News
Ad
Ad
Ad
Tag

Taira Giordani

Browsing

Fisica quantistica: ora è possibile certificare le proprietà dei dispositivi ottici integrati programmabili

Un team di ricerca internazionale ha identificato nuove tecniche per quantificare le risorse computazionali fornite dalla meccanica quantistica nei dispositivi ottici.  Gli esperimenti, condotti presso il gruppo Quantum Lab del Dipartimento della Sapienza di Roma, hanno coinvolto anche l’Istituto di fotonica e nanotecnologie del Cnr. I risultati, pubblicati sulla rivista Science Advances, serviranno a implementare le future applicazioni nei campi della metrologia, crittografia e della computazione.

Foto del chip integrato, insieme all'elettronica di controllo. Speciali stati quantistici della luce, ovvero stati a singolo fotone, vengono inviati nel chip e manipolati attraverso le guide d'onda, in modo da certificare le proprietà quantistiche considerando porzioni sempre più grandi del chip
Foto del chip integrato, insieme all’elettronica di controllo. Speciali stati quantistici della luce, ovvero stati a singolo fotone, vengono inviati nel chip e manipolati attraverso le guide d’onda, in modo da certificare le proprietà quantistiche considerando porzioni sempre più grandi del chip

Man mano che i nuovi dispositivi quantistici crescono in dimensioni e complessità, risulta fondamentale sviluppare metodi affidabili per certificare e individuare le risorse quantistiche che forniscono un effettivo vantaggio computazionale, al fine di delineare il modo migliore di utilizzarle.

In un nuovo studio, pubblicato sulla rivista Science Advances è stato mostrato proprio come certificare le varie proprietà quantistiche di dispositivi fotonici integrati di crescente complessità.

Il risultato è frutto di una collaborazione scientifica di lunga data nel campo della certificazione quantistica tra la Sapienza di Roma, l’Istituto di fotonica e nanotecnologie del Consiglio nazionale delle ricerche di Milano (Cnr-Ifn), il Politecnico di Milano e il Laboratorio Internazionale di Nanotecnologia iberica (INL).

I circuiti ottici integrati programmabili sono tra le principali piattaforme candidate per l’elaborazione dell’informazione quantistica basata sui qubits. Essi infatti consentono da un lato di effettuare esperimenti finalizzati a verificare le proprietà fondamentali della meccanica quantistica, dall’altro di implementare i dispositivi per future applicazioni nel campo della metrologia, crittografia e della computazione.

Team Quantum Lab della Sapienza Università di Roma
Team Quantum Lab della Sapienza Università di Roma

Gli esperimenti, guidati da Fabio Sciarrino della Sapienza e condotti presso il gruppo Quantum Lab dell’Ateneo, hanno certificato la presenza di caratteristiche quantistiche autentiche come la contestualità e la coerenza in un circuito ottico integrato programmabile.

La metodologia seguita è stata quella sviluppata dal team teorico guidato da Ernesto Galvão dell’INL in Portogallo.

“L’utilizzo di un chip fotonico completamente integrato e programmabile migliora la precisione e la coerenza del processo di caratterizzazione, offrendo il potenziale per l’implementazione di questi dispositivi in applicazioni pratiche”, commenta il Dott. Roberto Osellame, direttore di ricerca presso CNR-IFN.

“Il nostro lavoro – aggiunge Taira Giordani, ricercatrice presso la Sapienza e membro del team Quantum Lab – è la prima applicazione sperimentale di tale tecnica per quantificare le risorse computazionali fornite dalla meccanica quantistica nei dispositivi ottici”.

Le tecniche sviluppate hanno permesso però di verificare anche il vantaggio quantistico in applicazioni pratiche come il quantum imaging. I sistemi di imaging, grazie a determinate correlazioni quantistiche, permettono di ottenere una risoluzione che supera i limiti dell’ottica classica, trovando applicazione in diversi campi della metrologia e dei sensori.

“I nostri risultati – conclude Fabio Sciarrino, capogruppo del Quantum Lab della Sapienza – motivano la ricerca per nuove tecniche per lo studio delle risorse non classiche. Ci aspettiamo che questo lavoro stimolerà la ricerca sulla futura certificazione di dispositivi ottici che sfruttano stati quantistici della luce sempre più complessi”.

Questa linea di ricerca è supportata dal National Quantum Science and Technology Institute (NQSTI), il finanziamento italiano per la ricerca fondamentale sulle tecnologie quantistiche, dall’ERC Advanced Grant QU-BOSS, dal progetto Horizon Europe FoQaCiA e dalla FCT – Fundação para a Ciência e a Tecnologia del Portogallo.

Rappresentazione del chip fotonico integrato programmabile utilizzato utilizzato nel lavoro. Le guide d'onda vengono create mediante la scrittura laser a femtosecondo sul vetro. Le operazioni del circuito sono controllate applicando correnti su vari resistori disposti sulla superficie del chip
ora è possibile certificare le proprietà dei dispositivi ottici integrati programmabili. Rappresentazione del chip fotonico integrato programmabile utilizzato utilizzato nel lavoro. Le guide d’onda vengono create mediante la scrittura laser a femtosecondo sul vetro. Le operazioni del circuito sono controllate applicando correnti su vari resistori disposti sulla superficie del chip

Riferimenti bibliografici:

Experimental certification of contextuality, coherence, and dimension in a programmable universal photonic processor – Giordani T, Wagner R, Esposito C, Camillini A, Hoch F, Carvacho G, Pentangelo C, Ceccarelli F, Piacentini S, Crespi A, Spagnolo N, Osellame R, Galvão EF, Sciarrino F. – Sci Adv. 2023. doi: 10.1126/sciadv.adj4249

 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

I giovani ricercatori del QuantumLab della Sapienza, coordinato da Fabio Sciarrino, hanno realizzato la prima rete quantistica in grado di generare correlazioni non-locali tra cinque laboratori distinti. L’articolo è stato pubblicato su Nature Communications

rete quantistica Quantum Lab

Dodici giovanissimi ricercatori, cinque laboratori da coordinare e una rete da formare.

Così l’esperienza interdisciplinare del gruppo del Quantum Information Lab della Sapienza, guidato da Fabio Sciarrino e composto da un laureando magistrale, sei studenti di dottorato, un tecnico elettronico, un assegnista e un ricercatore, con il supporto del fisico brasiliano Rafael Chaves, ha portato alla realizzazione di una rete quantistica formata da cinque diversi nodi, che ha permesso di mostrare correlazioni quantistiche condivise da più di tre parti distinte, il massimo mai raggiunto finora.

Le tecnologie basate sulle leggi della meccanica quantistica sono sempre più diffuse ed i potenziali vantaggi legati al loro utilizzo sono ormai riconosciuti in tutti i campi, dalla comunicazione alla protezione dei dati. “Ciononostante – commenta Gonzalo Carvacho, assegnista senior del QuantumLab – test di non-località multipartita sono stati limitati ai casi più semplici. Qui andiamo oltre, verso la realizzazione di reti quantistiche più grandi”.

Nello studio pubblicato su Nature Communications, il team ha scelto infatti una configurazione “a stella”, in cui si ha un nodo centrale che condivide uno stato quantistico correlato con quattro nodi periferici, tutti collocati in laboratori diversi, muniti di una sorgente di stati quantistici e da una stazione di misura.

Qui ogni nodo genera uno stato formato da due sottosistemi correlati e, attraverso una fibra lunga 30 metri, ne manda uno a quello centrale. A questo punto, sia il nodo centrale sia quelli periferici effettuano misure sul loro sistema, sincronizzandosi attraverso un sofisticato software realizzato ad hoc per l’esperimento.

“Infine – spiega Davide Poderini, studente di dottorato – abbiamo verificato che tra le sorgenti degli stati quantistici non ci fosse una comunicazione “classica”, bensì solo correlazioni quantistiche (o non classiche). Usando dei dispositivi totalmente diversi e scorrelati nei vari laboratori, possiamo assicurare, con un elevato livello di confidenza, la loro indipendenza”.

“Questo risultato – aggiunge Iris Agresti, da poco assegnista junior del QuantumLab – è un passo avanti significativo verso la realizzazione di una rete quantistica di grandi dimensioni, perché offre un prototipo scalabile, che va oltre gli scenari più semplici realizzati finora”.

I risultati dell’esperimento, per sua natura versatile, costituiscono un elemento chiave per nuovi studi su topologie diverse di rete capaci di generare correlazioni non-classiche di vari tipi, aprendo scenari inesplorati. Inoltre, l’apparato progettato potrà anche essere utilizzato per la realizzazione di nuovi protocolli di comunicazione e di crittografia.

“Il prossimo passo – conclude Fabio Sciarrino – sarà combinare le aree di esperienza del gruppo nella fotonica integrata e nella realizzazione di stati quantistici condivisi da più parti, per nuove applicazioni che si trovino all’intersezione tra la comunicazione e la computazione quantistica”.

Referimenti:

 

Experimental violation of n-locality in a star quantum network – Davide Poderini, Iris Agresti, Guglielmo Marchese, Emanuele Polino, Taira Giordani, Alessia Suprano, Mauro Valeri, Giorgio Milani, Nicolò Spagnolo, Gonzalo Carvacho, Rafael Chaves and Fabio Sciarrino – Nature Communications volume 11, Article number: 2467 (2020) DOI 10.1038/s41467-020-16189-6

rete quantistica Quantum Lab

Testo e immagini dall’Ufficio Stampa Università La Sapienza Roma