News
Ad
Ad
Ad
Tag

telescopio spaziale Hubble

Browsing

COME NASCONO GLI AMMASSI STELLARI NUCLEARI: ECCO LE PRIME IMMAGINI, LA PRIMA OSSERVAZIONE DEGLI STESSI IN FASE DI FUSIONE

Pubblicato oggi su Nature un nuovo studio scientifico riporta la prima osservazione diretta di ammassi stellari in fase di fusione nella regione nucleare di cinque galassie nane. Questa scoperta conferma la plausibilità – a lungo dibattuta tra gli esperti – di tale modalità di formazione per i nuclei delle galassie di piccole dimensioni (ossia composte da un numero di stelle variabile da poche migliaia ad alcuni miliardi). Il gruppo di ricercatrici e ricercatori è stato guidato dall’Università di Oulu (Finlandia) e ha visto la partecipazione anche dell’Istituto Nazionale di Astrofisica (INAF).

Esempio di due galassie nane dai campioni della survey MATLAS che mostrano le prove della fusione tra ammassi stellari. Crediti: NASA, ESA, Mélina Poulain, e STScI
Esempio di due galassie nane dai campioni della survey MATLAS che mostrano le prove della fusione tra ammassi stellari. Crediti: NASA, ESA, Mélina Poulain, e STScI

Rispetto alla nostra Galassia sono piccoli puntini nel cielo notturno, ma le galassie nane sono il tipo di galassia più abbondante nell’Universo. Con un numero di stelle circa 100 volte inferiore rispetto alla Via Lattea (o anche meno), le galassie nane rappresentano i mattoni fondamentali delle galassie più massicce. Comprendere la loro formazione è quindi essenziale per studiare l’evoluzione delle galassie.

Rebecca Habas, assegnista di ricerca INAF e tra le autrici dell’articolo su Nature, spiega: “Riportiamo la scoperta fortuita di cinque galassie nane che sembrano essere nel processo di formazione di un ammasso stellare nucleare (nuclear star cluster in inglese). Cosa sono? Si tratta di  gruppi di stelle gravitazionalmente legate, situati al centro (o molto vicino al centro) di molte galassie, inclusa la nostra Via Lattea. Questi ammassi contengono milioni, fino a centinaia di milioni di stelle, e rappresentano i sistemi stellari più densi conosciuti nell’Universo”.

Il mistero irrisolto è però la comprensione di come si formino, quando e perché a volte non si formino affatto.

“In che modo la loro presenza (o assenza) influenza l’evoluzione delle galassie ospiti? Per questo motivo, gli ammassi stellari nucleari sono oggetti di grande interesse scientifico”, aggiunge Habas, esperta di galassie diffuse, fluttuazioni della brillantezza superficiale e misure di distanza stellari.

Simulazione della fusione di ammassi stellari. Crediti: Rory Smith
Simulazione della fusione di ammassi stellari. Crediti: Rory Smith

Una scoperta casuale, quindi, perché il team – parte della collaborazione internazionale MATLAS (Mass Assembly of early-Type GaLAxies with their fine Structures) – era impegnato in osservazioni di galassie nane con il telescopio spaziale Hubble quando ha notato alcune galassie con un ammasso stellare nucleare dall’aspetto insolito. In alcune di esse si osservavano un paio di ammassi stellari vicini tra loro, mentre in altre era presente una struttura simile a un debole flusso di luce collegato all’ammasso stellare nucleare.

“Siamo rimasti sorpresi dai flussi di luce visibili vicino al centro delle galassie, poiché non era mai stato osservato nulla di simile in passato”, commenta Mélina Poulain, prima autrice dell’articolo e ricercatrice presso l’università finlandese.

Habas aggiunge: “Abbiamo identificato diverse galassie con strutture insolite al loro centro. Per esempio, alcuni sistemi sembrano avere più ammassi stellari nucleari o ammassi globulari multipli vicino al centro (le loro proprietà sono parzialmente sovrapposte, rendendo difficile distinguerli con certezza), e altre invece mostrano deboli scie di luce che sembrano provenire da questi oggetti”.

“Abbiamo combinato le nostre osservazioni con simulazioni di fusioni di ammassi globulari, che suggeriscono che queste strutture corrispondono esattamente a ciò che ci si aspetterebbe di vedere durante, o poco dopo, la fusione di due ammassi globulari. Pertanto, riteniamo di aver identificato le prime immagini della formazione di un ammasso stellare nucleare tramite la fusione di ammassi globulari”.

Le simulazioni indicano che fusioni di ammassi globulari come questa avvengono su scale temporali relativamente brevi (qualche milione di anni, che è effettivamente poco per i processi astronomici), rendendo molto improbabile catturare immagini di questo evento in corso. Tuttavia, è possibile compensare questa rarità con un campione statistico più ampio.

“Abbiamo osservato qualche decina di galassie con Hubble, un campione piccolo, ma queste galassie sono state selezionate da un catalogo iniziale di 2210 galassie nane, permettendoci di individuare gli oggetti più interessanti”,

afferma la giovane ricercatrice. Il campione originale di galassie era stato identificato utilizzando immagini ottiche profonde del telescopio Canada-France-Hawaii (CFHT).

Conclude Habas: “Ci aspettiamo che le future indagini del cielo, come quelle pianificate dal telescopio spaziale Euclid e dall’Osservatorio Vera C. Rubin, identificheranno ancora più esempi di ammassi stellari nucleari in via di formazione”.


Riferimenti bibliografici:

L’articolo “Evidence of star cluster migration and merger in dwarf galaxies”, di Mélina Poulain, Rory Smith, Pierre-Alain Duc, Francine R. Marleau, Rebecca Habas, Patrick R. Durrell, Jeremy Fensch, Sungsoon Lim, Oliver Muller, Sanjaya Paudel e Ruben Sanchez-Janssen, è stato pubblicato sulla rivista Nature.

Testo e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica – INAF

IL BUCO NERO DI MASSA INTERMEDIA DELL’AMMASSO STELLARE  OMEGA CENTAURI: L’ANELLO MANCANTE NELL’EVOLUZIONE DEI BUCHI NERI MASSICCI

Sette nuove stelle in rapido movimento identificate al centro dell’ammasso stellare Omega Centauri forniscono una solida prova dell’esistenza di un buco nero centrale nell’ammasso stesso. Con una massa di almeno 8200 masse solari, questo buco nero è il miglior candidato per appartenere alla classe di buchi neri chiamata di massa intermedia. Gli astronomi credono che questo tipo di buchi neri si formi nelle prime fasi dell’evoluzione delle galassie. Questa scoperta, a cui partecipa anche l’INAF, rafforza l’ipotesi che Omega Centauri sia la regione centrale di una galassia inglobata nella Via Lattea miliardi di anni fa. Spogliato delle sue stelle esterne, il nucleo galattico da allora è rimasto “congelato nel tempo”.

Osservando Omega Centauri con un piccolo telescopio, non appare diversa dagli altri cosiddetti ammassi globulari: una spettacolare collezione sferica di stelle, così densa verso il centro che diventa impossibile distinguere le singole stelle. Questo nuovo studio, guidato da Maximilian Häberle (Istituto Max Planck per l’astronomia di Heidelberg, MPIA) e a cui partecipa anche Mattia Libralato dell’INAF  – Istituto Nazionale di Astrofisica (e precedentemente in forza all’AURA per l’Agenzia Spaziale Europea presso lo Space Telescope Science Institute), porta nuova luce su questo oggetto celeste, confermando ciò che gli astronomi ipotizzavano da tempo: Omega Centauri ospita un buco nero centrale. Il buco nero sembra essere l'”anello mancante” tra i suoi simili di taglia stellare, che hanno masse comprese tra una e alcune decine di masse solari, e quelli supermassicci, con masse di milioni o miliardi di volte quelle del Sole, situati al centro delle galassie. Omega Centauri sembra essere il nucleo di una piccola galassia separata la cui evoluzione è stata interrotta quando è stata inglobata dalla Via Lattea.

This image presents three panels. The first image shows the global cluster Omega Centauri, appearing as a highly dense and numerous collection of shining stars. The second image shows the details of the central region of this cluster, with a closer view of the individual stars. The third image shows the location of the IMBH candidate in the cluster.
Una immagine che mostra, da sinistra, progressivi ingrandimenti  sull’ammasso stellare Omega Centauri. Nel pannello di destra, la zona circolare indica la regione dove dovrebbe essere situato il buco nero di massa intermedia. La barretta orizzontale in basso a destra del riquadro indica una lunghezza in scala di 0,1 anni luce. Crediti: ESA/Hubble & NASA, M. Häberle (MPIA)

Mattia Libralato, coautore dell’articolo appena pubblicato sulla rivista Nature che descrive la scoperta, commenta:

“L’esistenza di buchi neri di massa intermedia al centro degli ammassi globulari è un argomento molto controverso perché questi oggetti sono elusivi ed è difficile dedurre la loro presenza. In questa analisi sono state trovate sette stelle vicino al centro di Omega Centauri la cui velocità molto elevata e posizione sono compatibili con la presenza di un buco nero con una massa di almeno 8.200 volte quella del Sole al centro dell’ammasso. La scoperta di queste stelle è una delle prove più solide che sia stata raccolta dell’esistenza di un buco nero di massa intermedia”.

L’attuale teoria dell’evoluzione delle galassie ipotizza che le prime galassie dovessero avere buchi neri centrali di dimensioni intermedie, che sarebbero poi cresciuti nel tempo man mano che quelle galassie si evolvevano, inglobando galassie più piccole (come ha fatto la nostra Via Lattea) o fondendosi con galassie più grandi. Tali buchi neri di medie dimensioni sono notoriamente difficili da trovare: le galassie come la nostra Via Lattea hanno superato quella fase, contenendo ora buchi neri centrali molto più grandi, mentre le galassie nane invece sono difficili da osservare e rendono estremamente complicato rilevare i loro buchi neri centrali con la tecnologia attuale. Sebbene esistano candidati promettenti, fino ad ora non è mai stato rilevato un buco nero di massa intermedia.

Nadine Neumayer, capo gruppo al MPIA, e Anil Seth, dell’Università dello Utah, nel 2019 hanno dato vita ad un progetto di ricerca mirato a migliorare la comprensione della storia della formazione di Omega Centauri: identificare le stelle in rapido movimento attorno al buco nero centrale per poi misurarne la massa. Maximilian Häberle, uno studente di dottorato al MPIA, ha guidato il lavoro creando un enorme catalogo con i movimenti delle stelle in Omega Centauri e misurando le velocità di 1,4 milioni di stelle. Per questo lavoro, sono state utilizzate oltre 500 immagini di Hubble dell’ammasso, prodotte con lo scopo di calibrare gli strumenti del satellite, ma che con le loro visualizzazioni ripetute di Omega Centauri, si sono rivelate il set ideale di dati.

The central region of a globular cluster is shown, appearing as a highly dense and numerous collection of shining stars. Some stars show blue and orange glowing features around them.
Credit: ESA/Hubble & NASA, M. Häberle (MPIA)

“Cercare stelle in rapido movimento e documentarne il movimento era come cercare il proverbiale ago in un pagliaio”

 dice Häberle, che ha trovato ben sette stelle in rapido movimento in una piccola regione al centro di Omega Centauri dove non vi è nessun oggetto visibile. Tali stelle, con diverse velocità e direzioni di movimento, hanno permesso a Häberle e ai suoi colleghi di determinare la presenza di una massa centrale in Omega Centauri, di almeno 8.200 masse solari.

A una distanza di circa 18.000 anni luce, questo è l’esempio del più vicino buco nero massiccio ad oggi conosciuto. Infatti il buco nero supermassiccio nel centro della Via Lattea è a una distanza di circa 27.000 anni luce da noi. Questa rilevazione non solo promette di risolvere il dibattito decennale sul buco nero di massa intermedia in Omega Centauri, ma fornisce, in generale, anche il miglior candidato, fino ad ora, della rilevazione di un buco nero di massa intermedia.

“Negli ultimi 10 anni, l’astrometria, e in particolare lo studio della cinematica interna degli ammassi globulari, ha vissuto un vero e proprio “Rinascimento” grazie alla missione Gaia” ricorda Libralato. “Tuttavia, regioni affollate come il centro degli ammassi globulari sono difficili, e in alcuni casi impossibili, da studiare anche con Gaia, lasciando Hubble come unica risorsa. Il lavoro di Maximilian dimostra che anche dopo più di 30 anni dal suo lancio, il telescopio Hubble è uno dei migliori strumenti per ottenere astrometria di alta precisione in regioni estremamente affollate come il centro degli ammassi globulari”.

Neumayer, Häberle e i loro colleghi ora intendono studiare il centro di Omega Centauri con ancora maggiore dettaglio. Hanno già ottenuto l’approvazione per misurare il movimento delle stelle in rapido movimento utilizzando il Telescopio spaziale James Webb. L’utilizzo successivo di strumenti attualmente in costruzione, come GRAVITY+ al VLT dell’ESO e MICADO all’Extremely Large Telescope, potrebbe portare a misure più accurate delle posizioni delle stelle di quelle ottenute con le immagini di Hubble. L’obiettivo a lungo termine è determinare come le stelle accelerano e come curvano le loro orbite. Seguire le orbite intere delle stelle, come per le osservazioni del buco nero al centro della Via Lattea che hanno portato al premio Nobel, è un progetto per le future generazioni di astronomi. Infatti, la piccola massa del buco nero per Omega Centauri si traduce in tempi scala dieci volte più grandi rispetto a quelli utilizzati per lo studio del centro della Via Lattea, ovvero periodi orbitali di più di cento anni.

Per ulteriori informazioni:

L’articolo “Fast-moving stars around an intermediate-mass black hole in ω Centauri”, di Häberle M., Anil Seth, Andrea Bellini, Mattia Libralato, Holger Baumgardt, Matthew Whitaker, Mayte Alfaro Cuello, Jay Anderson, Nikolay Kacharov, Sebastian Kamann, Antonino Milone, Renuka Pechetti e Glenn van de Ven è stato pubblicato online sulla rivista Nature.

 

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza
Istituto Nazionale di Astrofisica – INAF.

Il segnale UV e ottico che sfida i modelli delle pulsar

Osservati, per la prima volta da una pulsar al millisecondo in fase “esplosiva”, lampi in banda ottica e ultravioletta oltre alle pulsazioni nei raggi X tipiche di questi corpi celesti. La scoperta, guidata da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica e basata anche su osservazioni effettuate con il Telescopio Nazionale Galileo, mette alla prova i modelli teorici che descrivono il comportamento delle pulsar in sistemi binari

Illustrazione di una pulsar in un sistema binario. Crediti: ESA

Si chiama SAX J1808.4-3658 ed è una pulsar, ovvero una stella di neutroni – quel che resta di stelle più massicce del Sole – che emette radiazione attraverso due coni di luce e ruota molto rapidamente, facendo sì che l’emissione appaia pulsante, come quella un faro. Ma non finisce qui. È una pulsar “al millisecondo”, cioè ruota ancora più veloce della maggior parte delle pulsar, completando ben 401 giri su sé stessa in un solo secondo, e per di più si trova in un sistema binario, orbitando insieme a un’altra stella alla quale sottrae regolarmente materia. Ma è anche un oggetto celeste decisamente incostante. Alterna infatti fasi di “quiescenza” a periodi più attivi o “esplosivi” ogni 3–4 anni: l’esplosione più recente, la nona dalla sua scoperta nel 1996, è stata registrata tra agosto e settembre 2019.

Durante la fase esplosiva, la luminosità di SAX J1808.4-3658 – ad oggi si conoscono una ventina di sistemi simili ad essa – aumenta significativamente sia in banda ottica e ultravioletta (UV) che nei raggi X, e inizia l’accrescimento: l’altra stella trasferisce materia e momento angolare alla pulsar attraverso un disco che si estende fino a pochi chilometri dalla sua superficie. Questo processo accelera la rotazione della pulsar e convoglia la materia in accrescimento sui suoi poli, dando origine a un segnale pulsato nei raggi X.

“Quando è stato annunciato l’inizio della nuova esplosione di SAX J1808.4-3658, ad agosto 2019, ci siamo chiesti se, oltre alle pulsazioni in banda X, il sistema potesse mostrare anche pulsazioni in banda ottica e ultravioletta”, spiega Arianna Miraval Zanon, dottoranda presso l’Università dell’Insubria e associata all’INAF di Milano, co-prima autrice insieme a Filippo Ambrosino, ricercatore all’INAF di Roma, dell’articolo pubblicato oggi sulla rivista Nature Astronomy. E la curiosità è stata premiata. “Per la prima volta abbiamo osservato nello stesso sistema, durante la fase esplosiva, pulsazioni con lo stesso periodo di rotazione della pulsar in tre bande diverse: X, UV e ottica”, aggiunge Ambrosino.

Fino ad allora, non erano mai state osservate pulsazioni in banda UV da pulsar in sistemi binari. In banda ottica, invece, le pulsazioni erano state viste soltanto in 5 pulsar isolate e in un solo sistema binario, PSR J1023+0038, quest’ultimo in un lavoro firmato dallo stesso Ambrosino e diversi co-autori del nuovo studio; si tratta però di un sistema diverso, che si trova in una fase intermedia, e che quindi somiglia a SAX J1808.4-3658 solo in parte.

UV ottico pulsar SAX J1808.4-3658
Lo strumento SiFAP2 installato al Telescopio Nazionale Galileo. Crediti: A. Ghedina

Lo studio si basa su osservazioni in banda UV effettuate con il telescopio spaziale Hubble e in banda ottica con il Telescopio Nazionale Galileo (TNG) dell’INAF a La Palma (Isole Canarie), equipaggiato con il fotometro ottico ad altissima risoluzione temporale e accuratezza assoluta SiFAP2, cruciale per la scoperta delle pulsazioni ottiche da questo sistema. Il primo prototipo dello strumento, SiFAP, era stato ideato e sviluppato da Franco Meddi insieme a Filippo Ambrosino, con l’ausilio di Paolo Cretaro al Dipartimento di Fisica della Sapienza Università di Roma, e già nel 2017 aveva permesso di rivelare le pulsazioni ottiche dall’altra pulsar menzionata, PSR J1023+0038. Grazie a successive collaborazioni con INAF, con lo stesso TNG e con l’Università di Catania (in particolare con Francesco Leone), lo strumento è stato migliorato prendendo il nome di SiFAP2, una nuova versione che consentirà di effettuare anche studi polarimetrici grazie ad un nuovo sistema di cubi polarizzatori.

Ma le nuove osservazioni pongono un dilemma: la luminosità delle pulsazioni misurate in banda ottica e UV è troppo elevata per essere spiegata, usando i modelli teorici esistenti, dall’accrescimento di materia sulla pulsar. “Il segnale ottico e UV pulsato potrebbe quindi essere prodotto nella magnetosfera della pulsar, o poco lontano da essa, ed essere alimentato dalla rotazione del dipolo magnetico della pulsar”, dice Miraval Zanon. “Se così fosse, potrebbero convivere o alternarsi molto rapidamente due meccanismi fisici diversi: da una parte l’accrescimento produrrebbe gli impulsi in banda X; dall’altra la pulsar, alimentata dalla sua stessa rotazione, riuscirebbe a generare impulsi in banda ottica e UV. Questo scenario sfida gli attuali modelli teorici secondo cui un meccanismo esclude l’altro”.

Un altro aspetto interessante sollevato dal nuovo studio è uno sfasamento significativo – pari a poco più di mezzo periodo di rotazione – osservato tra la pulsazione X e quella ottica. “Questo ha dato adito a diverse interpretazioni”, sottolinea Ambrosino, “la più suggestiva delle quali è senza dubbio la possibilità che l’emissione X pulsata provenga da uno dei due poli magnetici della pulsar, mentre la pulsazione ottica sia generata nel polo opposto. Questa è solo un’ipotesi, non possiamo dire nulla di veramente definitivo prima di avere una statistica più ampia sull’emissione ottica di queste sorgenti”.

In futuro, il gruppo ha in programma nuove osservazioni di questo sistema durante la fase quiescente con lo strumento SiFAP2, per indagare l’eventuale presenza di pulsazioni ottiche una volta diminuita la luminosità: questo aiuterà a comprendere meglio il meccanismo che le genera durante la fase esplosiva. Un piano sul più lungo termine, già approvato, prevede lo studio della prossima sorgente, tra le venti simili a questa, che entrerà in fase esplosiva, effettuando osservazioni simultanee nei raggi X con l’osservatorio dell’ESA XMM-Newton, in UV con Hubble e in ottico con il TNG.

Lo studio è stato pubblicato sulla rivista Nature Astronomy nell’articolo Optical and ultraviolet pulsed emission from an accreting millisecond pulsar di F. Ambrosino, A. Miraval Zanon, A. Papitto, F. Coti Zelati, S. Campana, P. D’Avanzo, L. Stella, T. Di Salvo, L. Burderi, P. Casella, A. Sanna, D. de Martino, M. Cadelano, A. Ghedina, F. Leone, F. Meddi, P. Cretaro, M. C. Baglio, E. Poretti, R. P. Mignani, D. F. Torres, G. L. Israel, M. Cecconi, D. M. Russell, M. D. Gonzalez Gomez, A. L. Riverol Rodriguez, H. Perez Ventura, M. Hernandez Diaz, J. J. San Juan, D. M. Bramich, F. Lewis

https://doi.org/10.1038/s41550-021-01308-0

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma