – e un mix di “firme biologiche” di microrganismi esistenti e antichi che sono a malapena rilevati con le più moderne attrezzature di laboratorio.

Questi risultati sottolineano l’importanza di riportare a Terra i campioni provenienti da Marte, al fine di utilizzare le più potenti tecniche di rilevamento a oggi disponibili nei laboratori.

Le analisi condotte con strumenti di prova che si trovano o saranno inviati su Marte rivelano che, sebbene la mineralogia di Piedra Roja corrisponda a quella rilevata dagli strumenti a terra sul Pianeta Rosso, livelli altrettanto bassi di sostanze organiche saranno difficili, se non impossibili, da rilevare nelle rocce marziane, a seconda dello strumento e della tecnica utilizzati. I risultati di questo studio sottolineano quindi l’importanza del ritorno dei campioni sulla Terra per stabilire con certezza se la vita sia mai esistita su Marte.

Dall’analisi del DNA dei microrganismi presenti in queste rocce è emerso un dato particolarmente interessante: circa il 9% è risultato non classificabile, mentre a circa il 41% è stato possibile assegnare solo il dominio o al massimo l’ordine, mettendo in evidenza che non sono chiare le relazioni di parentela evolutiva rispetto agli organismi terrestri noti. Si ritiene possano essere specie viventi che non sono ancora state individuate altrove sulla Terra, o in alternativa comunità superstiti di specie microbiche che un tempo abitavano il delta del fiume, delle quali però non sono conosciute specie parenti attualmente esistenti.

Inoltre, sono state rivelate biofirme molecolari di vita estinta e presente che potrebbero provenire da solfobatteri e fototrofi come i cianobatteri, ma che sono in concentrazioni ai limiti della sensibilità di strumentazione d’avanguardia presente nei nostri laboratori terrestri, difficilmente rilevabili con strumenti miniaturizzati come quelli a bordo dei rover marziani.

John Brucato, astrobiologo dell’INAF di Arcetri e tra i firmatari dell’articolo, osserva: “Questo è il classico esempio di come si lavora nell’ambito dell’astrobiologia, perché si tratta di un lavoro corale, che comprende la collaborazione di molteplici istituti di ricerca sparsi in tutto il mondo, in ognuno dei quali c’è una particolare expertise. Sono stati messi insieme risultati che riguardano la geologia, la petrologia, la mineralogia, la chimica, la biologia e la planetologia proprio perché questo tipo di lavori saranno utili per lo studio di Marte. Il lavoro congiunto dei diversi gruppi di ricerca è stato coordinato in maniera tale da raggiungere nuove conoscenze attraverso diverse tecniche, per capire la natura di questi microrganismi che vivono in un ambiente completamente arido. La regione in cui sono stati fatti questi prelievi è infatti il deserto più arido in assoluto che si possa trovare sulla Terra e questi microorganismi sembrano essere davvero peculiari e molto diversi da tutti gli altri conosciuti finora, se consideriamo che la quantità di microorganismi è talmente elevata che se ne scoprono continuamente di diversi. In questo caso, si tratta di una classe veramente nuova che ha permesso di capire la loro adattabilità in condizioni estreme che le può far considerare simili a quelle marziane”.

Teresa Fornaro, ricercatrice dell’INAF di Firenze, sottolinea: “Ci siamo occupati in particolare dell’analisi dei campioni utilizzando la tecnica di spettroscopia infrarossa a trasformata di Fourier di riflettanza diffusa (Drifts). Questo ci ha permesso di analizzare i campioni in modo analogo a strumenti a bordo di missioni marziane, come lo strumento SuperCam a bordo del rover Perseverance della missione della NASA Mars 2020 e lo strumento MicrOmega che volerà sulla futura missione dell’ESA ExoMars /Rosalind Franklin. Le nostre analisi hanno confermato la composizione mineralogica di queste rocce, ma la rivelazione di composti organici è stata possibile principalmente nella regione spettrale del medio infrarosso che non corrisponde a quella investigata dagli strumenti SuperCam e MicrOmega. Nella regione spettrale di SuperCam e MicrOmega abbiamo rivelato solo una banda a 1.36 μm che potrebbe essere dovuta a vibrazioni non fondamentali degli organici. La capacità quindi di questi strumenti di rivelare organici su Marte in concentrazioni basse come quelle di Piedra Roja è limitata”.


 

Per saperne di più:

L’articolo “Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits” di Armando Azua-Bustos, Alberto G. Fairén, Carlos González-Silva, Olga Prieto-Ballesteros, Daniel Carrizo, Laura Sánchez-García, Victor Parro, Miguel Ángel Fernández-Martínez, Cristina Escudero, Victoria Muñoz-Iglesias, Maite Fernández-Sampedro, Antonio Molina, Miriam García Villadangos, Mercedes Moreno-Paz, Jacek Wierzchos, Carmen Ascaso, Teresa Fornaro, John Robert Brucato, Giovanni Poggiali, Jose Antonio Manrique, Marco Veneranda, Guillermo López-Reyes, Aurelio Sanz-Arranz, Fernando Rull, Ann M. Ollila, Roger C.Wiens, Adriana Reyes-Newell, Samuel M. Clegg, Maëva Millan, Sarah Stewar Johnson, Ophélie McIntosh, Cyril Szopa, Caroline Freissinet, Yasuhito Sekine, Keisuke Fukushi, Koki Morida, Kosuke Inoue, Hiroshi Sakuma, Elizabeth Rampe, è stato pubblicato su Nature Communications.

Testo dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF