News
Ad
Ad
Ad
Tag

teoria della relatività generale

Browsing

UN ANELLO PERFETTO PER LA MISSIONE EUCLID: NGC 65o5 È LA PRIMA LENTE GRAVITAZIONALE FORTE

La missione Euclid dell’Agenzia Spaziale Europea (ESA) ha scoperto la sua prima lente gravitazionale forte: l’immagine di una galassia lontana che appare sotto forma di anello, grazie alla forza di gravità di una galassia molto più vicina a noi (NGC 6505) che si trova, casualmente, sulla stessa linea di vista. I risultati dello studio, guidato da una collaborazione internazionale a cui partecipano ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF), dell’Università di Bologna, dell’Istituto Nazionale di Fisica Nucleare (INFN) e di molti atenei italiani, sono stati pubblicati oggi su Astronomy & Astrophysics.

Immagine della galassia NGC 6505: l'anello di Einstein creato da questa lente gravitazionale si può vedere al centro dell'immagine
Immagine della galassia NGC 6505: l’anello di Einstein creato da questa lente gravitazionale si può vedere al centro dell’immagine. Crediti: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, T. Li 

Lanciata nel luglio del 2023, Euclid sta scansionando il cielo in profondità per costruire la più precisa mappa 3D mai realizzata dell’Universo, spingendosi fino a 10 miliardi di anni fa per studiare la storia cosmica e indagare i misteri delle enigmatiche materia oscura ed energia oscura. La missione, che vede un forte contributo italiano attraverso l’Agenzia Spaziale Italiana (ASI), l’INAF, l’INFN e numerosi atenei, deve raccogliere una enorme mole di dati per raggiungere i suoi ambiziosi obiettivi scientifici. E tra questi dati si nascondono moltissime sorprese.

Una delle prime sorprese è la galassia NGC 6505, nota sin dalla fine dell’Ottocento e relativamente vicina a noi – la sua luce è partita “appena” 590 milioni di anni fa. Grazie a Euclid si è scoperto che questa galassia agisce come lente gravitazionale, deviando la luce proveniente da un’altra galassia molto più lontana, la cui luce è partita ben 4,42 miliardi di anni fa. Il risultato è un’immagine distorta di quest’ultima galassia: distorta al punto giusto da formare un anello perfetto. La ricerca è guidata da Conor O’Riordan dell’Istituto Max Plack per l’Astrofisica (Max Planck Institute for Astrophysics) di Monaco di Baviera, Germania.

Secondo la teoria della relatività generale di Einstein, i corpi dotati di massa “piegano” il tessuto dello spaziotempo che pervade l’Universo, deflettendo il percorso di qualsiasi altro oggetto nelle vicinanze, compresa la luce. Questo fenomeno, chiamato lensing gravitazionale, produce immagini distorte dei corpi celesti, proprio come quelle create da una comune lente d’ingrandimento. La missione Euclid userà il lensing gravitazionale nella sua forma “debole” per studiare l’invisibile materia oscura attraverso la sua influenza sulle immagini leggermente deformate di miliardi di galassie. In rari casi, per esempio quando galassie a diverse distanze da noi si trovano fortuitamente allineate, il lensing gravitazionale si manifesta nella sua forma più eclatante, detta “forte”, dando luogo a immagini multiple di una stessa galassia o eccezionalmente a un intero anello, detto anello di Einstein.

Dettagli dell'anello di Einstein, immagine distorta di una galassia lontana creata dalla lente gravitazionale NGC 6505.Crediti: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, T. Li
NGC 6505 è la prima lente gravitazionale forte scoperta dalla missione Euclid, lo studio è stato pubblicato su Astronomy & Astrophysics. Dettagli dell’anello di Einstein, immagine distorta di una galassia lontana creata dalla lente gravitazionale NGC 6505.
Crediti: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, T. Li

“Questa prima lente gravitazionale forte scoperta da Euclid ha caratteristiche uniche”, spiega Massimo Meneghetti, ricercatore dell’Istituto Nazionale di Astrofisica, associato all’Istituto Nazionale di Fisica Nucleare, tra gli autori del nuovo studio. “È veramente raro poter trovare una galassia relativamente prossima a noi, come questa che si trova nel catalogo NGC (New galaxy catalog, uno dei cataloghi di galassie vicine), che agisca da lente gravitazionale forte. Galassie così vicine infatti non sono generalmente in grado di focalizzare la luce di sorgenti retrostanti e formare immagini multiple, a meno che non contengano enormi quantità di materia nelle loro regioni centrali. La formazione di anelli di Einstein completi come quello di NGC 6505 è un evento ancora più raro, perché richiede che la galassia lente e quella sorgente siano perfettamente allineate con il nostro telescopio. Per questi motivi, non ci aspettiamo che Euclid osserverà molte lenti come NGC 6505. Anche considerando la vasta area di cielo che verrà coperta nel corso della missione, ci aspettiamo di poter scoprire al massimo 20 lenti come questa”.

Questa lente gravitazionale è stata scoperta per caso, in una delle prime zone di cielo osservate da Euclid, analizzando i dati della fase di verifica della missione appena due mesi dopo il lancio, dall’astronomo Bruno Altieri dell’ESA: per questo il gruppo di ricerca l’ha soprannominata “lente di Altieri”. Benché la galassia NGC 6505 sia stata osservata per la prima volta nel 1884, l’anello di Einstein scoperto con Euclid non era mai stato notato prima, dimostrando le straordinarie capacità di scoperta della missione.

La distorsione indotta dal lensing gravitazionale dipende dalla distribuzione e dalla densità di materia della galassia che agisce da lente. Per questo motivo, analizzando la distorsione è possibile misurare la sua massa sia in termini di stelle che di materia oscura. In questo caso, inoltre, visto che l’anello di Einstein della lente di Altieri ha un raggio più piccolo rispetto a quello di NGC 6505, è stato possibile studiare accuratamente la composizione e la struttura delle regioni centrali, dove la materia oscura è meno prominente, e dove la galassia è dominata dalle stelle.

“Dato che il lensing gravitazionale è il metodo più preciso per misurare la massa, combinando il modello dell’anello di Einstein e della distribuzione di stelle della galassia, abbiamo potuto misurare che la frazione di massa composta da materia oscura al centro della lente è soltanto l’11 per cento”, spiega la co-autrice Giulia Despali, ricercatrice al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna, associata dell’INAF e dell’INFN. “Ricordiamo che la materia oscura costituisce circa l’85 per cento della materia totale del nostro Universo, quindi le regioni centrali delle galassie sono veramente particolari. Abbiamo infatti misurato le proprietà della galassia con estrema precisione, scoprendo una struttura complessa che varia con la distanza dal centro e stimando la funzione di massa iniziale, e cioè la proporzione di stelle di piccola e grande massa. Le nuove osservazioni di Euclid ci aiutano quindi a capire di più sia sull’Universo oscuro che sui processi di formazione ed evoluzione delle galassie”.

Se questa scoperta è avvenuta per caso, all’interno della collaborazione Euclid c’è un vasto gruppo dedicato alla ricerca di lenti gravitazionali, e ci si aspetta di trovarne oltre centomila nei 14mila gradi quadrati di cielo che saranno osservati nel corso della missione. Queste indagini sfruttano, da un lato, strumenti sofisticati come l’intelligenza artificiale, e dall’altro anche la citizen science, coinvolgendo il pubblico non esperto nell’ispezione visuale delle immagini, in collaborazione con la piattaforma Zooniverse. L’obiettivo è quello di realizzare una mappa dettagliata della distribuzione della materia, sia quella visibile che quella oscura, nelle galassie e negli ammassi di galassie a varie distanze dall’Universo locale per poter così studiare la natura e l’evoluzione nel tempo della materia oscura e dell’energia oscura.

Testo e immagini dagli Uffici Stampa Istituto Nazionale di Astrofisica – INAF, Alma Mater Studiorum – Università di Bologna

LISA e la scoperta di nuovi campi fondamentali 

Su Nature Astronomy lo studio pubblicato da Andrea Maselli, ricercatore del GSSI, associato INFN, e dai colleghi della Scuola Internazionale Superiore di Studi Avanzati, dell’Università di Nottingham e della Sapienza di Roma, che suggerisce un nuovo approccio per rilevare con grande accuratezza nuovi campi fondamentali e verificare la teoria della relatività generale grazie a LISA, il rivelatore di onde gravitazionali spaziale, che partirà come missione ESA – NASA nel 2037.

LISA campi fondamentali
Foto 1: Rappresentazione artistica della deformazione spazio-tempo di un EMRI. Un piccolo buco nero che ruota intorno ad un buco nero supermassiccio. (Credits: NASA)

La Relatività Generale di Einstein è la teoria corretta per i fenomeni gravitazionali? È possibile sfruttare tali fenomeni per scoprire nuovi campi fondamentali?

Il lavoro uscito oggi su Nature Astronomy, condotto da Andrea Maselli, ricercatore del GSSI, associato INFN, assieme a ricercatori della Scuola Internazionale Superiore di Studi Avanzati, dell’Università di Nottingham, e della Sapienza Università di Roma, mostra che le osservazioni di onde gravitazionali da parte dell’interferometro spaziale LISA (Laser Interferometer Space Antenna) saranno in grado di rivelare la presenza di nuovi campi fondamentali con grande accuratezza.

Il campo gravitazionale è, secondo la Relatività Generale, espressione della curvatura dello spazio-tempo creata dalla presenza di massa o energia che altera lo spazio circostante.

Nuovi campi fondamentali associati alla gravità, in particolare quelli scalari, sono alla base di modelli teorici sviluppati per spiegare una grande varietà di scenari fisici. Potrebbero ad esempio fornire indizi sull’espansione accelerata dell’Universo o sulla materia oscura, oppure essere manifestazioni a bassa energia di una descrizione consistente e completa della gravità e delle particelle elementari.

Le osservazioni di oggetti astrofisici caratterizzati da campi gravitazionali deboli e piccole curvature spazio-temporali non hanno mostrato finora alcuna indicazione dell’esistenza di questi campi. Tuttavia, diversi modelli suggeriscono che deviazioni dalla Relatività Generale, o interazioni tra la gravità e nuovi campi, siano più rilevanti quando la curvatura dello spazio-tempo è molto grande. Per questa ragione, l’osservazione di onde gravitazionali – che ha aperto una nuova finestra sul regime di campo gravitazionale forte – rappresenta un’opportunità unica per scoprire nuovi campi fondamentali.

LISA campi fondamentali
Foto 2: EMRI: Sezione di un’orbita percorsa da un oggetto stellare attorno a un buco nero massivo (Credits: N. Franchini)

LISA, il rivelatore di onde gravitazionali spaziale sviluppato per osservare onde gravitazionali da sorgenti astrofisiche, permetterà di studiare nuove famiglie di sorgenti astrofisiche, diverse da quelle osservate da Virgo e LIGO, come gli Extreme Mass Ratio Inspirals (EMRI).

“Gli EMRI, sistemi binari in cui un oggetto compatto con massa stellare – un buco nero o una stella di neutroni – orbita attorno ad un buco nero milioni di volte più massivo del nostro Sole, sono infatti tra le sorgenti che ci si aspetta di osservare con LISA, e rappresentano un’arena preziosissima per studiare il regime di campo forte della gravità. – spiega Andrea Maselli, primo autore del paper – Il corpo più piccolo di un EMRI compie decine di migliaia di cicli orbitali prima di cadere nel buco nero supermassivo, emettendo così segnali di lunga durata che permettono di misurare anche le più piccole deviazioni dalle predizioni della teoria di Einstein e del modello standard delle particelle”.

Gli autori dello studio hanno sviluppato uno nuovo approccio per modellizzare il segnale emesso dagli EMRI, studiando per la prima volta in modo rigoroso se e come LISA possa scoprire l’esistenza di campi scalari accoppiati all’interazione gravitazionale, e misurare la carica scalare, una grandezza che quantifica il campo associato al corpo più piccolo del sistema binario.

Il nuovo approccio sviluppato è “agnostico” rispetto alla teoria che predice l’esistenza del campo scalare, poichè non dipende dall’origine della carica o dalla natura dell’oggetto compatto.  L’analisi mostra anche come future misure della carica scalare potranno essere tradotte in vincoli molto stringenti sulle deviazioni della Relatività Generale o del Modello Standard.

LISA, che partirà come missione ESA-NASA nel 2037, opererà in orbita attorno al Sole, in una costellazione di tre satelliti distanti milioni di chilometri l’uno dall’altro, osservando onde gravitazionali emesse a bassa frequenza, in una banda non accessibile agli interferometri terrestri a causa del rumore ambientale. Lo spettro visibile di LISA aprirà una nuova finestra sull’evoluzione degli oggetti compatti in una grande varietà di sistemi astrofisici del nostro Universo.

Riferimenti:

Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals – Andrea Maselli, Nicola Franchini, Leonardo Gualtieri, Thomas P. Sotiriou, Susanna Barsanti, Paolo Pani – Nature Astronomy DOI: https://doi.org/10.1038/s41550-021-01589-5

 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Il primo sorvolo di Mercurio della missione BepiColombo

Il 2 ottobre all’1.35 ora italiana la sonda spaziale passerà a 200 km dalla superficie del pianeta. A bordo un esperimento, il Mercury Orbiter Radioscience Experiment (MORE), sviluppato dal team guidato da Luciano Iess della Sapienza, che permetterà di determinare la gravità e l’orbita del corpo celeste più vicino al sole.

La sonda spaziale BepiColombo, lanciata il 20 ottobre 2018 dal Centro spaziale di Kourou nella Guyana francese, è in viaggio verso Mercurio, la sua destinazione finale. Il primo dei sei sorvoli del pianeta più vicino al Sole avverrà il 2 ottobre 2021 all’1.35 ora italiana (23.15 del primo ottobre, ora di Greenwich), quando la sonda passerà a 200 km dalla superficie.

BepiColombo ha già effettuato con successo un sorvolo della Terra, il 10 aprile 2020, e due sorvoli di Venere, il 20 ottobre 2020 e il 10 agosto 2021. Questi incontri ravvicinati hanno lo scopo primario di modificare la traiettoria della sonda, facendole acquistare velocità sufficiente per la cattura finale da parte della gravità di Mercurio, prevista per la fine del 2025. Ma allo stesso tempo sono anche un primo assaggio di quanto verrà poi osservato con assai maggiore dettaglio nella missione primaria, quando BepiColombo orbiterà attorno al pianeta per due anni.

Mercurio BepiColombo

BepiColombo nasce dalla collaborazione tra l’ESA (Agenzia Spaziale Europea) e la JAXA (Agenzia Spaziale Giapponese). Prende il nome dallo scienziato italiano Giuseppe (da cui Bepi) Colombo, che diede un contributo fondamentale allo studio di Mercurio. La sonda è composta da tre moduli principali: il modulo MPO (Mercury Planetary Orbiter) e il modulo MTM (Mercury Transfer Module) sviluppati dall’ESA, il terzo modulo MMO (Mercury Magnetospheric Orbiter) sviluppato dalla JAXA. Con la sofisticata strumentazione scientifica di bordo, BepiColombo vuole rispondere ad alcune domande fondamentali per comprendere la formazione e l’evoluzione del pianeta: qual è la sua struttura interna, dal nucleo alla superficie? Quali sono gli elementi e i minerali di cui è composto? Qual è l’origine del campo magnetico e come interagisce con il vento solare, un flusso di particelle alla velocità di 400 km/s?

Mercurio BepiColombo

Quattro dei sedici esperimenti scientifici di BepiColombo sono italiani. Tra questi, l’esperimento di radioscienza, MORE (Mercury Orbiter Radioscience Experiment), è guidato dal professor Luciano Iess del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, coadiuvato da un gruppo internazionale di scienziati e ingegneri. In Italia, collaborano le Università di Pisa e Bologna, l’Istituto Nazionale di Astrofisica (INAF) e l’Università d’Annunzio. Gli obiettivi scientifici di MORE sono la determinazione della struttura interna di Mercurio attraverso misure di precisione della gravità del pianeta, la ricerca di violazioni della teoria della relatività generale di Einstein e la dimostrazione in volo di un nuovo e avanzato sistema di navigazione spaziale.

Il primo sorvolo di Mercurio della missione BepiColombo. Immagine ESA

Mercurio è il pianeta più vicino al Sole, dove la curvatura dello spazio-tempo, prevista da Einstein nel 1915, è più accentuata. Tale curvatura produce “anomalie” nell’orbita del pianeta (tra cui la famosa precessione del perielio) e nella propagazione della luce e dei segnali radio (compresa la deflessione osservata durante l’eclisse solare del 1919). Circa un secolo dopo, MORE consentirà di verificare a un livello di precisione mai raggiunto finora se la relatività einsteniana rimane una teoria valida della gravità. I primi esperimenti di fisica fondamentale sono già cominciati nel marzo 2021 e proseguiranno fino alla fine della missione, nel 2027.

Mercurio BepiColombo

MORE si prefigge di raggiungere tali obiettivi scientifici tramite l’utilizzo di segnali radio scambiati tra grandi antenne di terra (34 m di diametro) ubicate in Argentina e California, e uno strumento di bordo, il KaT (Ka-band Transponder), realizzato da Thales Alenia Space Italia con la collaborazione del team di Sapienza e finanziato dall’Agenzia spaziale italiana. L’avanzato sistema radio renderà possibile misurare la distanza della sonda con precisione di pochi centimetri e la sua velocità a livello di alcuni millesimi di millimetro al secondo. I dati di un altro strumento italiano (Italian Spring Accelerometer – ISA) saranno utilizzati per misurare tutte quelle accelerazioni della sonda non riconducibili alla gravità, permettendo di ottenere una determinazione più precisa del moto della sonda.

Il ruolo fondamentale che svolge l’esperimento MORE all’interno della missione BepiColombo conferma Sapienza come un polo centrale della ricerca per le tematiche di struttura ed evoluzione planetaria, fisica fondamentale e sistemi di navigazione interplanetaria.

 

Testo, foto e video dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma