News
Ad
Ad
Ad
Tag

Simon Josef Unterholzner

Browsing

Contrastare la sterilità dei terreni con piante tolleranti alle alte concentrazioni saline 

Una nuova ricerca coordinata da Raffaele Dello Ioio della Sapienza Università di Roma ha individuato il meccanismo molecolare che inibisce lo sviluppo delle radici quando una pianta si trova in un terreno con elevate presenza di sale. Lo studio, pubblicato su Communications Biology, può portare allo sviluppo di piante in grado di sopravvivere e avere alta resa agricola anche se esposte a questo minerale.

Come effetto del riscaldamento globale, le condizioni climatiche di molte aree nel mondo stanno radicalmente cambiando aumentando le zone soggette ad inaridimento del suolo o ad alluvioni. Tali cambiamenti causano un aumento della concentrazione salina nel suolo, rendendo molte aree coltivabili quasi completamente sterili. Infatti, l’aumento di sale nel suolo inibisce la crescita delle piante causando una notevole riduzione nella resa agricola.

Il primo organo che viene a contatto con il sale presente nel suolo è la radice: da questa propagano segnali che generano molteplici anomalie nello sviluppo di tutta la pianta che conducono alla morte.

Un nuovo studio coordinato da ricercatori del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza di Roma ha combinato esperimenti di biologia molecolare, genetica e biologia computazionale giungendo a identificare il meccanismo molecolare che inibisce la crescita della radice quando una pianta è esposta ad alte concentrazioni saline. I risultati del lavoro sono stati pubblicati sulla rivista Communications Biology.

Il gruppo di ricerca si è servito della nota pianta modello Arabidopsis thaliana, meglio conosciuta come Arabetta comune, percomprendere come le condizioni chimiche, fisiche e meccaniche del suolo interferiscano con lo sviluppo della radice alterando di conseguenza lo sviluppo della pianta in toto.

“Questo studio – commenta Raffaele Dello Ioio – è seminale per la produzione futura di piante resistenti ad alte concentrazioni saline. Infatti, è plausibile che rendendo le radici delle piante insensibili alla presenza di sale nel suolo queste potranno sopravvivere ed avere alta resa agricola anche se esposte a questo minerale”.

Arabidopsis thaliana piante tolleranti concentrazioni saline
Contrastare la sterilità dei terreni con piante tolleranti alle alte concentrazioni saline: la pianta modello Arabidopsis thaliana. Foto di Flocci Nivis, CC BY-SA 4.0

Riferimenti:

microRNA165 and 166 modulate response of the Arabidopsis root apical meristem to salt stress – Daria Scintu, Emanuele Scacchi, Francesca Cazzaniga, Federico Vinciarelli, Mirko De Vivo, Margaryta Shtin, Noemi Svolacchia, Gaia Bertolotti, Simon Josef Unterholzner, Marta Del Bianco, Marja Timmermans, Riccardo Di Mambro, Paola Vittorioso, Sabrina Sabatini, Paolo Costantino & Raffaele Dello Ioio – Communications Biology (2023)  https://www.nature.com/articles/s42003-023-05201-6

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

 

Un team di ricercatori della Sapienza ha identificato uno degli orologi molecolari che regolano la maturazione degli organi nelle piante. Lo studio, pubblicato sulla rivista Current Biology, getta nuova luce sui meccanismi utili a migliorare l’adattamento delle piante alle variazioni ambientali

orologio molecolare piante orologi
Foto Sapienza Università di Roma

La maturazione degli organi presuppone, sia negli animali che nelle piante, cambiamenti nelle loro forme e nella loro anatomia. Tali cambiamenti avvengono nel corso del tempo, motivo per cui esistono dei veri e propri orologi molecolari che mediano e scandiscono l’interazione di specifici geni, in determinati momenti, affinché sia assunta la corretta morfologia.

Un nuovo studio del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza, ha identificato nella pianta modello Arabidopsis thaliana l’orologio molecolare coinvolto nella regolazione della formazione della radice. Nello specifico, il team di ricercatori coordinato da Raffaele Dello Ioio ha indagato nella pianta il funzionamento di uno dei meccanismi che regola la divisione asimmetrica del tessuto, a cui consegue l’incremento del numero di strati da uno a due.

“Questo lavoro, appena pubblicato sulla rivista Current Biology, ha permesso di identificare uno di questi orologi, necessario alle piante per adattarsi all’ambiente esterno e alle sue variazioni – spiega Raffaele Dello Ioio. “Otto giorni dopo la germinazione, il momento in cui l’embrione che è nel seme inizia a uscire dalla fase di quiescenza, si verifica una riduzione dell’espressione di alcune piccole molecole di Rna, i microRNA 165 e 166. La divisione asimmetrica della cortex, una componente della struttura della radice, risulta dipendere proprio dalla minore espressione dei microRNA, che esercitano un controllo positivo sui livelli del fitormone gibberellina e uno negativo su quelli del fattore di trascrizione PHABULOSA”.

Conclude poi Raffaele dello Ioio, insignito nel 2019 dall’Accademia dei Lincei del premio “Antonio Feltrinelli giovani” per i suoi studi sui circuiti genetico-molecolari che regolano il corretto sviluppo degli organi delle piante, che “identificare questi meccanismi non solo permette di comprendere come avviene la maturazione degli organi, ma potrà essere di aiuto agli scienziati per capire come manipolare tali meccanismi per migliorare l’adattamento delle piante alle variazioni ambientali”.

Riferimenti:

A PHABULOSA-Controlled Genetic Pathway Regulates Ground Tissue Patterning in the Arabidopsis Root – Gaia Bertolotti, Simon Josef Unterholzner, Daria Scintu, Elena Salvi, Noemi Svolacchia, Riccardo Di Mambro, Veronica Ruta, Francisco Linhares Scaglia, Paola Vittorioso, Sabrina Sabatini, Paolo Costantino, Raffaele Dello Ioio – Current Biology, 2020.https://doi.org/10.1016/j.cub.2020.10.038

 

Testo e foto dalla Sapienza Università di Roma