News
Ad
Ad
Ad
Tag

sonda Juno

Browsing

Sotto la superficie di Io non c’è un oceano di magma liquido, ma un mantello solido

Un nuovo studio pubblicato su Nature, basato sui dati di gravità raccolti dalla sonda Juno della NASA durante dei sorvoli della luna Io di Giove esclude la presenza di un oceano di magma sotto la sua superficie

Sotto la superficie di Io, il satellite Galileiano più vicino a Giove, non c’è un oceano di magma liquido come si era pensato fino ad oggi, ma un mantello solido. A rivelarlo è uno studio pubblicato su Nature realizzato anche grazie al lavoro di diversi ricercatori della Sapienza Università di Roma e dell’Università di Bologna.

La ricerca, coordinata da Ryan Park del Jet Propulsion Laboratory dalla NASA, ha sfruttato i dati collezionati dalla sonda Juno della NASA durante due recenti sorvoli ravvicinati della luna insieme ai dati storici della missione Galileo, la sonda della NASA che tra il 1995 e il 2003 ha esplorato il sistema di Giove.

“La combinazione dei dati acquisiti da Juno con quelli collezionati dalla sonda Galileo oltre 20 anni fa – spiega Daniele Durante, ricercatore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – ha permesso di migliorare la stima della risposta mareale di Io, che fornisce indicazioni dirette della deformabilità della struttura interna della luna.”

Io è un satellite unico nel sistema di Giove grazie alla sua intensa attività vulcanica, che lo rende l’oggetto geologicamente più attivo del sistema solare. Per decenni si è creduto che l’enorme attrazione gravitazionale di Giove fosse sufficiente a creare un oceano di magma sotto la sua superficie, che alimentasse i suoi vulcani. Le misure di induzione magnetica condotte dalla sonda Galileo avevano infatti suggerito la presenza di un oceano di magma sotto la superficie di questa luna.

Questo scenario è stato però rivisto a seguito delle nuove osservazioni realizzate da Juno, la sonda che dal 2016 sta esplorando Giove e, più recentemente, le sue lune. Juno ha sorvolato per due volte Io a circa 1.500 chilometri di quota, raccogliendo dati del campo gravitazionale della luna molto accurati. I risultati dell’analisi mostrano una risposta gravitazionale della luna alle forze di marea piuttosto modesta.

“La risposta della luna alle forze di marea esercitate da Giove è risultata piuttosto bassa – afferma Luciano Iess, professore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – indicazione dell’assenza di un oceano di magma vicino alla superficie e, piuttosto, della presenza di un mantello solido profondo al suo interno”.

Lo studio è stato pubblicato su Nature con il titolo “Io’s tidal response precludes a shallow magma ocean”. Per Sapienza Università di Roma hanno partecipato Daniele Durante e Luciano Iess, in collaborazione con i colleghi dell’Università di Bologna, Luis Gomez Casajus, Marco Zannoni, Andrea Magnanini e Paolo Tortora. Le attività di ricerca sono state realizzate nell’ambito di un accordo finanziato dall’Agenzia Spaziale Italiana.

Struttura interna di Io. La nuova misura della deformazione mareale suggerisce che la luna non abbia un oceano globale di magma vicino la superficie ma è coerente con la presenza di un mantello più solido (sfumature di verde), con una quantità significativa di materiale fuso (in giallo e arancione) che ricopre un nucleo liquido (in rosso/nero). Illustrazione di Sofia Shen (JPL/Caltech).
Struttura interna di Io. La nuova misura della deformazione mareale suggerisce che la luna non abbia un oceano globale di magma vicino la superficie ma è coerente con la presenza di un mantello più solido (sfumature di verde), con una quantità significativa di materiale fuso (in giallo e arancione) che ricopre un nucleo liquido (in rosso/nero). Illustrazione di Sofia Shen (JPL/Caltech).

Riferimenti bibliografici:

Park, R.S., Jacobson, R.A., Gomez Casajus, L. et al. Io’s tidal response precludes a shallow magma ocean, Nature (2024), DOI: https://doi.org/10.1038/s41586-024-08442-5

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

LA PIÙ ACCURATA MAPPA VULCANICA DEL SATELLITE GIOVIANO IO

Grazie ai dati raccolti dallo stumento JIRAM a bordo della missione NASA Juno, un team di ricerca a guida INAF ha identificato 242 “hot spot”, ovvero zone calde che indicano la presenza di vulcani, di cui 23 non osservati precedentemente sul satellite più interno di Giove. I dati indicano una maggiore concentrazione di punti vulcanici caldi nelle regioni polari rispetto alle latitudini intermedie. Si tratta della mappatura migliore mai ottenuta da remoto.

La più accurata mappa vulcanica del satellite gioviano Io
La più accurata mappa vulcanica del satellite gioviano Io, grazie allo strumento JIRAM. Insieme di figure chiamate “super immagini”, ottenute calcolando la media di più osservazioni JIRAM acquisite in un lasso di tempo di pochi minuti. Questo approccio riduce la possibilità di falsi positivi. Le immagini ritraggono gli hot spot di Io nel corso degli anni. Crediti: F. Zambon et al. / Geophysical Research Letters

L’infernale luna Io (la più interna fra quelle regolari del sistema gioviano) è il corpo vulcanicamente più attivo dell’intero Sistema solare. Un recente articolo pubblicato sulla rivista Geophysical Research Letters (GRL) fa nuova luce sulle proprietà vulcaniche di questo satellite, in particolare grazie a nuovi dati raccolti da JIRAM (Jovian InfraRed Auroral Mapper), uno degli otto strumenti a bordo della sonda NASA Juno. Finanziato dall’Agenzia Spaziale Italiana (ASI) e realizzato da Leonardo, lo strumento vede la responsabilità scientifica dell’Istituto Nazionale di Astrofisica (INAF). L’articolo delinea la mappa più recente della distribuzione degli hot spot (punti vulcanici caldi) di Io prodotta con dati JIRAM da remoto alla migliore scala spaziale attualmente disponibile. I ricercatori, guidati dall’INAF, sono riusciti a ottenere, inoltre, una migliore copertura delle regioni di Io prossime ai poli rispetto al passato.

Francesca Zambon, membro del gruppo JIRAM, ricercatrice dell’INAF di Roma e prima autrice dell’articolo pubblicato su GRL, spiega:

“La mappa degli hot spot presentata nel nostro lavoro è la più aggiornata tra quelle basate su dati di telerilevamento spaziale. Analizzando le immagini infrarosse acquisite da JIRAM, abbiamo individuato 242 punti vulcanici caldi, di cui 23 non presenti in altri cataloghi e localizzati nella maggior parte dei casi nelle regioni polari, grazie alla peculiare orbita della sonda Juno”.

La ricercatrice sottolinea: “Il confronto tra il nostro studio e il catalogo più recente rivela che JIRAM ha osservato l’82% degli hot spot più potenti precedentemente individuati, e la metà degli hot spot di potenza intermedia, dimostrando quindi che questi sono ancora attivi. Tuttavia, JIRAM ha rilevato solo circa la metà degli hot spot più deboli precedentemente segnalati. Le spiegazioni sono due: o la risoluzione di JIRAM non è sufficiente per rilevare questi deboli punti caldi, oppure l’attività di questi centri effusivi potrebbe essersi sbiadita o interrotta”.

Quando la sonda spaziale NASA Voyager 1 avvicinò Io, il più interno dei satelliti galileiani di Giove, nel marzo 1979, le immagini inviate alla Terra rivelarono che la sua superficie appariva punteggiata da una moltitudine di centri vulcanici caldi, con imponenti colate laviche e pennacchi alti fino a qualche centinaio chilometri. In seguito, l’esplorazione condotta soprattutto dalla missione NASA Galileo chiarì che questi punti caldi sono moltissimi: alcune centinaia, molti dei quali con attività pressoché costante.

 

La luna Io mostra molti centri vulcanici, innescati principalmente dalle potenti forze mareali esercitate da Giove. Lo studio dell’attività vulcanica di questo satellite gioviano è la chiave per comprendere la natura dei suoi processi geologici e la sua evoluzione interna. La distribuzione degli hot spot e la loro variabilità spaziale e temporale sono importanti per definire le caratteristiche del riscaldamento delle maree e i meccanismi attraverso i quali il calore fuoriesce dall’interno.

 

Alessandro Mura, leader del gruppo JIRAM e ricercatore dell’INAF di Roma, prosegue:

“Uno dei maggiori punti aperti nella comprensione della struttura interna di Io è se l’attività vulcanica osservabile in superficie sia dovuta a un oceano di magma globale presente nel mantello, oppure a camere magmatiche che si insinuano nella crosta a minori profondità. Le osservazioni di JIRAM sono tuttora in corso, e le future immagini a maggiore definizione saranno fondamentali per meglio evidenziare i punti caldi deboli e per chiarire la struttura interna di Io”.

Giuseppe Sindoni, responsabile del progetto JIRAM per l’ASI, aggiunge:

“La superficie della luna gioviana Io è molto dinamica, con vulcani ed emissioni laviche in continua evoluzione, come dimostrato da questo importante risultato ottenuto dal nostro strumento JIRAM e dall’ottimo lavoro svolto dal team. L’estensione della missione Juno fino al 2025 ci permetterà di monitorare questa evoluzione e di comprendere meglio i processi fisici che guidano un corpo così complesso e dalle fattezze simili alla nostra Terra primordiale, anche in previsione di future missioni dedicate.”

La sonda Juno è stata lanciata ad agosto 2011 dalla base di Cape Canaveral ed è in orbita attorno a Giove dal luglio del 2016. Da allora ha percorso 235 milioni di chilometri. Juno è tuttora la sonda in orbita planetaria più distante della NASA, e continuerà le sue indagini sul pianeta più grande del Sistema solare fino a settembre 2025.

Alla fine dell’anno, il 30 dicembre 2023, durante la 57ma orbita attorno a Giove, la sonda Juno effettuerà il suo passaggio più ravvicinato in assoluto a Io, a una distanza minima di circa 4800 chilometri. Le missioni Europa Clipper della NASA e JUICE di ESA, che opereranno nel sistema di Giove negli anni 2030, non potranno mai avvicinarsi a simili distanze. Sarà quindi cruciale che Juno possa condurre osservazioni anche con JIRAM durante tutte le prossime opportunità previste nel 2023.


 

Per ulteriori informazioni:

L’articolo “Io hot spot distribution detected by Juno/JIRAM”, di F. Zambon, A. Mura, R. M. C. Lopes, J. Rathbun, F. Tosi, R. Sordini, R. Noschese, M. Ciarniello, A. Cicchetti, A. Adriani, L. Agostini, G. Filacchione, D. Grassi, G. Piccioni, C. Plainaki, G. Sindoni, D. Turrini, S. Brooks, C. Hansen-Koharcheck, S. Bolton, è stato pubblicato su Geophysical Research Letters.

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF sulla mappa vulcanica di Io prodotta dallo strumento JIRAM

Giove: pianeta in costante movimento

Le misure di gravità effettuate dalla sonda Juno della Nasa hanno rivelato che le masse gassose di Giove si muovono, provocando sulla superficie del pianeta oscillazioni simili a onde marine con ampiezze tra i 15 e gli 80 metri. I risultati dello studio, coordinato dal Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, sono stati pubblicati sulla rivista Nature Communications.

Giove pianeta in costante movimento
Rappresentazione artistica della sonda Juno attorno a Giove, pianeta in costante movimento. Crediti: Nasa/JPL-Caltech

Giove è un pianeta gassoso e le sue masse interne possono muoversi, generando oscillazioni simili per certi versi alle onde marine e ai terremoti terrestri. Questi spostamenti di masse provocano piccole variazioni della gravità del pianeta.

Un nuovo studio, coordinato da Daniele Durante del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, ha rivelato, grazie alle misurazioni della sonda spaziale Juno della Nasa, come il campo di gravità di Giove sia perturbato dalle oscillazioni interne, ovvero vere e proprie onde che si propagano da una parte all’altra del pianeta. In particolare, gli strumenti altamente sensibili della sonda spaziale in orbita intorno al pianeta hanno permesso di misurare i periodi di oscillazione dei modi più energetici, che risultano dell’ordine dei 15 minuti e che generano onde di ampiezza compresa tra i 15 e gli 80 metri sulla superficie.

I risultati della ricerca, realizzata da un team internazionale e finanziata in parte dall’Agenzia spaziale italiana, sono stati pubblicati sulla prestigiosa rivista scientifica Nature Communications.

Giove pianeta in costante movimento
Rappresentazione artistica di Juno in orbita intorno a Giove, pianeta in costante movimento. Essendo il pianeta un gigante gassoso, il suo campo di gravità è perturbato dalla presenza di oscillazioni interne, che muovono grandi quantità di massa. Crediti, immagine di Juno: NASA/JPL-Caltech.
Crediti, immagine di Giove: NASA, ESA, A. Simon (Goddard Space Flight Center), and M. H. Wong (University of California, Berkeley) and the OPAL team

La missione della sonda Juno, in orbita intorno a Giove dal 5 luglio 2016, ha come obiettivi principali lo studio dei processi di formazione della struttura interna, del campo magnetico e dell’atmosfera del pianeta. Giove, che da solo ha una massa due volte e mezzo maggiore rispetto a quella di tutti gli altri pianeti messi assieme, è composto quasi esclusivamente da idrogeno ed elio. Il suo interno non è direttamente osservabile e per comprenderne la struttura più profonda si ricorre a misurazioni accurate del campo gravitazionale, espressione della distribuzione delle masse interne del pianeta.

“Circa ogni 52 giorni – spiega Daniele Durante, primo autore dello studio – la sonda Juno compie passaggi ravvicinati del pianeta, a circa 4,000 km dal limite delle nubi. A queste distanze Juno subisce piccole ma misurabili accelerazioni esercitate dalle oscillazioni interne del pianeta”.

Lo strumento di radio scienza KaT (Ka-Band Translator, realizzato da Thales Alenia Space Italy e finanziato dall’Agenzia spaziale italiana), presente a bordo della sonda, è il cuore dell’esperimento di gravità che ha permesso di misurare le perturbazioni al campo gravitazionale causato dalle oscillazioni interne a Giove. Il KaT riceve e ritrasmette il segnale radio inviato da una speciale antenna di terra ubicata nel deserto della California, permettendo di misurare la velocità della sonda con precisioni di centesimi di millimetro al secondo e variazioni di gravità 60 milioni di volte più piccole della gravità terrestre.

Profilo della velocità radiale dello strato superiore di Giove in funzione della frequenza di oscillazione dei modi normali interni. Ogni linea rappresenta un modello diverso la cui opacità è proporzionale alla probabilità del modello stesso: linee più scure indicano modelli più probabili, mentre linee più chiare indicano modelli via via meno probabili. La dispersione delle linee fornisce un’indicazione dell’incertezza del profilo di ampiezza ottenuto

Le misure di gravità effettuate da Juno avevano già portato ad altre importanti scoperte relative alla struttura interna del pianeta, tra cui la profondità dei forti venti est-ovest (con velocità fino a 360 km/h), che si spingono fino a circa 3,000 km al di sotto del livello delle nubi. Inoltre, le misure di gravità effettuate durante due sorvoli ravvicinati della Grande Macchia Rossa di Giove hanno permesso di determinarne per la prima volta la profondità, pari a circa 300 km, assai inferiore a quella dei venti est-ovest.

Nelle 22 orbite dedicate allo studio del campo gravitazionale di Giove, durante i primi 5 anni della missione, la sonda Juno ha sorvolato il pianeta fino a 4-5,000 km al di sopra del livello delle nubi (poiché Giove non ha una vera e propria superficie), misurando molto accuratamente il campo di gravità del pianeta ad ogni passaggio. Si è così potuto osservare che la gravità del gigante gassoso cambiava leggermente nel tempo.

“Per il nostro team scientifico – continua Daniele Durante – l’interpretazione di gran lunga più convincente è la presenza di fenomeni dinamici quali i modi di oscillazione. Le misure mostrano quindi un pianeta in costante movimento, non solo intorno al suo asse di rotazione, attorno cui compie un giro completo in 10h e 55m, ma anche al suo interno”.

Gli strati più esterni oscillano verticalmente per 15–80 metri ogni circa 15 minuti, in maniera simile a ciò che avviene per le maree terrestri. Questi modi di oscillazione sono chiamati ‘di tipo p’, poiché la forza di richiamo è la pressione interna.

“Analogamente a quanto è avvenuto per il sole con quel vasto campo di ricerca noto come eliosismologia, la misura di queste oscillazioni con strumenti dedicati potrà fornire in futuro – conclude Durante – una descrizione della struttura interna del pianeta assai più dettagliata di quanto sia possibile al giorno d’oggi”.

Riferimenti:
Juno spacecraft gravity measurements provide evidence for normal modes of Jupiter – Daniele Durante, Tristan Guillot, Luciano Iess, David J. Stevenson, Christopher R. Mankovich, Steve Markham, Eli Galanti, Yohai Kaspi, Marco Zannoni, Luis Gomez Casajus, Giacomo Lari, Marzia Parisi, Dustin R. Buccino, Ryan S. Park, Scott J. Bolton – Nature Communications (2022) https://doi.org/10.1038/s41467-022-32299-9

Articoli correlati:

Giove, il pianeta più grande del sistema solare

Testo, video e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

La Grande macchia rossa di Giove: una tempesta anticiclonica dalla profondità “contenuta”

I nuovi risultati delle misurazioni di gravità del pianeta ottenute dalla sonda Juno rivelano, in uno studio pubblicato su Science, che la grande macchia rossa, pur molto estesa, non è profonda come si immaginava. Questa scoperta potrebbe spiegare i motivi della sua evoluzione e forse della possibile scomparsa.

grande macchia rossa Giove
L’animazione simula il moto delle nuvole della Grande Macchia Rossa di Giove. E’ stata creata applicando il modello del movimento dei venti ad un mosaico di immagini scattate dallo strumento. Credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt/Justin Cowart

Giove è il più grande pianeta del sistema solare, con un raggio equatoriale di 71.492 km, ed è composto principalmente da idrogeno ed elio e per questo viene definito “gigante gassoso”.

La caratteristica forse più iconica del pianeta è la Grande macchia rossa, una tempesta anticiclonica scoperta probabilmente da Giandomenico Cassini nel 1665. Oggi questa assomiglia a un ovale di dimensioni approssimativamente pari a 16000 x 12000 km, che ne fanno la più grande tempesta del sistema solare, seppur negli ultimi 100 anni, per cause ancora ignote, si sia ridotta considerevolmente. La Grande macchia rossa porta con sé ancora molti interrogativi: uno di questi riguarda la profondità con cui questa tempesta si inabissa dentro Giove.

A questo come ad altri quesiti sulla dimensione del nucleo ha risposto la sonda Juno, realizzata dalla NASA con un importante contributo italiano.

Rappresentazione artistica di Juno in orbita attorno a Giove. Crediti: Nasa/JPL-Caltech

Durante due sorvoli ravvicinati di Giove (febbraio e luglio 2019), la missione Juno della NASA (in orbita intorno a Giove dal 5 luglio 2016 per studiare i meccanismi di formazione, la struttura interna, la magnetosfera e l’atmosfera del gigante gassoso) ha osservato per la prima volta da vicino la Grande macchia rossa. Poiché l’interno del pianeta non è direttamente osservabile, per comprenderne la struttura più intima si ricorre a misurazioni accurate del campo gravitazionale, che è espressione della distribuzione della massa all’interno del pianeta.

grande macchia rossa Giove
Geometria delle osservazioni di Juno della Grande Macchia Rossa (GRS). Il campo di velocità della Grande Macchia Rossa (frecce nere) e le tracce a terra di Juno durante PJ18 e PJ21 (linee colorate) sono sovrimposte a una immagine della Grande Macchia Rossa effettuata da JunoCam durante PJ21. La quota della sonda durante il passaggio ravvicinato con la Grande Macchia Rossa (latitudine 20°S) era, rispettivamente per PJ18 e PJ21, di 13,000 km e 19,000 km, con scostamenti longitudinali di 11° e 2° 

Le misure del campo gravitazionale del pianeta avevano mostrato che i forti venti est-ovest (con velocità fino a 360 km/h), visibili tracciando il moto delle nubi, si spingono alla profondità di circa 3000 km.

Gli strati inferiori della Grande Macchia Rossa di Giove sono stati osservati da Juno anche usando i dati del radiometro a microonde (MWR). Ognuno dei sei canali dello strumento osserva diverse profondità sotto le nuvole

Oggi, una nuova ricerca, finanziata in parte dall’Agenzia Spaziale Italiana (ASI) e coordinata da Marzia Parisi, ex-dottoranda della Sapienza, ora post-doc al California Institute of Technology/Jet Propulsion Laboratory, insieme a un gruppo internazionale di cui fanno parte Daniele Durante e Luciano Iess del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, mostra come invece i venti della Grande macchina rossa abbiano una profondità di penetrazione verticale piuttosto contenuta, pari a circa 300 km, assai inferiore a quella dei venti che soffiano nelle bande visibili del pianeta. I risultati del lavoro sono stati pubblicati sulla rivista Science.

“I risultati del nostro studio – spiega Daniele Durante del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza – attestano una massa della tempesta pari a circa la metà dell’intera atmosfera terrestre e poco meno di quella di tutta l’acqua del Mar Mediterraneo, e rappresentano la Grande macchia rossa come un oggetto molto simile a un disco assai esteso (la sua dimensione minore è pari all’incirca al diametro della Terra) ma piuttosto sottile, con caratteristiche che ricordano quelle delle più grandi tempeste terrestri”.

grande macchia rossa Giove
Le dimensioni della Grande macchia rossa a confronto con la Terra. La profondità determinata dalle misure di gravità è di soli 300 km.

Con un’orbita molto eccentrica, la sonda Juno è riuscita ad avvicinarsi molto al gigante gassoso, fino a 4-5000 km al di sopra delle nubi: a queste distanze è possibile avere una elevata sensibilità all’accelerazione gravitazionale esercitata principalmente dalle strutture dell’atmosfera del pianeta. La sonda ha utilizzato lo strumento di radioscienza KaT (Ka-Band Translator, realizzato da Thales Alenia Space-I e finanziato dall’Agenzia spaziale italiana), il cuore dell’esperimento che ha permesso di determinare l’estensione verticale della Grande macchia rossa.

La Grande macchia rossa ha perturbato impercettibilmente l’orbita di Juno, ma l’estrema accuratezza della misura (fino a 0.01 mm/s) ha permesso di catturarne il debolissimo segnale gravitazionale e di stimare così la profondità a circa 300 km.

“Le misure di Juno – conclude Luciano Iess dello stesso Dipartimento – hanno fornito la terza dimensione a quel fenomeno dell’atmosfera di Giove che ha attratto l’attenzione di molti di noi, come anche quella degli astronomi da più di trecento anni, mostrando come sia una tempesta superficiale certamente molto estesa, ma ben poco profonda. Questa nuova misura contribuirà a capirne la natura, l’evoluzione e, forse, la sua possibile scomparsa”.

Riferimenti:

The depth of Jupiter’s Great Red Spot constrained by the Juno gravity overflights – Authors: M. Parisi, Y. Kaspi, E. Galanti, D. Durante, S. J. Bolton, S. M. Levin, D. R. Buccino, L. N. Fletcher, W. M. Folkner, T. Guillot, R. Helled, L. Iess, C. Li, K. Oudrhiri, M. H. Wong. Science 2021 DOI: 10.1126/science.abf1396

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Giove, il pianeta più grande del sistema solare

 

L’anima irrequieta dei pianeti

Anche se sommassimo le masse di tutti i pianeti del sistema solare, non riusciremmo a formare quella di Giove. Gli antichi Romani lo associarono al dio più potente, il sovrano di tutti gli dei, il padrone del cielo, come ci ricorda il simbolo astronomico del pianeta, una rappresentazione del fulmine.

Per via della sua massa, la forza di gravità di Giove è pari a 2.6 volte quella terrestre, ciò significa che per calcolare il vostro peso su Giove dovete moltiplicare il vostro peso attuale per 2.6. Si, saremmo tutti “ingrassati”! La densità del pianeta, però, è di poco superiore a quella dell’acqua: Giove è un’immensa palla di gas.

La composizione è stratificata: al centro è (forse) presente un nucleo roccioso coperto da un mantello di idrogeno metallico liquido su cui grava un pesante strato di atmosfera. Partendo dalla superficie e addentrandoci verso il cuore del pianeta, temperatura e pressione vanno via via aumentando sino ad arrivare, nel nucleo, a valori di temperatura superiori a 35000° C e pressioni di circa 4 milioni di volte quella terrestre.

La Grande macchia rossa, tempesta dalla profondità “contenuta”

Caratteristica di Giove è il bandeggio: nubi di ammoniaca ghiacciata disposte in fasce orizzontali di vari colori che si muovono in direzioni opposte e, in alcuni punti, si invorticano, formando immensi cicloni. Nell’atmosfera gioviana si possono contare centinaia di queste masse gassose vorticanti che, come sulla Terra, si distinguono in cicloni (stesso verso di rotazione del pianeta) e anticicloni (verso di rotazione opposto). Si formano e disfano in tempi che vanno dal giorno alle centinaia di anni, come la grande macchia rossa. Osservata probabilmente per la prima volta da Cassini nel 1664, è la tempesta più longeva conosciuta, nonché la più violenta del sistema solare: come dimensioni potrebbe contenere quasi tre Terre e si innalza per circa 8 km dalla superficie del pianeta. La temperatura arriva a -160° C ed è solcata da venti tremendi che sfiorano i 600 km/h. Il diametro della grande macchia sta, però, diminuendo, mentre è in aumento l’estensione di un altro anticiclone, la cosiddetta piccola macchia rossa che si trova vicina, appena sotto la grande macchia. Formatasi nel 2000 dall’unione di tre tempeste distinte, nel 2008 aveva già raggiunto le dimensioni della Terra.

Foto NASA, ESA, and J. Nichols (University of Leicester), in pubblico dominio

Per via del core di idrogeno metallico liquido, il campo magnetico di Giove è il più intenso del sistema solare (centinaia di volte più intenso di quello terrestre) e, interagendo con i venti solari, forma una vastissima magnetosfera, un oggetto di studio estremamente interessante per gli astronomi. Un fenomeno spettacolare dovuto al campo magnetico è quello delle aurore polari di Giove: molto più energetiche ed estese delle terrestri e, per di più, perenni. La loro straordinaria potenza non è alimentata solo dalla nostra stella, ma anche da Io, uno dei quattro satelliti galileiani, nonché tra gli oggetti più attivi del sistema solare, che rifornisce il campo magnetico del pianeta di particelle provenienti dai suoi numerosi vulcani.

Giove
Giove e e la sua luna Io visti dalla sonda Cassini (2001). Foto NASA/JPL/University of Arizona, pubblico dominio

Come gli altri tre giganti gassosi, anche Giove possiede un sistema di anelli, sebbene meno vistoso di quello di Saturno, tanto che fu osservato per la prima volta solo nel 1979 dalle missioni Voyager della NASA.

Galileo e Juno sono altre due missioni dell’agenzia spaziale americana che hanno dato un importante contributo alla scoperta di Giove. Juno, partita nel 2011, è tuttora in corso, mentre Galileo è terminata nel 2003 con un impatto guidato sul pianeta. La sonda Galileo ha avuto l’occasione di osservare un altro e ben più significativo impatto su Giove, quello avvenuto nel 1994 con la cometa Shoemaker-Levy 9. L’impatto avvenne in 6 giorni, tra il 16 e il 22 Luglio, poiché la cometa si era sbriciolata in 21 frammenti, divenendo simile ad una “collana di perle” e sprigionò una potenza di 6 miliardi di kt (per confronto, la bomba che distrusse Hiroshima era di soli 16 kt). Fu un evento scientifico e mediatico molto significativo: diversi telescopi furono puntati sul gigante gassoso e tanti esperti e non seguirono con trepidazione la diretta. Sulla superficie di Giove rimasero le tracce del bombardamento: vaste macchie circolari, la più grossa del diametro di 12000 km (quello terrestre è di 12742 km), che, come ferite scure, perdurarono un paio di mesi per poi sparire definitivamente.

Il luogo dell’impatto del frammento G della cometa Shoemaker-Levy 9. Foto Hubble Space Telescope Jupiter Imaging Team, in pubblico dominio

Video a cura di Inter Nos: Silvia Giomi e Marco Merico