News
Ad
Ad
Ad
Tag

sonda DART

Browsing

Politecnico di Milano e Georgia Tech svelano nuovi scenari per deviare gli asteroidi – Due studi pubblicati su Nature Communications analizzano l’impatto della missione DART su Dimorphos, rivelando nuove strategie per migliorare l’efficacia della deviazione degli asteroidi grazie allo studio degli ejecta.

Milano20 febbraio 2025 – Quanto siamo pronti a deviare un asteroide diretto verso la Terra? A questa domanda rispondono due studi appena pubblicati su Nature Communications, frutto della collaborazione tra il Politecnico di Milano, il Georgia Institute of Technology e altre istituzioni internazionali. Le ricerche analizzano il risultato storico della missione DART (Double Asteroid Redirection Test) della NASA, che il 26 settembre 2022 ha colpito l’asteroide Dimorphos, segnando la prima dimostrazione pratica di difesa planetaria.

L’impatto, osservato da telescopi spaziali come Hubble e da osservatori terrestri, ha prodotto un’enorme quantità di ejecta – frammenti espulsi dalla superficie – rivelando informazioni cruciali per migliorare l’efficacia delle future missioni di deviazione asteroidale.

Il primo studio è stato condotto da un team di ricercatori del Dipartimento di Scienze e Tecnologie Aerospaziali del Politecnico di Milano, sotto la guida del Professor Fabio Ferrari, insieme a Paolo Panicucci e Carmine Giordano, e in collaborazione con il Georgia Institute of Technology. Il secondo studio, coordinato dal Professor Masatoshi Hirabayashi del Georgia Tech, ha visto il contributo dello stesso Ferrari.

“Utilizzando le immagini del telescopio Hubble e simulazioni numeriche avanzate, abbiamo identificato una spiegazione plausibile per la morfologia osservata e stimato la massa, la velocità e la dimensione dei frammenti. – spiega Fabio Ferrari, professore del Dipartimento di Scienze e Tecnologie Aerospaziali del Politecnico di Milano – Abbiamo scoperto che queste strutture derivano dall’interazione dinamica tra gli ejecta, la gravità del sistema binario e la pressione della radiazione solare. Comprendere questi processi è fondamentale per interpretare future osservazioni e migliorare le strategie di difesa planetaria.”

Ma la forma dell’asteroide può fare la differenza nella traiettoria di espulsione degli ejecta, secondo lo studio condotto dal Georgia Institute of Technology. Il Professor Masatoshi Hirabayashi sottolinea un dato sorprendente: “La nostra analisi ha rivelato che la forma schiacciata di Dimorphos ha ridotto l’efficienza della deviazione del 56%. Abbiamo osservato come la traiettoria degli ejecta sia stata influenzata dalla morfologia dell’asteroide, diminuendo l’efficacia della spinta generata dall’impatto.”

“Se l’impatto è grande, più ejecta vengono spinti lontano dalla superficie, ma sono anche maggiormente influenzati dall’inclinazione della superficie. Questo processo devia la traiettoria degli ejecta rispetto quella ideale, riducendo la spinta sull’asteroide” – prosegue Hirabayashi – “l’invio di più oggetti di piccole dimensioni non solo consente di ottenere una maggiore spinta dell’asteroide, ma anche di risparmiare sui costi operativi e di aumentare la flessibilità della tattica per la deviazione.”

Un’idea condivisa da Ferrari, il cui studio ha analizzato l’evoluzione degli ejecta contribuendo a chiarire il loro ruolo nella deflessione dell’asteroide: “La comprensione dei processi di impatto e delle loro conseguenze è fondamentale per capire le proprietà degli asteroidi, la loro evoluzione naturale e il loro futuro e, in ultima analisi, per progettare azioni di mitigazione ai fini della difesa planetaria”.

Politecnico di Milano e Georgia Tech svelano nuovi scenari per deviare gli asteroidi, con due studi su Nature Communications. Gallery con immagini (ove non indicato diversamente) dall’Ufficio Relazioni Media del Politecnico di Milano, CC BY 2.0

 

Riferimenti bibliografici:

Ferrari, F., Panicucci, P., Merisio, G. et al. Morphology of ejecta features from the impact on asteroid Dimorphos, Nat Commun 16, 1601 (2025), DOI: https://doi.org/10.1038/s41467-025-56551-0

Hirabayashi, M., Raducan, S.D., Sunshine, J.M. et al. Elliptical ejecta of asteroid Dimorphos is due to its surface curvature, Nat Commun 16, 1602 (2025), DOI: https://doi.org/10.1038/s41467-025-56010-w

Testo e immagini dall’Ufficio Relazioni Media del Politecnico di Milano

DOPO DART-LICIACUBE, SU DIDYMOS E DIMORPHOS ANCHE I MASSI PARLANO: DUE STUDI A GUIDA INAF NELL’EDIZIONE SPECIALE DI OGGI DI NATURE COMMUNICATIONS

 Difesa planetaria, detriti spaziali e asteroidi Near-Earth: questo il tema dell’edizione speciale pubblicata oggi da Nature Communications, e nella quale rientra una serie di cinque articoli – due dei quali a guida INAF – che analizzano le caratteristiche della coppia di asteroidi Didymos e Dimorphos, osservati da vicino dagli strumenti della sonda DART prima dell’impatto sul secondo dei due, in un primo esperimento di difesa planetaria realizzato da NASA e ASI.

 immagine di Dimorphos. Il conteggio dei massi e la misura delle loro dimensioni su Dimorphos, e sull’asteroide principale Didymos, ha permesso di comprendere che essi hanno origine da un progenitore comune e che Dimorphos ha ereditato i propri massi dal compagno più grande. Crediti: NASA/Johns Hopkins APL
immagine di Dimorphos. Il conteggio dei massi e la misura delle loro dimensioni su Dimorphos, e sull’asteroide principale Didymos, ha permesso di comprendere che essi hanno origine da un progenitore comune e che Dimorphos ha ereditato i propri massi dal compagno più grande. Crediti: NASA/Johns Hopkins APL

Dopo l’impatto della sonda della NASA DART il 26 settembre 2022 contro Dimorphos, la luna del sistema binario di asteroidi Near-Earth (65803) Didymos, gli occhi degli esperti si sono concentrati sugli effetti dell’esperimento di difesa planetaria. L’obiettivo era testare la possibilità di deviare un corpo vagante come un asteroide nel caso in cui costituisca una minaccia per il nostro pianeta. Eventualità, questa, che dipende anche dalle caratteristiche geologiche del corpo, dalla sua dinamica, e più in generale dalla sua storia. Nature Communications ha pubblicato oggi un’edizione speciale a tema “Difesa planetaria, detriti spaziali e asteroidi Near-Earth” contenente, fra gli altri, cinque articoli che analizzano le caratteristiche e la storia geologica dei due asteroidi Near-Earth di tipo S osservati dalla missione DART-LICIACube, Didymos e Dimorphos. Coautori di tutti, e primi autori di due, Alice Luchetti e Maurizio Pajola dell’INAF di Padova. Agli articoli hanno partecipato anche ulteriori ricercatrici e ricercatori dell’INAF, dell’Agenzia Spaziale Italiana (ASI), di IFAC-CNR, del Politecnico di Milano e delle Università di Bologna e Parthenope. I due articoli a guida INAF si focalizzano, rispettivamente, sull’analisi delle fratture presenti nei massi dell’asteroide Dimorphos – causate da shock termici fra il giorno e la notte – e sul processo di formazione dei due asteroidi, tramite l’identificazione e l’analisi dei massi sulla loro superficie.

LICIACube analizza i lunghi pennacchi di Dimorphos

Anamnesi e storia famigliare di Didymos e Dimorphos

Osservare da vicino la superficie di un asteroide e analizzarne la geologia può dire molto sulla sua storia di formazione. Utilizzando le immagini ad alta risoluzione di Didymos e Dimorphos riprese dalla missione della NASA DART pochi istanti prima dello schianto su Dimorphos, Pajola e il suo team hanno identificato tutti i massi visibili sulla superficie dell’asteroide primario Didymos (per un totale di 169) e dell’asteroide secondario Dimorphos (per un totale di 4734), ricavandone le dimensioni. Hanno poi studiato la distribuzione in taglia di questi massi (in gergo scientifico chiamata SFD, dall’inglese Size-Frequency Distribution) contando quanti massi più grandi di una data dimensione ci sono, in vari intervalli di “taglia”, e collegato questa stima con la distribuzione delle taglie in latitudine, longitudine, pendenza superficiale, accelerazione gravitazionale e insolazione.

“Lo studio della distribuzione in taglia dei massi più grandi di 5 metri su Dimorphos, e di quelli più grandi di 22,8 metri su Didymos, ci ha permesso di dire che questi si sono formati a seguito di un singolo evento di frammentazione – un impatto catastrofico – di un asteroide padre”,

spiega Maurizio Pajola, ricercatore all’INAF di Padova e primo autore dello studio. I due corpi sarebbero, secondo i risultati, aggregati di frammenti rocciosi formatisi a seguito della distruzione catastrofica di un unico genitore comune. Scoperta, questa, confermata anche dalle simulazioni di impatti iperveloci svolte in laboratorio, nonché dall’identificazione dei massi più grandi presenti sui due corpi: 16 metri quello su Dimorphos, e 93 metri quello su Didymos, valori che equivalgono a circa un decimo della dimensione dell’asteroide su cui si trovano. Massi così grandi, infatti, non potrebbero essersi formati a seguito di impatti sulle superfici dei due corpi, che sarebbero rimasti disintegrati nello scontro.

a) Mosaico ad alta risoluzione di Dimorphos in cui il riquadro rosa mostra l'area analizzata nell’articolo di Lucchetti et al. (2024); b) Primo piano dell'immagine acquisita 1,818 s prima dell'impatto del DART in cui sono visibili e identificabili le fratture dei massi; c) Fratture dei massi mappate da Lucchetti et al. (2024). Il masso più grande della scena (6,62 m di diametro), Atabaque Saxum, presenta 6 fratture sulla sua superficie. Crediti: NASA/Johns Hopkins APL; 10.1038/s41467-024-50145-y
a) Mosaico ad alta risoluzione di Dimorphos in cui il riquadro rosa mostra l’area analizzata nell’articolo di Lucchetti et al. (2024); b) Primo piano dell’immagine acquisita 1,818 s prima dell’impatto del DART in cui sono visibili e identificabili le fratture dei massi; c) Fratture dei massi mappate da Lucchetti et al. (2024). Il masso più grande della scena (6,62 m di diametro), Atabaque Saxum, presenta 6 fratture sulla sua superficie. Crediti: NASA/Johns Hopkins APL; 10.1038/s41467-024-50145-y

L’eredità di Dimorphos

Due asteroidi, un genitore comune, dunque. Non solo: la distribuzione in taglia dei massi sui due corpi si è rivelata molto simile, cosa che fa pensare che Dimorphos, il più piccolo dei due, in orbita attorno a Didymos, abbia ereditato i propri massi dal compagno. Come? Attraverso il cosiddetto effetto YORP. In pratica, mentre un asteroide ruota su sé stesso, la sua superficie viene illuminata dal Sole in maniera disomogenea, dal momento che la sua geologia è complessa e irregolare. Il risultato è che diverse regioni vengono riscaldate e si raffreddano a velocità differenti, creando una differenza di temperatura che a sua volta può far accelerare o rallentare la rotazione. Un effetto apprezzabile per asteroidi di dimensioni chilometriche o sub-chilometriche, come nel caso di Didymos. L’asteroide attualmente ha un periodo di rotazione di 2,26 ore, ma secondo le simulazioni numeriche basterebbe una lievissima accelerazione che riduca il periodo di rotazione a 2,2596 ore per causare l’eiezione di massi dalla regione equatoriale. È possibile, dunque, secondo i ricercatori, che in passato Didymos ruotasse più velocemente a causa dell’effetto YORP, e che abbia eiettato alcuni massi formando Dimorphos. Scenario, questo, che sarebbe supportato da almeno due evidenze osservative: la prima su Dimorphos, che presenta una distribuzione in taglia simile all’asteroide primario; la seconda su Didymos, che conta una minore densità di massi all’equatore.

 

Fratture termiche

L’immagine acquisita dallo strumento DRACO (Didymos Reconnaissance and Asteroid Camera for Optical navigation) a bordo di DART poco prima dell’impatto, con la sua risoluzione di 5,5 cm sulla superficie di Dimorphos, ha infatti permesso di vedere fratture sulle rocce di Dimorphos con lunghezze variabili da 0,4 a 3 metri, secondo quanto riportato nello studio guidato da Alice Lucchetti, ricercatrice all’INAF di Padova.

“La domanda di partenza è stata: Come si formano le fratture che vediamo sui massi di Dimorphos?” dice Lucchetti. “Abbiamo mappato manualmente le fratture, misurato la loro lunghezza e orientazione, notando che esse sembrano puntare quasi tutte verso la stessa direzione (nordovest-sudest), un dato indicativo dell’azione dello stress termico su queste rocce. Infatti, se queste fossero causate da frane o impatti, punterebbero tutte in direzioni diverse”.

Tramite l’applicazione di un modello termofisico che ha determinato la variazione di temperatura fra giorno e notte sull’asteroide, gli autori sono quindi stati in grado di affermare che il calore del Sole è effettivamente in grado di fratturare le rocce di Dimorphos e, in particolare, che gli stress termici generano la formazione di fratture superficiali che si propagano più rapidamente nella direzione orizzontale al masso stesso rispetto a quella verticale. Ciò avviene in un arco di tempo compreso tra 10mila e 100mila anni, e questa è la prima volta che viene effettuata una simile analisi per un asteroide di tipo S, silicatico.

“Capire come la fatica termica (questo il nome in gergo del fenomeno) agisca su piccoli corpi di diversa composizione è importante non solo per avanzare la conoscenza riguardo la formazione ed evoluzione del Sistema Solare – continua Lucchetti –, ma anche nell’ambito della difesa planetaria. Per predire la risposta e l’efficacia di un impattore cinetico, come la sonda DART su Dimorphos, bisogna conoscere bene il comportamento dei massi presenti sulla superficie dell’asteroide”.

Un fenomeno, questo della fatica termica, che sarebbe avvenuto in situ su Dimorphos dopo la formazione del corpo, e quindi dopo il trasferimento dei massi dall’asteroide Didymos. A dimostrarlo, l’orientazione delle crepe coordinata nei diversi massi: se la frattura termica fosse avvenuta sui massi di Dydimos, poi eiettati su Dimorphos, la direzione delle fratture risulterebbe disordinata e casuale.

“La fatica termica sarebbe quindi in grado di provocare crepe nelle rocce che la subiscono, fino a frantumarle”, conclude Lucchetti.

“Il problema, però – aggiunge Pajola – è che non riusciamo a identificare la polvere causata dal processo di frammentazione. Ciò suggerisce che Dimorphos sia talmente giovane che quelle che stiamo vedendo siano le prima fratture formatisi sui massi dell’asteroide. Capire questo aspetto sarà fra gli obiettivi di studio principali della missione dell’ESA HERA, che entrerà in orbita attorno al sistema binario a fine 2026”.

Riferimenti Bibliografici:

 L’articolo Evidence for multi-fragmentation and mass shedding of boulders on rubble-pile binary asteroid system (65803) Didymos di  M. Pajola, F. Tusberti, A. Lucchetti, O. Barnouin, S. Cambioni, C. M. Ernst, E. Dotto, R. T. Daly, G. Poggiali, M. Hirabayashi, R. Nakano, E. Mazzotta Epifani, N. L. Chabot, V. Della Corte, A. Rivkin, H. Agrusa, Y. Zhang, L. Penasa, R.-L. Ballouz, S. Ivanovski, N. Murdoch, A. Rossi, C. Robin, S. Ieva, J. B. Vincent, F. Ferrari, S. D. Raducan, A. Campo-Bagatin, L. Parro, P. Benavidez, G. Tancredi, Ö. Karatekin, J. M. Trigo-Rodriguez, J. Sunshine, T. Farnham, E. Asphaug, J. D. P. Deshapriya, P. H. A. Hasselmann, J. Beccarelli, S. R. Schwartz, P. Abell, P. Michel, A. Cheng, J. R. Brucato, A. Zinzi, M. Amoroso, S. Pirrotta, G. Impresario, I. Bertini, A. Capannolo, S. Caporali, M. Ceresoli, G. Cremonese, M. Dall’Ora, I. Gai, L. Gomez Casajus, E. Gramigna, R. Lasagni Manghi, M. Lavagna, M. Lombardo, D. Modenini, P. Palumbo, D. Perna, P. Tortora, M. Zannoni e G. Zanotti  è stato pubblicato all’indirizzo https://doi.org/10.1038/s41467-024-50148-9  sulla rivista Nature Communications.

 

L’articolo Fast boulder fracturing by thermal fatigue detected on stony asteroids di A. Lucchetti, S. Cambioni, R. Nakano, O. S. Barnouin, M. Pajola, L. Penasa, F. Tusberti, K. T. Ramesh, E. Dotto, C. M. Ernst, R. T. Daly, E. Mazzotta Epifani, M. Hirabayashi, L. Parro, G. Poggiali, A. Campo Bagatin, R.-L. Ballouz, N. L. Chabot, P. Michel, N. Murdoch, J. B. Vincent, Ö. Karatekin, A. S. Rivkin, J. M. Sunshine, T. Kohout, J.D.P. Deshapriya, P.H.A. Hasselmann, S. Ieva, J. Beccarelli, S. L. Ivanovski, A. Rossi, F. Ferrari, C. Rossi, S. D. Raducan, J. Steckloff, S. Schwartz, J. R. Brucato, M. Dall’Ora, A. Zinzi, A. F. Cheng, M. Amoroso, I. Bertini, A. Capannolo, S. Caporali, M. Ceresoli, G. Cremonese, V. Della Corte, I. Gai, L. Gomez Casajus, E. Gramigna, G. Impresario, R. Lasagni Manghi, M. Lavagna, M. Lombardo, D. Modenini, P. Palumbo, D. Perna, S. Pirrotta, P. Tortora, M. Zannoni e G. Zanotti è stato pubblicato all’indirizzo https://doi.org/10.1038/s41467-024-50145-y sulla rivista Nature Communications.

 

Articoli correlati:

LICIACube analizza i lunghi pennacchi di Dimorphos

 

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

LICIACUBE ANALIZZA I LUNGHI PENNACCHI DI DIMORPHOS

Roma, 28 febbraio 2024 – Il 26 settembre 2022 la sonda spaziale DART (Double Asteroid Redirection Test) della NASA – un oggetto da mezza tonnellata lanciato a 22.500 chilometri all’ora – ha colpito Dimorphos (il satellite dell’asteroide Didymos) nel corso del primo esperimento di difesa planetaria mai tentato nella storia, modificandone la traiettoria. Tutto questo “sotto gli occhi vigili” del cubesat dell’Agenzia Spaziale Italiana (ASI) LICIACube (Light Italian Cubesat for Imaging of Asteroids), che dopo un anno e mezzo ci restituisce un’ulteriore “fotografia” di ciò che è successo nei secondi successivi l’impatto. In un articolo pubblicato oggi sulla rivista Nature, il gruppo internazionale di ricercatrici e ricercatori guidati dall’Istituto Nazionale di Astrofisica (INAF) analizza la composizione della nube di detriti e di polvere (plume, in inglese) espulsa dall’asteroide Dimorphos in seguito all’impatto esplosivo.

La prima sonda interplanetaria made in italy (progettata, costruita e operata per l’ASI dalla società torinese Argotec) è parte integrante della missione statunitense e il team scientifico italiano di LICIACube è coordinato da INAF e ASI in collaborazione con l’Istituto di fisica applicata “Nello Carrara” del Consiglio Nazionale delle Ricerche (CNR-IFAC), il Politecnico di Milano, l’Università di Bologna e l’Università Parthenope di Napoli.

Gli strumenti a bordo di LICIACube, LUKE (LICIACube Unit Key Explorer) e LEIA (LICIACube Explorer Imaging for Asteroid), hanno inviato a terra dati straordinari prima e dopo l’impatto.

Elisabetta Dotto, ricercatrice presso l’INAF di Roma, prima autrice dell’articolo e coordinatrice del gruppo che lavora al programma LICIACube sin dalla sua ideazione, racconta:

“La fase scientifica è iniziata 71 secondi prima dell’impatto di DART, testimoniato ‘in diretta’ misurando una rapida variazione della luminosità del piccolo asteroide. Viaggiando ad una velocità relativa di circa 6,1 chilometri al secondo, LICIACube ha effettuato un sorvolo dell’oggetto raggiungendo, nel suo punto di massimo avvicinamento a Dimorphos, una distanza di soli 58 km, 174 secondi dopo l’impatto. LICIACube ha acquisito 426 immagini degli effetti prodotti dall’impatto”.

I risultati ottenuti da LICIACube sono importanti a livello scientifico per la comunità internazionale, trattandosi delle sole immagini raccolte in situ della prima missione di Difesa Planetaria mai condotta finora.

I pennacchi di Dimorphos sono simili alla coda di una cometa e sono generati dalla polvere espulsa nello spazio. A differenza delle comete, però, i “ciuffi” di Dimorphos sono stati generati artificialmente.

Ma come è cambiato Dimorphos dopo l’arrivo di DART? “La prima cosa stupefacente è stata che la superficie di Dimorphos – prosegue Dotto – non è stata più visibile a causa del materiale espulso. Oltre a testimoniare l’evento unico della deflessione di un asteroide grazie a un impatto cinetico, sono state ottenute immagini dettagliate di un asteroide binario che ci possono permettere di capire meglio la natura di questi oggetti. Poiché gli asteroidi sono ciò che resta di una fase intermedia del processo che ha portato alla formazione dei pianeti, i dati acquisiti forniscono informazioni importanti nello studio delle prime fasi di aggregazione del materiale che compone il Sistema solare”.

La ricercatrice INAF spiega che “il materiale espulso dal cratere di impatto ha formato un cono con un angolo di apertura di circa 140 gradi e una struttura complessa e disomogenea, caratterizzata da filamenti, granelli di polvere e massi singoli o raggruppati espulsi a seguito dell’impatto stesso di DART. Le immagini hanno mostrato che la parte più interna della coda aveva un colore bluastro e diventava via via più rossa con l’aumentare della distanza da Dimorphos. La velocità dei materiali espulsi varia da poche decine di m/s fino a circa 500 metri al secondo”.

Aggiunge Alessandro Rossi dell’ IFAC-CNR: “La complessa dinamica delle particelle  espulse dall’impatto costituisce  un’affascinante laboratorio di meccanica orbitale che verrà studiato a lungo dalla comunità delle scienze planetarie”.

Marco Zannoni, ricercatore presso il Dipartimento di Ingegneria Industriale (DIN) e responsabile tecnico delle attività affidate all’Università di Bologna, commenta:

“Il contributo dell’Università di Bologna, nell’ambito di questo progetto, ha riguardato la determinazione ed il controllo della traiettoria di LICIACube, a partire dai dati di tracking ricevuti dalle antenne di terra del Deep Space Network della NASA. La sfida più grande è stata quella di guidare il nanosatellite LICIACube, che si trovava a 10 milioni di chilometri dalla Terra e viaggiava a più di 6 chilometri al secondo, a posizionarsi nel punto giusto ed al momento giusto per scattare le foto dell’impatto di DART con Dimorphos”.

Angelo Zinzi, Project Scientist ASI per LICIACube, commenta così:

“Il lavoro pubblicato può essere considerato un punto di partenza per la missione DART-LICIACube e, più in generale, nell’ambito della difesa planetaria. Grazie al grande lavoro realizzato da gli enti e le industrie coinvolte nella missione LICIACube, con il coordinamento del team di progetto dell’ASI, è stato dimostrato che i cubesat sono ormai pronti per missioni sia tecnologiche sia scientifiche nello spazio profondo e che l’Italia è in grado di essere un attore principale in questo contesto”.

E aggiunge: “LICIACube ha permesso di ottenere immagini e dati altrimenti impossibili da acquisire e che hanno fornito un impulso fondamentale alla conoscenza dell’evento di impatto avvenuto tra la sonda DART e Dimorphos. È importante anche sottolineare che tutti i dati e il Software di archiviazione e calibrazione dati sono stati gestiti dal centro dati scientifico di ASI (SSDC), utilizzando standard internazionalmente riconosciuti per la corretta preservazione e la disseminazione del dato. A seguito di questo lavoro, sono già in fase di pubblicazione e/o revisione, altri lavori dai quali ottoneremo un’analisi dei dati di LICIACube di maggiore dettaglio e conoscenza”.

“Grazie al grande lavoro del team scientifico sulle immagini, il Politecnico di Milano collaborando con CNR ha potuto contribuire al raffinamento dei modelli di espulsione dei frammenti e al miglioramento dello studio dell’evoluzione del loro moto nel sistema binario asteroideo”,

sostiene Michèle Roberta Lavagna, professoressa di Flight Mechanics del Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali.

I dati a oggi ottenuti stanno dimostrando come, pur attraverso una piccola sonda, sia possibile raccogliere importanti dati scientifici e come, un team ben affiatato e coordinato possa ottenerne risultati unici di grande rilevanza scientifica.


 

Per ulteriori informazioni:

L’articolo “The Dimorphos ejecta plume properties revealed by LICIACube”, di E., Dotto, J.D.P., Deshapriya, I., Gai, P.H., Hasselmann, E., Mazzotta Epifani, G.,Poggiali, A., Rossi, G., Zanotti, A., Zinzi, I., Bertini, J.R., Brucato, M., Dall’Ora, V., Della Corte, S.L., Ivanovski, A., Lucchetti, M., Pajola, M., Amoroso, O., Barnouin, A., Campo Bagatin, A., Capannolo, S., Caporali, M., Ceresoli, N.L., Chabot, A.F., Cheng, G., Cremonese, E.G., Fahnestock, T.L., Farnham, F., Ferrari, L., Gomez Casajus, E., Gramigna, M., Hirabayashi, S., Ieva, G., Impresario, M., Jutzi, R., Lasagni Manghi, M., Lavagna6, J.-Y., Li, M., Lombardo, D., Modenini, P., Palumbo, D., Perna, S., Pirrotta, S.D., Raducan, D.C., Richardson, A.S., Rivkin, A.M., Stickle, J.M. Sunshine, P., Tortora, F., Tusberti, M., Zannoni, è stato pubblicato sulla rivista Nature.

Testo e immagini dagli Uffici Stampa INAF, ASI, CNR, Politecnico di Milano e Alma Mater Studiorum – Università di Bologna.