News
Ad
Ad
Ad
Tag

Silvia Galfrè

Browsing

Charme: la molecola di lncRNA che controlla lo sviluppo del cuore
Charme è un lncRNA che controlla lo sviluppo cardiaco attraverso circuiti molecolari che si instaurano nel muscolo grazie alla sua interazione con la proteina Matrin3 

La molecola di RNA è in grado di costruire specifiche reti di interazione per un controllo temporale e spaziale dei processi di formazione del cuore.

È quanto dimostrato da un nuovo studio coordinato dal Dipartimento di Biologia e biotecnologie “Charles Darwin” della Sapienza e pubblicato sulla rivista eLife.

Charme: la molecola di lncRNA che controlla lo sviluppo del cuore 
Crediti per l’immagine: Taliani et al.

Per affrontare la complessità dei processi biologici, le cellule sfruttano molteplici sistemi di regolazione, spesso basati sull’attività di molecole di RNA, come nel caso dei lunghi RNA non codificanti (long non coding RNA, lncRNA) che non producono proteine. Queste molecole sono in grado di costruire specifiche reti di interazione per un controllo temporale e spaziale dei processi biologici.

È il caso di Charme, un lncRNA che controlla lo sviluppo cardiaco attraverso circuiti molecolari che si instaurano nel muscolo grazie alla sua interazione con la proteina Matrin3. Matrin3 è coinvolta in diverse miopatie e in malattie neurodegenerative, come la Sclerosi laterale amiotrofica (SLA).

Un nuovo studio italiano pubblicato sulla rivista internazionale eLife e coordinato dal Dipartimento di Biologia e biotecnologie “Charles Darwin” della Sapienza in collaborazione con l’Istituto italiano di tecnologia e l’European Molecular Biology Laboratory ha rivelato il ruolo chiave di Charme nell’accensione di geni necessari alla maturazione delle cellule del cuore. La presenza di Charme già durante le fasi embrionali dello sviluppo cardiaco, si è rivelata fondamentale per guidare Matrin3 sui giusti contesti genomici, promuovendo la funzionalità e lo sviluppo cardiaco.

“Tra i piani futuri del laboratorio – spiega Monica Ballarino della Sapienza – c’è l’ulteriore caratterizzazione funzionale di Charme che è abbondantemente espresso nel muscolo umano. Questo permetterà una migliore comprensione della fisiologia e dello sviluppo del cuore ed il disegno di nuove strategie diagnostiche e terapeutiche per le patologie cardiache.”

Riferimenti:

The long noncoding RNA Charme supervises cardiomyocyte maturation by controlling cell differentiation programs in the developing heart – Valeria Taliani, Giulia Buonaiuto, Fabio Desideri, Adriano Setti, Tiziana Santini, Silvia Galfrè, Leonardo Schirone, Davide Mariani, Giacomo Frati, Valentina Valenti, Sebastiano Sciarretta, Emerald Perlas, Carmine Nicoletti, Antonio Musarò, Monica Ballarino – eLife 2023 https://doi.org/10.7554/eLife.81360

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Differenziamento dei motoneuroni: il ruolo degli RNA non codificanti

Un nuovo studio, frutto di una collaborazione tra il Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza, l’Istituto italiano di tecnologia e il Cnr, rivela la sinergia tra RNA codificanti e non codificanti nel regolare la formazione dei motoneuroni e apre la strada a nuovi approcci terapeutici per la cura delle malattie neurodegenerative. I risultati sono stati pubblicati sulla rivista The EMBO Journal.

Differenziamento dei motoneuroni: il ruolo degli RNA non codificanti
Foto di  Gerd Altmann

Il ruolo fondamentale degli RNA non codificanti – che non sono tradotti in proteine – nella regolazione dei programmi di sviluppo e funzionamento dei tessuti, in particolare del sistema nervoso, è emerso soprattutto negli ultimi anni.

Sebbene molte funzioni specifiche siano ancora poco conosciute, gli RNA non codificanti hanno un ruolo biologico cruciale, che li rende di notevole interesse soprattutto nell’ambito della ricerca biomedica.

Un nuovo studio, coordinato da Irene Bozzoni, del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza e del Clns dell’Istituto italiano di tecnologia, in collaborazione con Pietro Laneve del Cnr, ha permesso di caratterizzare l’attività di uno specifico gene (MN2) che dirige la produzione di molteplici RNA non codificanti strutturalmente diversi, sia lunghi (lncRNA) che corti (microRNA).

In particolare, tecniche avanzate di biologia molecolare e cellulare hanno permesso ai ricercatori di chiarire il meccanismo attraverso cui il dialogo tra lncRNA e microRNA controlla l’espressione di geni codificanti per proteine fondamentali nel differenziamento dei motoneuroni, ovvero di quei neuroni che veicolano i segnali nervosi dal sistema nervoso centrale ai muscoli.

La ricerca, nata dalla collaborazione tra la Sapienza, l’Istituto italiano di tecnologia e il Cnr, è stata finanziata da ERC-2019-SyG e pubblicata sulla prestigiosa rivista internazionale The EMBO Journal.

“Il lavoro – spiega Irene Bozzoni, coordinatrice del gruppo di ricerca – ci aiuta a capire meglio le funzioni attribuite al genoma non codificante. In particolare, abbiamo evidenziato per la prima volta come un meccanismo basato sul sequestro di microRNA da parte di un lncRNA – detto “spugna molecolare” – contribuisca alla generazione dei motoneuroni.”

 I motoneuroni, oltre a essere mediatori dei segnali nervosi responsabili della contrazione muscolare, sono anche bersagli di gravi patologie degenerative e di lesioni invalidanti.

 “L’auspicio – conclude Irene Bozzoni – è che la comprensione dei processi di formazione dei motoneuroni possa consentire lo sviluppo di nuovi approcci terapeutici in medicina neurodegenerativa”.

Riferimenti:
A multifunctional locus controls motor neuron differentiation through short and long non coding RNAs – Andrea Carvelli, Adriano Setti, Fabio Desideri, Silvia Galfrè, Silvia Biscarini, Tiziana Santini, Alessio Colantoni, Giovanna Peruzzi, Matteo J Marzi, Davide Capauto, Silvia Di Angelantonio, Monica Ballarino, Francesco Nicassio, Pietro Laneve, Irene Bozzoni- The EMBO Journal (2022) https://doi.org/10.15252/embj.2021108918

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma