News
Ad
Ad
Ad
Tag

rover Perseverance

Browsing

INDIVIDUATE NUOVE TRACCE DI SOSTANZE ORGANICHE NEI SOLFATI SU MARTE

Tracce di composti organici associati a solfati sono state individuate sulla superficie di Marte. A riportare la scoperta è un articolo pubblicato oggi sulla rivista Nature Astronomy, basato su dati raccolti dallo spettrometro Sherloc a bordo del rover Perseverance della NASA, in campioni prelevati nel cratere marziano Jezero. Non è possibile escludere che queste molecole organiche siano residui derivanti dalla degradazione di materia microbica antica, sebbene l’origine più probabile sia considerata abiotica, più specificamente attraverso reazioni di gas magmatici con ossidi di ferro presenti nelle rocce vulcaniche. A guidare il team è Teresa Fornaro, dell’Istituto Nazionale di Astrofisica (INAF).

Vista 3D del target Pilot Mountain, situato sulla sommità del ventaglio deltizio di Jezero crater, dove lo strumento Sherloc del rover Perseverance della NASA ha rilevato firme spettrali compatibili con idrocarburi policiclici aromatici all’interno di grani di solfato, suggerendo la preservazione di molecole organiche complesse in matrici minerali evaporitiche. Crediti: Teresa Fornaro, Andrew Alberini, Giovanni Poggiali, con modello 3D del target Pilot Mountain da: "M2020 WATSON -- Pilot Mountain, sol 874" (https://skfb.ly/oJWWx) by Mastcam-Z is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/)
Vista 3D del target Pilot Mountain, situato sulla sommità del ventaglio deltizio di Jezero crater, dove lo strumento Sherloc del rover Perseverance della NASA ha rilevato firme spettrali compatibili con idrocarburi policiclici aromatici all’interno di grani di solfato, suggerendo la preservazione di molecole organiche complesse in matrici minerali evaporitiche. Crediti: Teresa Fornaro, Andrew Alberini, Giovanni Poggiali, con modello 3D del target Pilot Mountain da: “M2020 WATSON — Pilot Mountain, sol 874” (https://skfb.ly/oJWWx) by Mastcam-Z is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/)

La ricerca di molecole organiche su Marte è centrale per capire se il pianeta abbia mai offerto condizioni favorevoli alla vita. Alcuni composti organici possono infatti rappresentare nutrienti, mentre altri, più complessi, potrebbero costituire vere e proprie biofirme. Nonostante in passato siano già state individuate molecole organiche, la loro origine e conservazione restano ancora poco chiare.

Proprio per questo il cratere Jezero, antica area deltizia che un tempo ospitava un lago e che potrebbe aver avuto un alto potenziale di abitabilità, è oggi uno dei luoghi più interessanti da studiare. Qui, lo strumento Sherloc (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) a bordo del rover Perseverance ha rilevato segnali Raman forti e complessi associati a solfati, in particolare nelle aree denominate Quartier e Pilot Mountain, rispettivamente sul fondo del cratere e sul ventaglio deltizio.

“Quando Sherloc ha rivelato forti segnali Raman nella regione spettrale degli organici nel target Quartier, ci siamo entusiasmati. Questi segnali erano associati spazialmente a solfati di magnesio e calcio, che sulla Terra mostrano grandi capacità di preservazione della materia organica”, sottolinea Teresa Fornaro. “L’associazione con i solfati era davvero un enigma affascinante e mi ha spinta a esaminare uno per uno gli 839 spettri acquisiti da Sherloc in cui sono stati rilevati solfati sul fondo del cratere e sul ventaglio deltizio di Jezero, alla ricerca di segnali potenzialmente indicativi di composti organici. In questo modo, ho scoperto che il target Pilot Mountain, situato sulla sommità del ventaglio, mostra segnali Raman simili a quelli osservati in Quartier”.

Per verificare l’ipotesi che i segnali osservati sono effettivamente dovuti a molecole organiche, il team ha condotto esperimenti nel Laboratorio di Astrobiologia dell’INAF a Firenze. Sono stati utilizzati materiali analoghi marziani e strumenti simili a Sherloc, riproducendo processi naturali in condizioni controllate. Il confronto con i dati acquisiti in situ ha permesso di consolidare l’interpretazione organica.

“Il Laboratorio di Astrobiologia di Arcetri, grazie al supporto dell’INAF e dell’Agenzia Spaziale Italiana, ha acquisito nel corso degli anni strumentazioni all’avanguardia che ci hanno permesso di ritagliarci un ruolo di rilievo nel contesto internazionale per quanto riguarda i temi dell’astrobiologia” spiega John Brucato dell’INAF, responsabile del laboratorio e coautore dello studio. “Siamo in grado di caratterizzare i composti organici presenti nei materiali che ci giungono dallo spazio, come le meteoriti o i campioni riportati a terra dalle missioni, e di simulare le condizioni e i processi chimico-fisici che possono verificarsi sulla superficie di Marte. Grazie alla partecipazione alle missioni marziane con i rover Perseverance della NASA e Rosalind Franklin dell’ESA, il nostro ambizioso obiettivo è riuscire a trovare le biofirme di una vita extraterrestre”.

“Nello specifico, abbiamo mescolato minerali solfati con molecole organiche aromatiche facilmente rilevabili da Sherloc, utilizzando metodi che imitano processi naturali potenzialmente avvenuti in passato in un ambiente acquoso a Jezero, seguiti da essiccazione. Successivamente, abbiamo analizzato i campioni preparati con strumenti analoghi a Sherloc”, spiega ancora Fornaro. “Questo metodo ci ha permesso di acquisire un set di dati di riferimento da confrontare direttamente con le osservazioni in situ, essenziali per interpretare correttamente i complessi segnali provenienti da Marte. Sulla base di queste indagini, abbiamo potuto attribuire questi segnali a idrocarburi policiclici aromatici preservati all’interno dei solfati”.

Il Cratere Jezero su Marte ripreso dalla sonda Mars Express dell'Agenzia Spaziale Europea (ESA). Crediti: ESA/DLR/FU Berlin
Il Cratere Jezero su Marte ripreso dalla sonda Mars Express dell’Agenzia Spaziale Europea (ESA). Crediti: ESA/DLR/FU Berlin

Il rilevamento in rocce vulcaniche suggerisce che gli idrocarburi policiclici aromatici possano essersi formati attraverso processi magmatici e, in seguito, essere stati mobilizzati dall’acqua e intrappolati nei solfati. I fluidi circolanti, comprese possibili acque idrotermali, avrebbero favorito il loro accumulo selettivo e la conservazione nelle rocce del cratere Jezero. Questi risultati si aggiungono a precedenti evidenze da meteoriti e dal cratere Gale, rafforzando il ruolo dei solfati nella conservazione della materia organica marziana.

“Sebbene non siano state trovate prove che questa materia organica sia di origine biologica, non è possibile escludere completamente che le sostanze organiche rilevate in queste rocce possano derivare dall’alterazione chimica di antichi composti biotici” conclude Fornaro“In attesa di un possibile futuro ritorno di questi campioni marziani per analisi più dettagliate sulla Terra, stiamo continuando a indagare sulla natura delle altre componenti di questi segnali complessi, la cui origine è ancora da chiarire del tutto”.

Riferimenti bibliografici:
L’articolo Evidence for polycyclic aromatic hydrocarbons detected in sulfates at Jezero crater by the Perseverance rover, di Teresa Fornaro, Sunanda Sharma, Ryan S. Jakubek, Giovanni Poggiali, John Robert Brucato, Rohit Bhartia, Andrew Steele, Ashley E. Murphy, Mike Tice, Mitchell D. Schulte, Kevin P. Hand, Marc D. Fries, William J. Abbey, Andrew Alberini, Daniela Alvarado-Jiménez, Kathleen C. Benison, Eve L. Berger, Sole Biancalani, Adrian J. Brown, Adrian Broz, Wayne P. Buckley, Denise K. Buckner, Aaron S. Burton, Sergei V. Bykov, Emily L. Cardarelli, Edward Cloutis, Stephanie A. Connell, Cristina Garcia-Florentino, Felipe Gómez, Nikole C. Haney, Carina Lee, Valeria Lino, Paola Manini, Francis M. McCubbin, Michelle Minitti, Richard V. Morris, Yu Yu Phua, Nicolas Randazzo, Joseph Razzell Hollis, Francesco Renzi, Sandra Siljeström, Justin I. Simon, Anushree Srivastava, Nicola Tasinato, Kyle Uckert, Roger C. Wiens, Amy J. Williams, è stato pubblicato su Nature Astronomy.

 

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

Marte, il pianeta rosso. Gli antichi Greci lo identificarono col dio Ares, corrispondente a sua volta al romano Marte: il rosso dio della guerra pare una scelta certo appropriata. Lo si rappresenta con scudo e lancia, i quali vennero stilizzati per formare il simbolo astronomico del pianeta (e pure del sesso maschile).

 

Tra i sette pianeti del sistema solare, è quello più simile alla nostra Terra; sebbene più piccolo (il diametro è circa la metà di quello terrestre), il giorno solare marziano, detto sol, dura poco più di 24 h e l’asse di rotazione è inclinato di circa 25° sul piano dell’orbita, vicino al valore dei 23° di quella terrestre. Per via della somiglianza nel valore dell’angolo di inclinazione dell’asse, anche Marte sperimenta il susseguirsi delle quattro stagioni che, assieme alla latitudine, producono una variazione di temperatura da un minimo di circa -140° C ad un massimo di una ventina di gradi.

Il Monte Olimpo. Foto Nasa, mosaico di altre dal Viking, ritoccata da Seddon, pubblico dominio

Pure la morfologia della superficie è simile a quella del nostro pianeta: su Marte ci sono valli, pianure e montagne. Tra queste ultime, spicca il Monte Olimpo, la vetta più alta del sistema solare, con i suoi 27 km. Degna di nota è anche la Valles Marineris, un solco analogo al nostro Grand Canyon, ma decisamente più lungo, largo e profondo.

Marte
La Valles Marineris, foto mosaico di altre dal Viking, courtesy NASA/JPLCaltech, attribuzione

Nel cielo di Marte potremmo scorgere due piccole lune, Phobos e Deimos, dei grossi sassi per nulla sferici e molto scuri che, in un lasso di tempo superiore alle centinaia di milioni di anni, abbandoneranno il loro pianeta, il primo precipitandovi sopra, il secondo allontanandosene definitivamente.

Forse, però, l’aspetto più intrigante di Marte è la ricerca di forme di vita.

La mappa di Marte di Giovanni Schiaparelli, dalla Meyers Konversations-Lexikon (1888). Pubblico dominio

Già nel 1877, l’astronomo italiano Giovanni Schiaparelli, osservando Marte, notò delle strutture simili ai fiumi terrestri che chiamò canali. Da un’errata traduzione di “canale” in canal si originò e diffuse l’affascinante idea di un Marte popolato da una civiltà intelligente e avanzata, in grado di progettare una rete idraulica di canali per sopperire all’aridità del pianeta. Questa convinzione era corroborata anche dall’osservazione delle frequenti variazioni nell’aspetto di Marte dovute a fenomeni meteorologici, ma interpretate allora come movimento di una copertura boschiva. La distruzione del mito fantascientifico dei marziani arriva solo nella seconda metà del ‘900 grazie alle esplorazioni spaziali. Come per la corsa alla Luna, i primi protagonisti della corsa alla scoperta di Marte furono USA e URSS e, analogamente, fu un susseguirsi di insuccessi cominciati nel 1960 con le sonde sovietiche Marsnik e Sputnik. La prima foto arriva nel 1964 con la Mariner 4 della NASA che fornisce l’immagine di un pianeta morto, molto simile alla Luna. Dunque i marziani non esistevano, ma le immagini della Mariner 9 del 1971 fecero intuire la presenza di antichi mari e fiumi e risorgere la speranza della presenza di forme di vita, almeno in passato.

Francobollo da 6 copechi dell’Unione Sovietica (1964), ritraente la sonda Mars 1/Sputnik23. Pubblico dominio

Grande successo ebbero poi le due missioni, nel 1975, del programma Viking della NASA che inviarono più di 50000 foto a colori; tra queste anche la famosa “faccia” che alimentò la fantasia degli ufologi. Nel Dicembre del 1996 partì la missione Mars Pathfinder che trasportava Sojourner, il primo rover a muoversi su Marte, a cui seguirono i due rover gemelli Spirit ed Opportunity nel 2003, del programma Mars Exploration Rover, tutti sotto guida NASA. Nel 2003 scese in campo anche l’ESA, con Mars Express che prevedeva anche un lander andato, purtroppo, perduto. L’orbiter, tutt’oggi in funzione, scovò, invece, ghiaccio d’acqua e di anidride carbonica nel polo Sud del pianeta. La presenza di ghiaccio al polo Nord era già stata accertata nel 2008 dal lander della missione NASA Phoenix.

Marte
Il programma Viking col suo lander nella Chryse Planitia. Foto realizzata da Roel van der Hoorn sulla base di scatti (1977) NASA Viking image archive, pubblico dominio

Nel 2011, il programma Mars Science Laboratory con il rover Curiosity, si è rivelato indubbiamente una delle missioni di maggior successo per l’esplorazione di Marte. Atterrato nell’Agosto del 2012 nel mezzo del cratere Gale, Curiosity ha superato di gran lunga i due anni di durata nominale della missione ed è tuttora attivo. L’obiettivo principale della missione era proprio determinare l’“abitabilità” di Marte. Nel suo viaggio dal cratere Gale al monte Sharp, Curiosity ha collezionato numerosi risultati scientifici; tra di essi ricordiamo la conferma della presenza di antichi laghi che hanno ospitato l’acqua per decine di migliaia di anni e, dall’analisi delle rocce, la scoperta di composti organici. Curiosity ci ha anche rivelato che Marte, in passato, possedeva un’atmosfera molto più spessa nella quale c’era una maggiore percentuale di ossigeno. Ha trovato una variazione ciclica del metano in atmosfera attribuibile all’interazione tra rocce ed acqua oppure a microrganismi. Ci ha descritto, in conclusione, un ambiente compatibile con la vita.

Il cratere Korolev ripreso dal Mars Express dell’ESA. Foto ESA/DLR/FU Berlin, CC BY-SA 3.0

Ancora in corso sono anche InSight (NASA) e ExoMars (ESA). A quest’ultima, di cui l’Italia attraverso l’ASI è il principale sostenitore con il 40% dell’investimento totale, si deve la scoperta di un bacino di acqua salata sotterraneo nei pressi del polo Sud di Marte.

Il futuro dell’esplorazione del pianeta rosso è in mano alle numerose nuove spedizioni, a partire dal diretto successore di Curiosity, il rover Perseverance, a cui si affiancherà il Mars Helicopter nell’ambito della missione Mars 2020, la cui partenza è stata programmata per questa estate. Per non parlare delle missioni con equipaggio umano…

Video a cura di Inter Nos: Silvia Giomi e Marco Merico