News
Ad
Ad
Ad
Tag

Physical Review Letters

Browsing

LVK: a dieci anni dalla scoperta, le onde gravitazionali verificano il teorema dell’area dei buchi neri di Stephen Hawking

LIGO, Virgo e KAGRA celebrano questa settimana l’anniversario della prima rilevazione delle onde gravitazionali e annunciano la verifica del teorema dell’area dei buchi neri di Stephen Hawking

Il 14 settembre 2015 è arrivato sulla Terra un segnale generato da una coppia di buchi neri che, dopo aver spiraleggiato uno attorno all’altro a velocità impressionanti, si erano fusi, liberando una enorme quantità di energia. Per raggiungerci il segnale aveva viaggiato per circa 1,3 miliardi di anni alla velocità della luce, ma non si trattava di un segnale luminoso, era un fremito dello spazio-tempo chiamato onda gravitazionale, teorizzato per la prima volta da Albert Einstein 100 anni prima. Quella prima rivelazione diretta delle onde gravitazionali effettuata dai due rilevatori gemelli LIGO negli Stati Uniti, sarà annunciata al mondo dalle collaborazioni LIGO e Virgo,  dopo molti mesi di analisi e verifiche, solo nel febbraio 2016. E porterà l’anno successivo alla assegnazione del premio Nobel per la Fisica, a tre dei fondatori di LIGO: Rainer Weiss, professore emerito di fisica dell’MIT (recentemente scomparso all’età di 92 anni), Barry Barish e Kip Thorne di Caltech.

Oggi i rivelatori gravitazionali statunitensi LIGO negli stati di Washington e Louisiana, Virgo, progetto fondato dall’Istituto Nazionale  di Fisica Nucleare e dal francese CNRS in Italia e KAGRA in Giappone opera in modo coordinato e osserva circa una fusione di buchi neri ogni tre giorni. Il network LVK (LIGO, Virgo e KAGRA) ha osservato un totale di circa 300 fusioni di buchi neri, alcune delle quali sono state confermate mentre altre sono in attesa di ulteriori analisi. Nel corso dell’attuale periodo di osservazione scientifico, cominciato a giugno 2023, LVK ha rivelato circa 230 segnali candidati a essere fusioni di buchi neri, più del doppio di quelli rilevati nei primi tre periodi.

Dieci anni di scoperte di LVKQuesto grafico illustra le scoperte effettuate dalla rete LIGO-Virgo-KAGRA (LVK) dalla prima rilevazione di LIGO, nel 2015, di onde gravitazionali provenienti da una coppia di buchi neri in collisione. Le rivelazioni consistono principalmente in fusioni di buchi neri, ma una manciata coinvolge stelle di neutroni (collisioni buco nero-stella di neutroni o stella di neutroni-stella di neutroni). Finora, durante l'attuale quarto ciclo scientifico, i rivelatori LVK hanno individuato circa 220 fusioni, più del doppio del numero (90) trovato nei primi tre cicli combinati. L'evento più vicino osservato finora, mostrato nel Run 2 e indicato dalla freccia in basso, è una fusione binaria di stelle di neutroni nota come GW170817, situata a soli 130 milioni di anni luce di distanza. In questo grafico, le masse totali degli oggetti iniziali sono rappresentate dalle dimensioni, mentre l'intensità del segnale è indicata dal colore. Il grafico dimostra che nel corso del tempo gli osservatori di onde gravitazionali stanno trovando un maggior numero di buchi neri e li rivelano con un rapporto segnale/rumore più elevato, grazie ai progressi compiuti dai rivelatori. Si noti che le rivelazioni di buchi neri nell'ultima metà del quarto run sono grigie e appaiono della stessa dimensione, perché questi dati non sono stati rilasciati per intero, a eccezione dell'evento denominato GW250114. Questo evento, il segnale più chiaro mai rilevato da LIGO, appare come un punto luminoso arancione sul grafico del quarto run. Crediti immagine: LIGO/Caltech/MIT/R. Hurt (IPAC)
Dieci anni di scoperte di LVK
Questo grafico illustra le scoperte effettuate dalla rete LIGO-Virgo-KAGRA (LVK) dalla prima rilevazione di LIGO, nel 2015, di onde gravitazionali provenienti da una coppia di buchi neri in collisione. Le rivelazioni consistono principalmente in fusioni di buchi neri, ma una manciata coinvolge stelle di neutroni (collisioni buco nero-stella di neutroni o stella di neutroni-stella di neutroni).
Finora, durante l’attuale quarto ciclo scientifico, i rivelatori LVK hanno individuato circa 220 fusioni, più del doppio del numero (90) trovato nei primi tre cicli combinati. L’evento più vicino osservato finora, mostrato nel Run 2 e indicato dalla freccia in basso, è una fusione binaria di stelle di neutroni nota come GW170817, situata a soli 130 milioni di anni luce di distanza.
In questo grafico, le masse totali degli oggetti iniziali sono rappresentate dalle dimensioni, mentre l’intensità del segnale è indicata dal colore. Il grafico dimostra che nel corso del tempo gli osservatori di onde gravitazionali stanno trovando un maggior numero di buchi neri e li rivelano con un rapporto segnale/rumore più elevato, grazie ai progressi compiuti dai rivelatori.
Si noti che le rivelazioni di buchi neri nell’ultima metà del quarto run sono grigie e appaiono della stessa dimensione, perché questi dati non sono stati rilasciati per intero, a eccezione dell’evento denominato GW250114. Questo evento, il segnale più chiaro mai rilevato da LIGO, appare come un punto luminoso arancione sul grafico del quarto run.
Crediti immagine: LIGO/Caltech/MIT/R. Hurt (IPAC)

Il notevole aumento del numero di osservazioni di LVK nell’ultimo decennio è dovuto a diversi miglioramenti apportati ai rivelatori, alcuni dei quali sfruttano l’ingegneria di precisione quantistica di ultima generazione. Questi interferometri per onde gravitazionali sono di gran lunga il più preciso strumento di misurazione mai creato dall’umanità. Le distorsioni spazio-temporali indotte dalle onde gravitazionali sono incredibilmente minuscole. Per osservarle, LIGO,Virgo e KAGRA devono rivelare cambiamenti nello spazio-tempo più piccoli di un decimillesimo della dimensione di un protone. Vale a dire 700.000 miliardi di volte più piccole dello spessore di un capello umano.

Il segnale più chiaro finora

La maggiore sensibilità degli strumenti è esemplificata dalla recente scoperta di una fusione di buchi neri denominata GW250114 (i numeri indicano la data in cui il segnale delle onde gravitazionali è arrivato sulla Terra: 14 gennaio 2025). L’evento non è molto diverso dalla prima rivelazione in assoluto (denominata GW150914): entrambi coinvolgono buchi neri in collisione a circa 1,3 miliardi di anni luce di distanza, con masse da 30 a 40 volte quelle del nostro Sole. Ma grazie a 10 anni di progressi tecnologici che hanno ridotto il rumore strumentale, il segnale di GW250114 è molto più nitido.

“Possiamo sentirlo forte e chiaro, e questo ci permette di testare le leggi fondamentali della fisica”,

dice Katerina Chatziioannou, membro di LIGO e Assistant Professor di fisica a Caltech, tra i principali autori di un nuovo studio su GW250114 pubblicato su Physical Review Letters.

Analizzando le frequenze delle onde gravitazionali emesse dalla fusione, il team di LVK è stato in grado di fornire la migliore prova osservativa finora acquisita di quello che è noto come il teorema dell’area dei buchi neri, un’idea avanzata da Stephen Hawking nel 1971 secondo cui le superfici totali dei buchi neri non possono diminuire. Quando i buchi neri si fondono, le loro masse si uniscono, aumentando la superficie. Ma perdono anche energia sotto forma di onde gravitazionali. Inoltre, la fusione può far sì che il buco nero combinato aumenti il suo spin, il che porterebbe a ridurre la sua area. In realtà Il teorema dell’area del buco nero afferma che, nonostante questi fattori in competizione, la superficie totale del buco nero finale deve comunque crescere In seguito, Hawking e il fisico Jacob Bekenstein conclusero che l’area di un buco nero è proporzionale alla sua entropia, o grado di disordine. Queste scoperte hanno aperto la strada a successivi lavori rivoluzionari nel campo della gravità quantistica, che cerca di unire due pilastri della fisica moderna: la relatività generale e la fisica quantistica.

Credito immagine: Lucy Reading-Ikkanda/Simons Foundation
Credito immagine: Lucy Reading-Ikkanda/Simons Foundation

In sostanza, la rivelazione ha permesso al team di “ascoltare” i due buchi neri che crescevano mentre si fondevano in uno solo, verificando il teorema di Hawking. I buchi neri iniziali avevano una superficie totale di 240.000 chilometri quadrati (circa la dimensione del Regno Unito), mentre l’area finale era di circa 400.000 chilometri quadrati (quasi la dimensione della Svezia). Questo è il secondo test del teorema dell’area del buco nero; un primo test è stato eseguito nel 2021 utilizzando i dati del primo segnale GW150914, ma poiché quei dati non erano così chiari, i risultati avevano un livello di confidenza del 95% rispetto al 99,999% dei nuovi dati. Kip Thorne ricorda che Hawking gli telefonò per chiedergli se LIGO potesse essere in grado di testare il suo teorema subito dopo aver appreso della rivelazione delle onde gravitazionali nel 2015. “Se Hawking fosse ancora vivo, si avrebbe certamente gioito  nel vedere che l’analisi dei dati di GW250114 mostri che  l’area dei buchi neri uniti effettivamente aumenta”, dice Thorne.  (Hawking è scomparso nel 2018)

Credito immagine: Lucy Reading-Ikkanda/Simons Foundation
Credito immagine: Lucy Reading-Ikkanda/Simons Foundation

Nello studio pubblicato oggi, infatti, i ricercatori sono riusciti a misurare con precisione i dettagli della cosiddetta fase di ringdown, in cui, dopo la fusione, il buco nero finale vibra come una campana colpita. Ciò ha permesso loro di calcolare la massa e lo spin del buco nero e di determinarne quindi la superficie. In questo studio,in effetti, sono stati individuati per la prima volta, con sicurezza, due distinti “modi” di onde gravitazionali nella fase di ringdown. I modi sono come i suoni caratteristici di una campana, quando viene colpita: hanno frequenze simili ma si estinguono a velocità diverse, il che li rende difficili da identificare. Grazie al miglioramento dei dati relativi a GW250114, il team ha potuto estrarre per la prima volta i modi, dimostrando che il ringdown del buco nero si è verificato esattamente come previsto dai modelli matematici. Infine un altro studio di LIGO – Virgo – KAGRA, presentato oggi a Physical Review Letters, pone dei limiti alla previsione di un terzo tono più acuto nel segnale di GW250114 ed esegue alcuni dei test più rigorosi finora condotti sull’accuratezza della relatività generale nel descrivere la fusione dei buchi neri.

“Analizzare i dati dei rivelatori per individuare segnali astrofisici transitori, inviare alerts per attivare osservazioni di follow-up da parte dei telescopi e pubblicare i risultati raccogliendo informazioni da centinaia di eventi è un processo piuttosto lungo e complesso”, aggiunge Nicolas Arnaud, ricercatore del CNRS in Francia e coordinatore del quarto ciclo di osservazioni di Virgo. “Dietro a tutti questi passaggi ci sono. però, esseri umani, in particolare quelli che sono in turno costantemente a sorvegliare i nostri strumenti, in tutte le regioni del pianeta: letteralmente, il Sole non tramonta mai sulle nostre collaborazioni!”.

Spingersi oltre i limiti

LIGO e Virgo hanno anche osservato stelle di neutroni nell’ultimo decennio. Come i buchi neri, le stelle di neutroni si formano dopo la morte esplosiva delle stelle massicce, ma sono meno pesanti e emettono luce. Nell’agosto 2017, LIGO e Virgo hanno assistito all’epica collisione tra una coppia di stelle di neutroni – una kilonova – che ha disperso nello spazio oro e altri elementi pesanti. Lo stesso fenomeno è stato immediatamente segnalato a  decine di telescopi suulla Terra e nello Spazio, che hanno potuto catturare altri segnali generati dallo stesso evento: dai raggi gamma ad alta energia alle onde radio a bassa energia. Questo evento astronomico “multi-messaggero” ha segnato una tappa epocale. La ricerca di altre collisioni di stelle di neutroni resta oggi una delle frontiere più promettenti per la comunità astronomica e il network LVK è al centro di un sistema di alerts, che consente ai telescopi di cercare nei cieli i segni di una nuova potenziale kilonova.

“La rete globale fdi rivelatori gravitazionali  è essenziale per l’astronomia delle onde gravitazionali”, afferma Gianluca Gemme, portavoce di Virgo e dirigente di ricerca dell’INFN (Istituto Nazionale di Fisica Nucleare). “Con tre o più rivelatori che operano all’unisono, possiamo individuare gli eventi cosmici con maggiore precisione, estrarre informazioni astrofisiche più ricche e consentire segnalazioni rapide per il follow-up di più messaggeri. La Collaborazione Virgo è orgogliosa di contribuire a questa impresa scientifica mondiale”.

Guardando al futuro, gli scienziati stanno lavorando a rivelatori ancora più grandi. Il progetto europeo, chiamato Einstein Telescope, prevede di costruire uno o due enormi interferometri sotterranei con bracci di oltre 10 chilometri, mentre quello statunitense, chiamato Cosmic Explorer, sarebbe simile all’attuale LIGO ma con bracci lunghi 40 chilometri. Osservatori di questa portata consentirebbero di ascoltare le prime fusioni di buchi neri nell’universo e, forse, l’eco delle scosse gravitazionali dei primissimi istanti dopo il Big Bang.

“Questo è un momento straordinario per la ricerca sulle onde gravitazionali: grazie a strumenti come Virgo, LIGO e KAGRA, possiamo esplorare un universo oscuro che prima era completamente inaccessibile”, ha dichiarato Massimo Carpinelli, professore all’Università di Milano Bicocca e direttore dell’Osservatorio Gravitazionale Europeo di Cascina. “Le conquiste scientifiche di questi 10 anni stanno innescando una vera e propria rivoluzione nella nostra visione dell’Universo. Stiamo già preparando una nuova generazione di rivelatori come Einstein Telescope in Europa e Cosmic Explorer negli Stati Uniti, oltre all’ interferometro spaziale LISA, che ci porteranno ancora più lontano nello spazio e nel tempo. Nei prossimi anni, saremo in grado di affrontare queste straordinarie sfide solo grazie a una sempre più ampia e solida collaborazione tra scienziati, Paesi e istituzioni diverse, sia a livello europeo che globale.”

Una sinfonia cosmica rivelataQuest'opera d'arte ci immerge in GW250114, una potente collisione tra due buchi neri osservata con le onde gravitazionali dal progetto LIGO della National Science Foundation statunitense. Raffigura la vista da uno dei buchi neri mentre si dirige a spirale verso il suo partner cosmico. Dieci anni dopo la storica rilevazione delle onde gravitazionali da parte di LIGO, i rivelatori migliorati hanno permesso di "sentire" questa collisione celeste con una chiarezza senza precedenti. I dati sulle onde gravitazionali hanno permesso agli scienziati di distinguere molteplici toni che risuonano come una campana cosmica attraverso l'universo (immaginato qui come un intreccio di fili musicali che si dirigono a spirale verso il centro). Sebbene solo LIGO fosse online durante l’osservazione di GW250114, ora opera abitualmente come parte di una rete con altri rivelatori di onde gravitazionali, tra cui Virgo in Europa e KAGRA in Giappone. Credit immagine: Aurore Simonnet (SSU/EdEon)/LVK/URI
A dieci anni dalla scoperta, le onde gravitazionali verificano il teorema dell’area dei buchi neri di Stephen Hawking. Una sinfonia cosmica rivelata.
Quest’opera d’arte ci immerge in GW250114, una potente collisione tra due buchi neri osservata con le onde gravitazionali dal progetto LIGO della National Science Foundation statunitense. Raffigura la vista da uno dei buchi neri mentre si dirige a spirale verso il suo partner cosmico. Dieci anni dopo la storica rilevazione delle onde gravitazionali da parte di LIGO, i rivelatori migliorati hanno permesso di “sentire” questa collisione celeste con una chiarezza senza precedenti. I dati sulle onde gravitazionali hanno permesso agli scienziati di distinguere molteplici toni che risuonano come una campana cosmica attraverso l’universo (immaginato qui come un intreccio di fili musicali che si dirigono a spirale verso il centro).
Sebbene solo LIGO fosse online durante l’osservazione di GW250114, ora opera abitualmente come parte di una rete con altri rivelatori di onde gravitazionali, tra cui Virgo in Europa e KAGRA in Giappone.
Credit immagine: Aurore Simonnet (SSU/EdEon)/LVK/URI

Testo, video e immagini dall’Ufficio Stampa EGO e Virgo

Distinguere i buchi neri: sarà più facile grazie a un nuovo metodo basato sull’intelligenza artificiale sviluppato dall’Università di Milano-Bicocca

Pubblicato sulla rivista Physical Review Letters, lo studio rivoluziona i metodi tradizionali dell’astronomia delle onde gravitazionali.

Milano, 31 marzo 2025 – Un innovativo metodo basato sull’intelligenza artificiale che migliora la precisione nella classificazione di buchi neri e stelle di neutroni. È quello sviluppato da un team di ricercatori dell’Università di Milano-Bicocca, guidato dal professor Davide Gerosa e supportato dallo European Research Council. Lo studio, pubblicato sulla rivista Physical Review Letters, mette in discussione un’ipotesi ritenuta valida per decenni e apre la strada a un’analisi più accurata dei segnali cosmici.

L’astronomia delle onde gravitazionali permette di osservare coppie di oggetti compatti quali stelle di neutroni e buchi neri: le onde gravitazionali sono infatti prodotte dallo spiraleggiamento e dalla fusione di questi sistemi binari. Le analisi tradizionali assumono a priori come distinguere i due oggetti in ciascuna binaria.

«Fino a oggi, il metodo più diffuso per l’identificazione degli oggetti prevedeva di etichettare il più massiccio come “1” e il meno massiccio come “2”. Tuttavia, questa scelta, apparentemente intuitiva, introduce ambiguità nelle misure, specialmente nei sistemi binari con masse simili. Ci siamo chiesti: è davvero la scelta migliore?», spiega Gerosa.

Il nuovo studio propone di superare questa limitazione utilizzando una tecnica di intelligenza artificiale chiamata spectral clustering che analizza l’insieme completo dei dati senza applicare etichette rigide a priori. Questo nuovo metodo consente di ridurre le incertezze nelle misure degli spin dei buchi neri, ovvero nella determinazione della velocità e della direzione di rotazione di questi oggetti. Una corretta misurazione dello spin è fondamentale per comprendere la formazione e l’evoluzione dei buchi neri. Il nuovo approccio migliora notevolmente la precisione di queste misure e rende più affidabile la distinzione tra buchi neri e stelle di neutroni.

«Questa pubblicazione mette in discussione un presupposto di lunga data che è alla base di tutte le analisi delle onde gravitazionali fino a oggi, e che è rimasto indiscusso per decenni», continua l’astrofisico. «I risultati sono sorprendenti: le misurazioni dello spin sono più precise e distinguere i buchi neri dalle stelle di neutroni diventa più affidabile».

Davide Gerosa, Università di Milano-Bicocca
Davide Gerosa, Università di Milano-Bicocca, alla guida del team di ricercatori che ha prodotto lo studio su Physical Review Letters, che impiega l’intelligenza artificiale per un nuovo metodo al fine di distinguere i buchi neri

Lo studio condotto ha immediate ricadute per l’analisi dei dati raccolti con gli attuali rivelatori di onde gravitazionali LIGO e Virgo, nonché con quelli di futura costruzione quali LISA e l’Einstein Telescope. Questa ricerca apre la strada a una revisione delle tecniche di analisi delle onde gravitazionali e sottolinea, inoltre, il ruolo crescente dell’intelligenza artificiale nella ricerca astrofisica.

Testo e immagini dall’Ufficio stampa Università di Milano-Bicocca.

Studiare le onde di Alfvén, un particolare tipo di onde magnetiche nel Sole, per migliorare le previsioni sulla propagazione del vento solare

Capire appieno i processi fisici che governano l’attività del Sole, la nostra stella, è uno dei principali modi per migliorare la capacità di prevedere i fenomeni solari che possono produrre effetti nello spazio interplanetario e sui pianeti, in particolar modo la Terra, nell’ambito della cosiddetta meteorologia dello spazio (o space weather). Un nuovo passo in questa direzione arriva dal lavoro di un gruppo di ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Agenzia Spaziale Italiana (ASI) pubblicato oggi sulla rivista Physical Review Letters. Lo studio suggerisce che, attraverso l’osservazione dei moti e delle riflessioni di un particolare tipo di onde magnetiche che si propagano negli strati più esterni dell’atmosfera del Sole sia possibile risalire alle regioni da cui si è originato il vento solare che possiamo osservare e analizzare quando raggiunge l’ambiente terrestre, migliorando così le informazioni sul suo percorso nello spazio e, quindi, le previsioni dei suoi potenziali effetti sul nostro pianeta.

Immagine coronale del Sole a disco intero, acquisita dallo strumento AIA a bordo della missione spaziale Solar Dynamic Observatory della NASA, raffigurante la regione studiata nel lavoro pubblicato su PRL. Crediti: Adattata da Murabito et al. 2024 (PRL, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.215201)
Immagine coronale del Sole a disco intero, acquisita dallo strumento AIA a bordo della missione spaziale Solar Dynamic Observatory della NASA, raffigurante la regione studiata nel lavoro pubblicato su PRL. Crediti: Adattata da Murabito et al. 2024 (PRL, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.215201)

Il lavoro, guidato dalla ricercatrice INAF Mariarita Murabito, ha utilizzato i dati acquisiti dallo spettrografo ad alta risoluzione EIS a bordo della missione Hinode dell’agenzia spaziale giapponese JAXA e dallo spettropolarimetro italiano ad alta risoluzione IBIS realizzato dall’Istituto Nazionale di Astrofisica e installato fino al 2019 al telescopio Dst (New Mexico, USA) per studiare le onde di Alfvén. Queste, sono onde magnetiche prodotte nello strato visibile di colore rossastro dell’atmosfera solare, che prende il nome di cromosfera. Le onde di Alfvén possono trasportare quantità significative di energia lungo le linee del campo magnetico fino alla porzione più esterna dell’atmosfera solare, la corona, dove è stata osservata la presenza di un elevato flusso di questo tipo di onde. Infatti, nella corona, il campo magnetico gioca un ruolo fondamentale ed è responsabile di tutta l’attività solare che osserviamo: brillamenti, espulsioni di massa coronale, vento solare ed emissione di particelle energetiche.

Studi precedenti hanno rilevato che la composizione chimica della cromosfera e corona solare differiscono da quella della fotosfera. La teoria proposta nel 2004 da Laming per spiegare questo inatteso comportamento, attribuisce la variazione nella composizione chimica alla forza che agisce sulle particelle cariche quando esse si muovono nel campo elettromagnetico del Sole. Questo nuovo studio dimostra la connessione tra le onde di Alfvén e le anomalie di abbondanza degli elementi chimici presenti nella corona, misurando la direzione di propagazione delle onde stesse. Questa connessione è dovuta proprio all’azione di questa forza sul plasma della cromosfera.

“Le onde magnetiche e il loro legame con le anomalie chimiche erano state già rilevate nel 2021. Con il nostro studio abbiamo messo in evidenza, per la prima volta, la direzione di propagazione, ovvero la riflessione, di queste onde. Usando lo stesso modello teorico proposto e modificato negli ultimi 20 anni l’accordo con i dati è sorprendente” commenta l’autrice dell’articolo, Mariarita Murabito, ricercatrice dell’INAF.

Questa connessione tra le onde di Alfvén e le proprietà del vento solare offre uno sguardo innovativo su come le interazioni magnetiche nel Sole possano influenzare l’ambiente spaziale circostante, portando a una maggiore comprensione dei processi che governano la fisica solare e dell’influenza dell’attività solare sui pianeti e corpi minori del Sistema solare.

“Le proprietà chimiche del plasma solare restano invariate attraversando lo spazio interplanetario e possono essere utilizzate come tracciante delle sorgenti del vento solare e delle perturbazioni che in esso si propagano. Capire l’origine di questo tracciante ci offre uno strumento nuovo per comprendere in prospettiva in che modo il Sole governi le condizioni fisiche dello spazio interplanetario e quindi progredire anche nella comprensione dei fenomeni space weather” spiega Marco Stangalini, ricercatore dell’ASI e coautore dell’articolo. “Questi risultati, inoltre, ci permetteranno di sfruttare al meglio i dati ottenuti dalla missione Solar Orbiter dell’ESA e dalle future missioni Solar-C e MUSE, alle quali l’Italia contribuisce, e che si focalizzeranno sullo studio della dinamica dell’atmosfera solare”.

Per ulteriori informazioni:

L’articolo “Observation of Alfv́en Wave Reflection in the Solar Chromosphere: Ponderomotive Force and First Ionization Potential Effect” di Mariarita Murabito, Marco Stangalini, J. Martin Laming, Deborah Baker, Andy S. H. To, David M. Long, David H. Brooks, Shahin Jafarzadeh, David B. Jess, Gherardo Valori è stato pubblicato online sulla rivista Physical Review Letters.

 

Testo e immagini dagli Uffici Stampa INAF e ASI.

UNO STUDIO DEL POLITECNICO DI TORINO APRE LA STRADA A NUOVE TECNOLOGIE BASATE SUI FILM DI SAPONE COME MEMBRANE REATTIVE A BASSO COSTO PER LA PRODUZIONE DI COMBUSTIBILI SOLARI

Pubblicato sulla prestigiosa rivista Physical Review Letters, oltre alle applicazioni nel campo dell’energia, potrebbe ispirare una intera serie di nuove applicazioni nel campo della sensoristica molecolare e della farmacologia.

Un team di ricercatori del Politecnico di Torino, coordinato dal professor Eliodoro Chiavazzo – Ordinario di Fisica Tecnica Industriale e direttore dello SMaLL lab al Dipartimento Energia – composto dal dottor Luca Bergamasco, Ricercatore presso il Dipartimento Energia e dal dottor Gabriele Falciani, nell’ambito del Progetto Europeo multidisciplinare Sofia in partnership con l’Università di Uppsala (Svezia), l’Università di Leiden (Olanda), l’Università di Amsterdam (Olanda) e l’azienda Wasabi Innovations (Bulgaria) ha dimostrato per la prima volta come rendere dissimmetrici i film di sapone, le sottili pareti delle comunissime bolle di sapone.

Tale procedimento rappresenta un passo importante verso l’ingegnerizzazione di queste strutture aprendo la strada a nuove tecnologie sostenibili e a basso costo a partire da film di sapone.

Il nuovo studio, appena pubblicato sulla prestigiosa rivista Physical Review Letters, dimostra come sia possibile rompere la simmetria della conformazione a “sandwich” delle pareti delle bolle in cui la parte centrale – formata da uno strato d’acqua – è racchiusa tra due sottilissime pellicole di tensioattivi aventi uno spessore molecolare. Il processo messo a punto dal team di ricerca è un drogaggio (doping in inglese) delle due interfacce del film di sapone che sfrutta la deposizione asimmetrica di agenti chimici tramite un aerosol (uno spray di finissime goccioline di sostanza dopante) sulle superfici del film.

Nell’immediato, questo risultato apre la strada alla possibilità di utilizzare i film di sapone come membrane reattive, a basso costo e auto-riparanti per diverse applicazioni energetiche tra cui, ad esempio, processi foto-catalitici per la produzione di combustibili solari come il monossido di carbonio a partire dalla CO2 o l’idrogeno.

Alcuni screenshot rilevanti dal video sull'analisi dell'impatto delle goccioline sul film di sapone. La scala e i processi rilevanti sono indicati nella figura
Alcuni screenshot rilevanti dal video sull’analisi dell’impatto delle goccioline sul film di sapone. La scala e i processi rilevanti sono indicati nella figura. Kaul et al. 2024, CC BY 4.0

Oltre alle possibili applicazioni nel campo dell’energia, la capacità di creare film di sapone dissimmetrici potrebbe ispirare una intera serie di nuove applicazioni nel campo della sensoristica molecolare e della farmacologia, nonché contribuire a migliorare la comprensione di alcuni sistemi in natura che basano le loro caratteristiche funzionali proprio sulla dissimmetria, come avviene nella fotosintesi naturale.

“Siamo orgogliosi che il contributo del Politecnico sia stato decisivo nell’individuare la corretta tecnica di doping e nel formulare la comprensione teorica dei processi alla base di tale tecnologia grazie allo sviluppo di modelli computazionali multi-scala – spiega il professor Chiavazzo – averla dimostrata sui film di sapone ha una grossa valenza non solo scientifica ma anche tecnologica, perché ci consegna una piattaforma a basso costo e di facile realizzazione in cui è possibile controllare il grado di simmetria su scala atomistica”.

Aggiunge Luca Bergamasco: “Questo risultato ha richiesto più di due anni di intenso lavoro a tutto il team: la definizione del protocollo di realizzazione delle strutture dissimmetriche e la verifica dei risultati hanno richiesto innumerevoli prove e l’uso di diverse tecniche sperimentali avanzate come spettroscopia FRET e acquisizioni video ad altissima velocità”.

“Questa ricerca rappresenta certamente un risultato fondamentale ma per ora la studiamo per quella che è, ovvero una nuova e interessante piattaforma tecnologica. Insieme ad un gruppo internazionale di colleghi stiamo lavorando da anni sull’utilizzo di tali strutture a film come membrane reattive, ma non si può escludere che interi nuovi filoni di ricerca potrebbero ora aprirsi, e noi faremo il possibile per dare il nostro contributo”– concludono i ricercatori.

Torino, 17 gennaio 2024

 

Riferimenti bibliografici:

Nidhi Kaul, Luca Bergamasco, Hongwei Song, Thijs Varkevisser, Agnese Amati, Gabriele Falciani, Cees J. M. van Rijn, Eliodoro Chiavazzo, Indraneel Sen, Sylvestre Bonnet, e Leif Hammarström, Realizing Symmetry-Breaking Architectures in Soap Films, Phys. Rev. Lett. 132, 028201, DOI: https://doi.org/10.1103/PhysRevLett.132.028201

 

Testo dall’Ufficio Web e Stampa del Politecnico di Torino.

QUEL FOTONE CHE NON SAREBBE MAI DOVUTO ARRIVARE SULLA TERRA: UNA NUOVA INTERPRETAZIONE DI GRB 221009A

Un fotone di altissima energia associato al lampo gamma più potente finora registrato ha messo in crisi l’attuale modello che descrive questi violentissimi eventi celesti. Un gruppo tutto italiano composto da ricercatrici e ricercatori dell’INAF e dell’INFN prova a far luce su questo fotone che non sarebbe mai dovuto arrivare sulla Terra, proponendo un’interpretazione che contempla la presenza di una oscillazione tra fotoni e ALP, ipotetiche particelle previste dalla teoria delle stringhe.

GRB 221009A immagine artistica di un lampo di raggi gamma (GRB). Crediti: ESO/A. Roquette
immagine artistica di un lampo di raggi gamma (GRB). Crediti: ESO/A. Roquette

Un singolo fotone ma talmente energetico da mettere in crisi gli attuali modelli astrofisici sulla propagazione dei raggi gamma.  L’evento nel quale è stato osservato, chiamato BOAT (brightest of all time, ovvero il più luminoso di tutti i tempi), è il lampo di raggi gamma (gamma-ray burst, GRB) GRB 221009A, emesso da una galassia a oltre due miliardi di anni luce da noi e rivelato – da terra e nello spazio – il 9 ottobre 2022. Tra i fotoni gamma di altissima energia intercettati dal rivelatore cinese LHAASO in occasione di questo evento, ce n’era, appunto, uno di addirittura 18 TeV: l’energia più elevata mai registrata da un GRB. Un’interessante interpretazione di questa inaspettata osservazione viene fornita da uno studio interamente italiano, coordinato da INAF Istituto Nazionale di Astrofisica insieme a INFN Istituto Nazionale di Fisica Nucleare, con autori Giorgio Galanti, Lara Nava, Marco Roncadelli, Fabrizio Tavecchio e Giacomo Bonnoli, pubblicato oggi, 18 dicembre, su Physical Review Letters.

“Pochi minuti dopo aver avuto notizia dell’esplosione – ricorda Giorgio Galanti dell’INAF, primo autore dell’articolo – abbiamo intuito che questo GRB non solo poteva essere un evento astrofisico straordinario ma poteva anche rappresentare un’opportunità unica per studi di fisica fondamentale, in particolare riguardo alle axion-like particles”.

Secondo l’ipotesi avanzata dal gruppo di ricerca, quel fotone così energetico potrebbe essere un ‘fotone trasformista’: capace cioè di cambiare natura, oscillando da una ‘personalità’ all’altra mentre viaggia alla velocità della luce. E le ALP – le axion-like particles, ipotetiche particelle previste dalla teoria delle stringhe candidate per costituire la materia oscura fredda, simili ad altre particelle altrettanto ipotetiche, gli assioni – sarebbero una di queste personalità. Un po’ come Mr. Hyde, una ALP è infatti in grado di compiere azioni che un fotone, il Dr. Jekyll di questa strana storia, non riuscirebbe mai a portare a termine: attraversare indenne la cosiddetta EBL – l’extragalactic background light, la luce di fondo extragalattica, ovvero la luce emessa da tutte le stelle durante l’intera evoluzione dell’universo.

Quando un fotone di alta energia — diciamo superiore a 100 GeV — urta un fotone dell’EBL, c’è una probabilità che si formi una coppia elettrone-positrone, che fa scomparire il fotone di alta energia. E questo effetto diventa progressivamente più importante al crescere sia dell’energia, sia della distanza. Ritornando, quindi, al GRB 221009A, secondo la fisica convenzionale, i fotoni di energia superiore a circa 10 TeV verrebbero completamente assorbiti. Considerando il redshift della sorgente, e dunque l’enorme distanza percorsa dal lampo gamma, i fotoni a energie più elevate in teoria non sarebbero mai stati in grado di giungere fino a noi. Come è allora possibile che LHAASO, unico strumento per la rivelazione dei lampi gamma a non essere andato in saturazione quel 9 ottobre di un anno fa, abbia osservato fotoni del GRB 221009A a energie comprese fra 500 GeV e 18 TeV? È qui che entrano in gioco, appunto, le ALP.

“Secondo la nostra ipotesi, in presenza di campi magnetici, i fotoni si tramutano in ALP e viceversa, — spiega Marco Roncadelli, ricercatore associato all’INFN e all’INAF — rendendo così possibile raggiungere la Terra a un maggior numero di fotoni, perché le ALP sono invisibili ai fotoni del fondo extragalattico”.

Entrando un po’ più nel dettaglio, le ALP si accoppiano a due fotoni, ma non a un singolo fotone. Questo fatto implica che in presenza di un campo magnetico esterno – che, come è ben noto, è costituito da fotoni – si possono avere ‘oscillazioni fotone-ALP’. Queste sono molto simili alle oscillazioni dei neutrini massivi di tipo diverso, con la sola differenza che per le ALP l’esistenza del campo magnetico è essenziale al fine di garantire la conservazione del momento angolare, in quanto il fotone ha spin 1 mentre le ALP hanno spin 0: lo spin mancante o eccedente è compensato dal campo magnetico esterno.

L’oscillazione tra fotoni e ALP per aggirare l’opacità del fondo extragalattico ai fotoni di energia elevata non è un’idea inedita: è una soluzione proposta per la prima volta nel 2007 da Alessandro De Angelis, Oriana Mansutti e Marco Roncadelli. Ed è una soluzione a un problema più generale di quello posto da questo gamma-ray burst. Oltre ai lampi di raggi gamma, ci sono infatti altre sorgenti distanti che emettono fotoni a energie elevatissime eppure in grado di giungere fino a noi, in barba alla fisica standard. Sorgenti come i quasar di tipo FSRQ (flat spectrum radio quasar), dove la componente ‘opaca’ che intralcia la corsa dei fotoni ad alta energia, fino a renderne teoricamente impossibile la fuoriuscita, non è la ELB ma qualcosa di molto simile: un campo di radiazione ultravioletta all’interno della sorgente stessa. O i blazar di tipo BL Lac, il cui spettro – come mostrato da uno studio pubblicato nel 2020 dagli stessi Galanti, Roncadelli e De Angelis insieme a Giovanni F. Bignami – sarebbe in alcuni casi inspiegabile senza ricorrere a un meccanismo che consenta di aumentare la ‘trasparenza cosmica’, riducendo quindi l’assorbimento prodotto dall’EBL.

Fotoni da quasar FSRQ, fotoni da blazar BL Lac e ora fotoni da questo lampo gamma BOAT, dunque. Tutt’e tre apparentemente inconcepibili entro il perimetro della fisica standard. Ma tutt’e tre spiegabili se al posto di ‘semplici’ fotoni ci fossero particelle “Jekyll-Hyde” che oscillano da fotone ad ALP e viceversa. Per dare solidità a questa ipotesi, serviranno altre osservazioni, e saranno per questo di grande aiuto i nuovi osservatori astrofisici per alte energie – primi fra tutti CTA e l’italiano ASTRI – pronti a entrare in funzione nei prossimi anni.

L’articolo Observability of the very-high-energy emission from GRB 221009A di Giorgio Galanti, Lara Nava, Marco Roncadelli, Fabrizio Tavecchio, Giacomo Bonnoli viene pubblicato oggi sulla rivista Physical Review Letters.

 

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)

Osservati per la prima volta neutrini prodotti da una collisione di particelle. Pubblicati i primi dati dell’esperimento SND@LHC che coinvolge 180 scienziati di 14 Paesi del mondo coordinati dal professore Giovanni De Lellis della Federico II.

Osservati per la prima volta neutrini muonici di alta energia, emessi a seguito di collisione tra protoni all’interno del Large Hadron Collider. Immagine dal CERN

Sfruttare il Large Hadron Collider del CERN come sorgente per lo studio di neutrini, particelle elementari elusive, caratterizzate da una scarsissima interazione con la materia, emessi a seguito delle collisioni tra protoni all’interno del super acceleratore. Questo l’obiettivo della collaborazione internazionale SND@LHC, che coinvolge 180 scienziati di 14 Paesi del mondo coordinati dal professore Giovanni De Lellis dell’Università degli Studi di Napoli Federico II. Dopo aver portato a termine la realizzazione del proprio apparato sperimentale nel marzo dello scorso anno, le ricercatrici e i ricercatori di SND@LHC, insieme ai colleghi della collaborazione FASER, altro esperimento al CERN che studia neutrini, hanno pubblicato sulla rivista Physical Review Letters, i primi risultati dell’analisi dei dati acquisiti nel corso del 2022, da cui emerge la prima osservazione di neutrini muonici di alta energia prodotti da LHC. Oltre ad aprire una nuova finestra utile a indagare le proprietà dei neutrini, la misura, la prima del suo genere, rappresenta un’importante successo tecnologico, confermando la capacità del sistema di rivelazione adottato da SND@LHC di individuare particelle tanto elusive. Il risultato è stato indicato come “Editors’s suggestions” da Physical Review Letters.

Approvato nel marzo del 2021, l’esperimento Scattering and Neutrino Detector (SND@LHC) è stato installato a 480 metri dall’esperimento ATLAS in un in un tunnel in disuso che collega LHC all’SPS e ha come scopo l’individuazione e lo studio dell’elevato numero di neutrini di tutti e tre i sapori (elettronico, muonico e tauonico) che un collisore come LHC è in grado di produrre, finora sfuggiti a un’osservazione diretta a causa della loro bassa probabilità di interazione e della loro traiettoria parallela all’asse di collisione, che rende questi neutrini “invisibili” agli altri esperimenti di LHC.

“Gli esperimenti a LHC hanno sinora associato la presenza di neutrini alla rivelazione di energia mancante nella ricostruzione dei prodotti delle interazioni”, spiega il responsabile Giovanni De LellisOrdinario di Fisica Sperimentale all’Ateneo federiciano . “SND@LHC è stato progettato con l’obiettivo di rivelare queste particelle, di grande interesse per la fisica in quanto caratterizzate da energie molto elevate e non ancora esplorate, estendendo il potenziale scientifico degli altri esperimenti di LHC”.

Il professor Giovanni De Lellis al CERN
Il professor Giovanni De Lellis al CERN

SND@LHC presenta dimensioni ridotte rispetto alle altre tipologie di esperimenti dedicati allo studio dei neutrini attualmente in corso. Esso è costituito da due regioni. In quella più a monte ci sono lastre di tungsteno, per un peso complessivo di circa 800 kg, intervallate da film di emulsioni nucleari, in grado rivelare con estrema precisione l’interazione dei neutrini, e da sistemi traccianti elettronici basati su fibre scintillanti per la misura dell’instante in cui avvengono gli eventi di interazione e della loro energia elettromagnetica. La regione più a valle dell’apparato è invece dotata di un calorimetro adronico e un sistema di riconoscimento dei muoni.

“Il motivo che ha consentito la realizzazione di un apparato sperimentale di dimensioni contenute è legato all’elevato numero di collisioni di LHC, che si traducono in un altrettanto elevato flusso di neutrini nella direzione in avanti. L’ingente numero di neutrini, insieme alle loro alte energie, alla cui crescita corrisponde una maggiore probabilità di interazione, rendono possibile la loro rivelazione anche con apparati più compatti di quelli oggi impiegati nell’indagine sui neutrini grazie anche alla relativa vicinanza dell’apparato alla sorgente”, prosegue il professor De Lellis.

Grazie alle sue caratteristiche, SND@LHC è stato in grado isolare gli eventi dovuti all’interazione tra l’apparato sperimentale e i neutrini prodotti dall’acceleratore nel vasto campione di dati acquisiti nel 2022, costituito da diversi miliardi di muoni che attraversano l’apparato. SND@LHC ha osservato 8 eventi candidati interazioni di neutrino muonico, con una significatività statistica superiore a quella necessaria in fisica per confermare un’osservazione.

“Con questi primi risultati dell’analisi dei dati raccolti nel 2022, l’esperimento SND@LHC ha aperto una nuova frontiera nello studio dei neutrini e nella ricerca di materia oscura”, aggiunge Giovanni De Lellis. “Abbiamo osservato neutrini dal collider con una significatività superiore alle 5 sigma. Alla luce del fatto che una buona parte dei neutrini è originata dai decadimenti di quark pesanti, essi costituiscono un modo unico per studiare la produzione di questi quark, inaccessibile ad altri esperimenti. Queste misure sono anche rilevanti per predire il flusso di neutrini di altissime energie prodotti nei raggi cosmici, sicché l’esperimento fa da ponte tra la fisica degli acceleratori e quella delle astro-particelle”.

L’Università Federico II svolge un ruolo centrale all’interno della collaborazione insieme all’Istituto di Fisica Nucleare.

“Questo è il primo risultato pubblicato: l’indagine proseguirà con lo studio di neutrini muonici a più alta statistica e con la rivelazione di neutrini elettronici e del tau, nonché con la ricerca di materia oscura, grazie alle caratteristiche uniche dell’apparato sperimentale. Il coinvolgimento di gruppi di ricerca multidisciplinari della Federico II è anche il frutto del lavoro della Task Force d’Ateneo SHiP-Fed in cui sono coinvolti dieci Dipartimenti. Questo risultato apre una nuova era, quella della fisica dei neutrini da collisore di particelle, un nuovo filone di ricerca a cui contribuiscono i saperi federiciani in modo trasversale”, conclude De Lellis.

 

Riferimenti bibliografici:

R. Albanese et al. (SND@LHC Collaboration), Phys. Rev. Lett. 131, 031802 (19 Luglio 2023)

 

Testo e foto dall’Ufficio Stampa Rettorato Università degli Studi di Napoli Federico II.

 

Un paradosso turbolento: svelato il collegamento inatteso tra due problemi irrisolti della fisica

Un team di ricerca interdisciplinare SISSA-Università di Padova ha analizzato il problema di Fermi-Pasta-Ulam-Tsingou in maniera innovativa scoprendo un collegamento con la turbolenza nei fluidi

Alcuni dei fenomeni fisici che incontriamo quotidianamente nella nostra vita sono ancora oggi incompresi. Un primo esempio è la turbolenza nei fluidi. La turbolenza è legata alla complessità delle equazioni di Navier-Stokes che regolano la dinamica dei fluidi, uno dei problemi del millennio. Un altro esempio di problema aperto è l’approccio all’equilibrio termodinamico per i sistemi isolati. Un nuovo studio in collaborazione tra la SISSA e l’Università di Padova, pubblicato su Physical Review Letters, analizza in dettaglio un collegamento nuovo tra queste due tipologie di fenomeni e potrebbe aprire nuove strade per la loro comprensione.

collegamento due problemi fisica turbolenza fluidi
Un paradosso turbolento: svelato il collegamento inatteso tra due problemi irrisolti della fisica. Credits: New York University

A metà degli anni ‘50, Enrico Fermi, John Pasta, Stanislaw Ulam e Mary Tsingou si interessarono al problema dell’approccio all’equilibrio termodinamico per i sistemi isolati. Ebbero l’idea di simulare al computer la dinamica di un sistema molto semplice, costituito da oscillatori nonlineari in interazione, con la speranza di poter sviluppare qualche intuizione per una teoria più generale. Gli esiti di questo pionieristico studio furono sorprendenti al punto che il risultato venne rinominato “paradosso di Fermi-Pasta-Ulam” (tralasciando l’importante ruolo di Mary Tsingou). Invece di osservare il sistema approcciarsi progressivamente all’equilibrio termodinamico, gli autori fecero quello che loro stessi definirono una “piccola scoperta”: il sistema sembrava non raggiungere mai l’equilibrio termodinamico. Oggi, a distanza di quasi settant’anni, grazie innumerevoli studi si è scoperto che quello osservato da Fermi, Pasta, Ulam e Tsingou altro non era che uno stato “metastabile” in cui il sistema rimaneva a lungo prima di raggiungere l’equilibrio. Da altri studi sappiamo che questo stato metastabile è presente quando al sistema si dà poca energia, mentre questo paradosso non si presenta quando il sistema ha un’energia sufficientemente alta.

Nella nuova ricerca, gli autori hanno studiato la struttura dello stato metastabile del modello di Fermi-Pasta-Ulam-Tsingou trovando che ha somiglianze significative con la turbolenza dei fluidi. Inoltre, i tempi-scala del problema (il tempo in cui il sistema raggiunge questo “stato intermedio” e il tempo dopo cui lo abbandona) sono “universali”, ovvero dipendono dai parametri del sistema in modo noto, sono calcolabili esattamente e non dipendono dai dettagli dell’interazione.

Antonio Ponno, Professore Associato del Dipartimento di Matematica dell’Università di Padova e autore dello studio, racconta: “L’idea per questo lavoro è nata qualche anno fa, a partire dal progetto di tesi di Matteo Marian, studente di fisica dell’Università di Trieste. Fin da subito sono stati coinvolti anche Stefano Ruffo e Matteo Gallone della SISSA ed è nato così un gruppo di ricerca tuttora attivo”.

Il lavoro appena pubblicato coinvolge quattro generazioni di ricercatori, tre istituzioni accademiche e due settori scientifico-disciplinari.

Un lavoro che ha potuto raggiungere risultati importanti solo grazie all’ambiente multidisciplinare che c’è in SISSA” commenta Matteo Gallone, primo autore dello studio. La ricerca unisce metodi matematici d’avanguardia con le simulazioni numeriche per illuminare problemi di fisica statistica. “La sinergia tra matematica è fisica ci ha permesso di affrontare l’analisi del problema di Fermi-Pasta-Ulam-Tsingou in maniera innovativa e costruire un ponte con la turbolenza” aggiunge Gallone.

La collaborazione costruttiva tra scuole diverse, centrata sulla promozione e la circolazione dei più giovani – un principio saldo del nostro Ateneo – è la chiave di volta della qualità della ricerca” conclude Ponno.

Full paper: Physical Review Letters

 

Testo e immagine dagli uffici Stampa dell’Università degli Studi di Padova e SISSA – Scuola Internazionale Superiore di Studi Avanzati

Un cristallo che ospita un effetto domino tridimensionale

percolazione frattale cristallo
Osservazione in tempo reale della percolazione frattale in un cristallo ferroelettrico KTN utilizzando luce laser.

Un team di ricercatori del Dipartimento di Fisica dell’Università Sapienza e del Dipartimento di Fisica Applicata della Hebrew University of Jerusalem ha ripreso stereoscopicamente in tempo reale la percolazione frattale in un cristallo. La scoperta, pubblicata su Physical Review Letters, aiuta a comprendere il comportamento di materiali innovativi per l’immagazzinamento di informazioni ed energia.

La percolazione è alla base della comprensione di una vasta gamma di fenomeni di importanza critica e molto diversi tra di loro, come ad esempio il modo in cui si espandono gli incendi, la desertificazione, la diffusione di un’infezione, oppure la propagazione dell’attività cerebrale.

Questo modello permette non solo di comprendere diversi fenomeni (come sistemi) in modo qualitativo, ma anche di fare delle predizioni quantitative. Permette infatti di descrivere in modo statistico le connessioni a lunga distanza tra sistemi contenenti numerosi oggetti (collegati tra loro da relazioni aleatorie a corta distanza) e di definirne il comportamento.

Nei solidi, come i cristalli, si pensa che la percolazione sia il meccanismo di base che regola il passaggio da uno stato macroscopico a un altro, come una sorta di effetto domino. Finora questa è stata osservata in modo diretto in sistemi planari, ma mai all’interno di un mezzo tridimensionale.

Un team di ricercatori del Dipartimento di Fisica della Sapienza Università di Roma e del Dipartimento di Fisica Applicata della Hebrew University of Jerusalem è stato in grado di osservare, utilizzando tecniche di imaging ortografico con luce laser, fenomeni di percolazione all’interno di un supercristallo ferroelettrico

I risultati dello studio sono stati pubblicati sulla rivista Physical Review Letters.

Il cristallo trasparente utilizzato dai ricercatori ha proprietà fisiche molto specifiche: solo un indice di rifrazione gigante consentirebbe infatti al fascio di luce bianca di propagarsi al suo interno senza diffrazione e senza dispersione, senza quindi avere una progressiva perdita delle informazioni inizialmente codificate nell’onda. 

“Al centro della percolazione osservata – spiega Eugenio Del Re del Dipartimento di Fisica della Sapienza, coordinatore dello studio – c’è un comportamento governato da dimensioni frattali, caratterizzato cioè da oggetti che si ripetono allo stesso modo su diverse scale di ingrandimento, come la forma autoreplicante del cavolfiore. All’interno del supercristallo la diffusione avviene cioè in modo autosimilare”.

L’analisi condotta permette di prevedere quando un sistema specifico raggiungerà la cosiddetta soglia di percolazione, ovvero quando la trasmissione di una fase diventa diffusa e non più controllabile. I risultati dello studio aprono così nuovi scenari per l’immagazzinamento di informazioni e di energia nei campi della fotonica e dell’elettronica.

Riferimenti:

Direct Observation of Fractal-Dimensional Percolation in the 3D Cluster Dynamics of a Ferroelectric Supercrystal – Ludovica Falsi, Marco Aversa, Fabrizio Di Mei, Davide Pierangeli, FeiFei Xin, Aharon J. Agranat and Eugenio Del Re – Phys. Rev. Lett. 126, 037601 (2021) https://doi.org/10.1103/PhysRevLett.126.037601

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma.

COME SI “MANTENGONO IN ORDINE” LE CELLULE?
UN MODELLO DEL DISTILLATORE ALLA BASE DELLA VITA

Nuova luce sui meccanismi di autoorganizzazione delle cellule viventi in uno studio di un gruppo di ricercatori di Politecnico di Torino, Università di Torino, Italian Institute for Genomic Medicine – IIGM, Istituto Nazionale di Fisica Nucleare – INFN, e Istituto Landau di Fisica Teorica di Mosca

Cellula umana, microscopio a fluorescenza. Immagine di Marc Vidal, CC BY-SA 4.0

Torino – La cellula eucariotica è l’unità di base di tutti gli animali e delle piante. Al microscopio essa appare altamente strutturata e suddivisa in numerosi compartimenti circondati da membrane. Ogni compartimento svolge un ruolo specifico ed è occupato da molecole particolari. In che modo la cellula mantiene questo ordine interno ammirevole, e (se non intervengono patologie) non degrada in un ammasso informe di molecole? Questo accade perché all’interno della cellula le molecole simili vengono continuamente riordinate e smistate verso le corrette destinazioni, un po’ come accade in una casa in cui il disordine viene tenuto a bada riordinando e ripulendo quotidianamente. Resta però misterioso come la cellula possa svolgere questa continua azione di ripristino del proprio ordine interno in assenza di un supervisore.

Nel lavoro recentemente pubblicato su Physical Review Letters da una collaborazione internazionale costituita da ricercatori di Politecnico di Torino, Università di Torino, Italian Institute for Genomic Medicine – IIGM, Istituto Nazionale di Fisica Nucleare – INFN, e Istituto Landau di Fisica Teorica di Mosca, si ipotizza che il processo di mantenimento dell’ordine all’interno della cellula emerga dalla combinazione di due meccanismi spontanei. Il primo di questi meccanismi è la tendenza di molecole simili ad aggregare sulle membrane in “gocce”, in maniera simile a quella per cui gocce d’acqua si formano in una nube di vapore che viene raffreddata. Il secondo meccanismo è quello per cui queste “gocce di molecole”, a seguito dell’azione delle molecole che le compongono, inducono l’incurvamento della membrana su cui si trovano e la formazione, e il successivo distacco, di minuscole vescicole arricchite dalle molecole che costituiscono le “gocce”. Le numerose membrane della cellula eucariotica agiscono perciò in maniera simile ai tubi di un distillatore o di un alambicco naturale, nel quale i composti chimici vengono continuamente separati e rediretti nelle giuste destinazioni.

Nel lavoro pubblicato, il processo di riordinamento descritto viene studiato matematicamente e simulato al calcolatore, mostrando che la tendenza delle molecole all’aggregazione è il parametro di gran lunga più importante nel controllare l’efficienza del processo. Per ogni gruppo di molecole esiste un valore ottimale del parametro (né troppo grande né troppo piccolo) per il quale il riordinamento avviene alla massima velocità possibile. In effetti, in assenza di aggregazione molecolare viene meno il motore principale dell’ordinamento. D’altra parte se la tendenza all’aggregazione è troppo intensa, le molecole “congelano” in un gran numero di “gocce” che cresce molto lentamente, e il processo di distillazione rallenta. L’osservazione sperimentale di questo processo di distillazione condotta presso l’Università di Torino su cellule estratte dai vasi sanguigni dei cordoni ombelicali umani conferma il quadro teorico e suggerisce che l’evoluzione abbia naturalmente portato le cellule viventi a “lavorare” nella regione di parametri ottimale che garantisce la massima efficienza del processo di riordinamento molecolare.

La ricerca è potenzialmente di grande interesse perché il malfunzionamento dei processi di traffico molecolare all’interno delle cellule è associato a numerose gravi patologie, quali per esempio il cancro. L’individuazione teorica dei possibili parametri di controllo del processo è un importante primo passo, necessario a meglio comprendere l’origine del malfunzionamento e a individuare possibilità di cura.

La ricerca ha coinvolto anche le seguenti istituzioni, alle quali alcuni degli autori sono affiliati: Fondazione Collegio Carlo Alberto – Torino, Accademia delle Scienze Russa, National Research University Higher School of Economics (HSE).

 

Testo, foto e video dall’Ufficio Stampa dell’Università degli Studi di Torino.

 

Onde gravitazionali: le nuove sensazionali scoperte del team internazionale di ricercatori Virgo e LIGO 

Il ruolo degli scienziati UNIPG  

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori


Si è svolta oggi presso il Rettorato dell’Università degli Studi di Perugia la conferenza stampa di presentazione ai giornalisti umbri delle nuove, sensazionali scoperte scientifiche realizzate dai ricercatori dei progetti Virgo e LIGO.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

All’incontro con i giornalisti – realizzato in contemporanea con l’omologo evento internazionale che ha visto collegati i vari gruppi di ricerca in modalità streaming – erano presenti i professori Helios Vocca, Delegato del Rettore per il settore Ricerca, Valutazione e Fund-raising e Roberto Rettori, Delegato del Rettore per il settore Orientamento, Tutorato e Divulgazione scientifica, insieme a numerosi Delegati Rettorali e Direttori dei Dipartimenti dello Studium.

Onde gravitazionali Virgo LIGO

I ricercatori dei progetti Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Helios Vocca

“Il risultato di oggi è per noi fonte di enorme soddisfazione – dichiara il professore Helios Vocca, responsabile del gruppo Virgo Perugia – perché si tratta di una nuova scoperta realizzata grazie ad un detector che è frutto anche del lavoro realizzato dal gruppo Virgo Perugia in trent’anni di attività: un impegno, quello del team perugino, che è stato ampiamente riconosciuto a livello internazionale e che ci vede coinvolti nel management sia del progetto Virgo, sia del nuovo esperimento  giapponese ‘Kagra’, guidato da Takaaki Kajita, premio Nobel per la Fisica nel 2015 e laureato honoris causa del nostro Ateneo. Del nostro gruppo, inoltre – aggiunge Vocca – fa parte anche il dottor Michele Punturo, della sezione INFN di Perugia, attualmente Principal Investigator dell’esperimento ‘Einstein Europe’, il futuro detector europeo per le onde gravitazionali.

Il team di Perugia possiede competenze uniche al mondo – spiega il professor Vocca – in particolare sulle sospensioni degli specchi degli interferometri. In virtù di questa altissima specializzazione, stiamo lavorando insieme ad altri colleghi di vari Paesi europei e giapponesi per creare un laboratorio internazionale proprio a Perugia o comunque in Umbria, al fine di sfruttare le ricadute tecnologiche dei rilevatori di onde gravitazionali in altri settori, quali ad esempio quello del rischio sismico, affinché le avanzatissime tecnologie utilizzate nello spazio servano al miglioramento della vita dei cittadini.

Il tutto, inoltre, – conclude il professor Helios Vocca – avrà un’importante valenza per i nostri studenti: stiamo infatti puntando a costruire, in questo ambito scientifico, un’offerta didattica innovativa interuniversitaria, ovvero corsi di laurea realizzati in partnership con altri Atenei del centro-Italia, per dar vita a una ‘scuola’ che sia davvero unica persino a livello internazionale”.

Roberto Rettori

“In questo periodo di emergenza, nel rispetto delle direttive ministeriali, l’Università degli Studi di Perugia non ha mai interrotto né l’attività didattica né quella di ricerca – ha sottolineato il professore Roberto Rettori -. L’esperimento Virgo, che per l’unità di Perugia è coordinato dal professor Helios Vocca del Dipartimento di Fisica e Geologia, ne è una chiara dimostrazione.

I risultati che i nostri eccellenti ricercatori ottengono in tutte le discipline, permettono al nostro Ateneo di crescere e sempre di più diventare un punto di riferimento in Italia e nel mondo, promuovendo quindi Perugia e il suo territorio. Attraverso le numerose iniziative di divulgazione della ricerca che stiamo organizzando in tutta la regione, l’Università degli Studi di Perugia esce dalle sue mura, arriva alla popolazione e diventa suo patrimonio da difendere e valorizzare. Ringrazio il Magnifico Rettore, Professore Maurizio Olivieroper il supporto costante che offre a tali iniziative nonché tutti i colleghi per il loro lavoro. L’Ateneo di Perugia è soprattutto il luogo accogliente della conoscenza dove i giovani possono realizzare le loro passioni e costruire il loro futuro”.

La Sala Dessau all’Università di Perugia

Perugia, 2 settembre 2020

 

Virgo e LIGO svelano nuove e inattese popolazioni di buchi neri

Helios Vocca e Roberto Rettori

Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Gli scienziati delle collaborazioni internazionali che sviluppano e utilizzano i rivelatori Advanced Virgo presso lo European Gravitational Observatory (EGO) in Italia e i due Advanced LIGO negli Stati Uniti hanno annunciato l’osservazione di un buco nero di circa 142 masse solari, che è il risultato finale della fusione di due buchi neri di 66 e 85 masse solari. I componenti primari e il buco nero finale si trovano tutti in un intervallo di massa mai visto prima, né con onde gravitazionali né con osservazioni elettromagnetiche. Il buco nero finale è il più massiccio rivelato finora per mezzo di onde gravitazionali. L’evento di onda gravitazionale è stato osservato dai tre interferometri della rete globale il 21 maggio 2019. Il segnale (chiamato GW190521) è stato analizzato dagli scienziati, che stimano che la sorgente disti circa 17 miliardi di anni luce dalla Terra. Due articoli scientifici che riportano la scoperta e le sue implicazioni astrofisiche sono stati pubblicati oggi su Physical Review Letters e Astrophysical Journal Letters,
rispettivamente.

“Il segnale osservato il 21 maggio dello scorso anno è molto complesso e, dal momento che il sistema è così massiccio, lo abbiamo osservato per un tempo molto breve, circa 0.1 s”, dice Nelson Christensen, directeur de recherche CNRS presso ARTEMIS a Nizza in Francia e membro della Collaborazione Virgo. “Non assomiglia molto ad un sibilo che cresce rapidamente in frequenza, che è il tipo di segnale che osserviamo di solito: assomiglia piuttosto ad uno scoppio, e corrisponde alla massa più alta mai osservata da LIGO e Virgo.” Effettivamente, l’analisi del segnale – basata su una potente combinazione di modernissimi modelli fisici e di metodi di calcolo – ha rivelato una gran quantità di informazione su diversi stadi di questa fusione davvero unica.

Questa scoperta è senza precedenti non solo perché stabilisce il record di massa tra tutte le osservazioni fatte finora da Virgo e LIGO ma anche perché possiede altre caratteristiche speciali. Un aspetto cruciale, che ha attratto in particolare l’attenzione degli astrofisici, è che il residuo finale appartiene alla classe dei cosiddetti “buchi neri di massa intermedia” (da cento a centomila masse solari). L’interesse verso questa popolazione di buchi neri è collegato ad uno degli enigmi più affascinanti e intriganti per astrofisici e cosmologi: l’origine dei buchi neri supermassicci. Questi mostri giganteschi, milioni di volte più pesanti del Sole e spesso al centro delle galassie, potrebbero essere il risultato della fusione di buchi neri di massa intermedia.

Fino ad oggi, pochissimi esempi di questa categoria sono stati identificati unicamente per mezzo di osservazioni elettromagnetiche, e il residuo finale di GW190521 è la prima osservazione di questo genere per mezzo di onde gravitazionali. Ed è di interesse ancora maggiore, visto che si trova nella regione tra 100 e 1000 masse solari, che ha rappresentato per molti anni una specie di “deserto dei buchi neri”, a causa della scarsità di osservazioni in questo intervallo di massa.

I componenti e la dinamica della fusione del sistema binario che ha prodotto GW190521 offrono spunti astrofisici straordinari. In particolare, il componente più massiccio rappresenta una sfida per i modelli astrofisici che descrivono il collasso in buchi neri delle stelle più pesanti, quando queste arrivano alla fine della loro vita. Secondo questi modelli, stelle molto massicce vengono completamente distrutte dall’esplosione di supernova, a causa di un processo chiamato “instabilità di coppia”, e si lasciano dietro solo gas e polveri cosmiche. Perciò gli astrofisici non si aspetterebbero di osservare alcun buco nero nell’intervallo di massa tra 60 e 120 masse solari: esattamente dove si trova il componente più massiccio di GW190521. Quindi, questa osservazione apre nuove prospettive nello studio delle stelle massicce e dei meccanismi di supernova.

“Parecchi scenari predicono la formazione di buchi neri nel cosiddetto intervallo di massa di instabilità di coppia: potrebbero risultare dalla fusione di buchi neri più piccoli o dalla collisione multipla di stelle massicce o addirittura da processi più esotici”, dice Michela Mapelli, professore presso l’Università di Padova, e membro dell’INFN Padova e della Collaborazione Virgo. “Comunque, è possibile che si debba ripensare la nostra attuale comprensione degli stadi finali della vita di una stella e i conseguenti vincoli di massa sulla formazione dei buchi neri. In ogni caso, GW190521 è un importante contributo allo studio della formazione dei buchi neri.”

Infatti, l’osservazione di GW190521 da parte di Virgo e LIGO porta la nostra attenzione sull’esistenza di popolazioni di buchi neri che non sono mai stati osservati prima o sono inattesi, e in tal modo solleva nuove intriganti domande sui meccanismi con cui si sono formati. A dispetto del segnale insolitamente breve, che limita la nostra capacità di dedurre le proprietà astrofisiche della sorgente, le analisi più avanzate e i modelli attualmente disponibili suggeriscono che i buchi neri iniziali avessero alti valori di spin, o in altre parole che avessero un’elevata velocità di rotazione.

“Il segnale mostra segni di precessione, una rotazione del piano orbitale prodotta da spin elevati e con un’orientazione particolare”, nota Tito Dal Canton, ricercatore del CNRS presso IJCLab ad Orsay, Francia, e membro della Collaborazione Virgo, “L’effetto è debole e non possiamo esserne certi del tutto, ma se fosse vero darebbe forza all’ipotesi che i buchi neri progenitori siano nati e vissuti in un ambiente cosmico molto dinamico e affollato, come un ammasso stellare denso o il disco di accrescimento di un nucleo galattico attivo.”

Parecchi scenari diversi sono compatibili con questi risultati e anche l’ipotesi che i progenitori della fusione possano essere buchi neri primordiali non è stata scartata dagli scienziati. Effettivamente, noi stimiamo che la fusione abbia avuto luogo 7 miliardi di anni fa, un tempo vicino alle epoche più
antiche dell’Universo.

Rispetto alle precedenti osservazioni di onde gravitazionali, il segnale di GW190521 è molto breve e più difficile da analizzare. La complessa natura di questo segnale ci ha spinto a considerare anche altre sorgenti più esotiche, e queste possibilità sono descritte in un altro articolo che accompagna quello della scoperta. La fusione di un sistema binario di buchi neri resta però l’ipotesi più
probabile.

“Le osservazioni portate avanti da Virgo e LIGO illuminano l’universo oscuro e definiscono un nuovo panorama cosmico”, dice Giovanni Losurdo, che guida Virgo ed è dirigente di ricerca presso l’Istituto Nazionale di Fisica Nucleare in Italia, “E oggi, ancora una volta, annunciamo una scoperta senza precedenti. Continuiamo a migliorare i nostri strumenti per aumentare la loro performance e
per vedere sempre più a fondo nell’Universo.”

Informazioni aggiuntive sugli osservatori di onde gravitazionali:

La Collaborazione Virgo è composta attualmente da circa 580 membri provenienti da 109 istituzioni in 13 diversi paesi, che comprendono Belgio, Francia, Germania, Grecia, Irlanda, Italia, Olanda, Polonia, Portogallo, Spagna e Ungheria. Lo European Gravitational Observatory (EGO) che ospita il rivelatore Virgo si trova vicino a Pisa in Italia ed è finanziato dal Centre National de la Recherche Scientifique (CNRS) in Francia, dall’Istituto Nazionale di Fisica Nucleare (INFN) in Italia, e dal Nikhef in Olanda. Una lista dei gruppi della Collaborazione Virgo è disponibile al link http://public.virgo-gw.eu/the-virgo-collaboration/ . Ulteriori informazioni sono disponibili sul sito web di Virgo http://www.virgo-gw.eu

.LIGO è finanziato dalla National Science Foundation (NSF) e la sua operatività dipende da Caltech e MIT, che hanno concepito e guidato il progetto. Il sostegno finanziario per il progetto Advanced LIGO è venuto dall’NSF, con significativi impegni e contributi da parte tedesca (Max Planck Society), inglese (Science and Technology Facilities Council) e australiana (Australian Research Council-OzGrav). Circa 1300 scienziati di tutto il mondo partecipano all’impresa scientifica della Collaborazione LIGO, che include anche la Collaborazione GEO. Una lista di altri partners è disponibile al link https://my.ligo.org/census.php
.

I RICERCATORI DI PERUGIA A CACCIA DELLE ONDE GRAVITAZIONALI

Un’esperienza ventennale nella descrizione teorica e nello sviluppo di tecnologie per osservare le onde gravitazionali che ha condotto anche a ricadute tecnologiche nel campo delle energie rinnovabili.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

Il gruppo di scienziati di Perugia che lavora all’esperimento Virgo per la rivelazione e lo studio di onde gravitazionali fa parte del Dipartimento di Fisica e Geologia dell’Università di Perugia e della Sezione di Perugia dell’INFN e da circa trent’anni si occupa de i rivelatori delle Onde Gravitazionali. Il gruppo si occupa per lo più di elabora re modelli teorici e tecniche sperimentali per studiare la dinamica dei sistemi fisici non lineari e in particolare p er lo studio del rumore. Si tratta cioè di conoscere le caratteristiche e saper limitare o utilizzare in modo efficiente tutte qu elle vibrazioni che popolano i fenomeni naturali, dalle vibrazioni delle molecole e degli atomi dovute alla temperatura alle vibrazioni macroscopiche che potrebbero disturbare la rivelazione dei segnali che arrivano dal cosmo e che l’esperimento Virgo rivela. Oltre a questo negli ultimi anni ha acquisito competenze di ottica quantistica, di data analisi e modelli stica della Relatività Generale per sistemi compatti.

Il gruppo di ricerca perugino attivo nell’esperimento Virgo è coordinato dal Prof. Helios Vocca (attualmente nel Management Team sia dell’esperimento europeo Virgo che dell’esperimento giapponese Kagra). Sono nel complesso 12, tra scienziati e tecnici, le persone del Dipartimento di Fisica e della Sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare che costituiscono il team coinvolto nell’osservazione e nell’analisi dei dati raccolti sulle onde gravitazionali; fra loro anche il Dott. Michele Punturo responsabile del gruppo di ricerca astroparticellare per la sezione INFN di Perugia e attualmente Principal Investigato dell’esperimento Einstein Telescope, futuro detector europeo per le Onde Gravitazionali.

Le abilità acquisite dal team perugino nello studio delle vibrazioni, da quelle microscopiche a quelle più grandi, ha consentito di apportare un contributo essenziale ai metodi utilizzati per istallare gli specchi e il complesso dei sistemi ottici, cuore dello strumento per l’osservazione delle onde gravitazionali: l’interferometro Virgo. Il rivelatore Virgo istallato a Cascina, nelle campagne poco fuori Pisa, è costituito da due lunghi tubi di tre chilometri l’uno, disposti perpendicolarmente tra loro a formare una elle. All’interno di questi tubi si fa il vuoto e viene fatto correre un raggio laser avanti e indietro attraverso un sistema di specchi. È proprio lo spostamento degli specchi al passaggio dell’onda gravitazionale che ne rileva la presenza. Di conseguenza è cruciale la realizzazione di queste parti dell’apparato. Attraverso una conoscenza accurata del rumore termico, ovvero delle vibrazioni degli atomi e delle molecole che costituisco i materiati di cui sono fatte le parti del rivelatore Virgo, il gruppo di Perugia ha fatto sì che il segnale delle onde gravitazionali non si confondesse con altri disturbi provenienti dall’ambiente. Il gruppo di Perugia si è occupato, sin dalla nascita del progetto Virgo, dello sviluppo del sistema per sospendere gli specchi all’interno delle torri dell’esperimento. Tale sistema è unico perché consente allo specchio di poter oscillare dissipando pochissima energia e quindi rendendolo estremamente sensibile alla rivelazione dei segnali gravitazionali. Il pendolo è costituito da sottilissimi fili prima di acciaio, ora di un particolare vetro: il quarzo fuso. Insieme ai fili è stato ideato e realizzato un sistema originale di ancoraggio degli specchi attraverso tecniche innovative d’incollaggio delle componenti del rivelatore sviluppate tra i laboratori di Perugia e quelli di Glasgow. Queste tecnologie sono alla base dell’aumento di sensibilità che caratterizza il cosiddetto Advanded Virgo.

Le abilità tecniche e le conoscenze teoriche acquisite in questi trent’anni dai fisici dell’Università di Perugia, coinvolti nel progetto Virgo, ha consentito al gruppo di entrare da protagonista anche nell’esperimento giapponese, Kagra (esperimento guidato da una vecchia conoscenza dell’Ateneo perugino, il Prof. Takaaki Kajita premio Nobel in Fisica nel 2015, al quale nel 2017 è stata riconosciuta la laurea Honoris Causa) trasferendo le proprie competenze alla collaborazione asiatica per la realizzazione delle sospensioni criogeniche in zaffiro delle ottiche del rivelatore.

 

 

Testi e foto dall’Ufficio Stampa Università di Perugia