News
Ad
Ad
Ad
Tag

Oceano Atlantico

Browsing

Costa atlantica dell’Africa: le variazioni del livello del mare negli ultimi 30mila (e il recente innalzamento)

L’Università di Pisa ha coordinato lo studio pubblicato su Nature Communications. Il prof. Vacchi: 

“Nonostante l’intero continente Africano contribuisca solo per il 4% alle emissioni globali di gas serra, il cambiamento climatico avrà effetti molto significativi in Africa occidentale, dove il 31% della popolazione e le principali infrastrutture sono concentrate nella zona costiera”.

 

Il livello attuale del mare lungo la costa atlantica dell’Africa è più alto di oltre 100 metri rispetto a 30.000 anni fa. Il dato emerge da uno studio coordinato dal professor Matteo Vacchi del dipartimento di Scienze della Terra dell’Università di Pisa pubblicato sulla rivista Nature Communications. La ricerca ha mostrato come il livello dell’Atlantico sia stato fortemente influenzato dai cambiamenti climatici e dalla fusione delle calotte glaciali.

“Studiando le fluttuazioni avvenute negli ultimi 30.000 anni – spiega Vacchi – potremmo affinare i modelli climatici e migliorare le previsioni sulle reazioni del sistema Terra rispetto ai cambiamenti attuali. Molte regioni costiere africane, comprese città densamente popolate e ambienti naturali sensibili, sono direttamente minacciate dall’innalzamento del livello del mare. Studi come questo aiutano a comprendere la vulnerabilità di queste aree e a sviluppare strategie di adattamento e mitigazione. Infatti, la fascia costiera rappresenta circa il 56% del prodotto interno lordo (PIL) dei paesi dell’Africa occidentale, rendendola una risorsa economica e sociale chiave altamente vulnerabile ai cambiamenti del livello del mare causati dal clima”.

La ricerca ha evidenziato tre fasi evolutive principali. Nell’epoca del massimo glaciale (circa 30.000 – 19.000 anni fa) il livello del mare era molto più basso rispetto ad oggi, circa 99-104 metri in meno, principalmente per la grande quantità di acqua intrappolata nelle calotte glaciali. Nella successiva fase di deglaciazione (19.000 – 7.500 anni fa), con il riscaldamento globale e la fusione delle calotte, il mare ha iniziato a risalire sempre più rapidamente sino a raggiungere il livello attuale. Il trend è continuato nel corso dell’Olocene (7.500 anni fa – oggi): il mare ha continuato a salire, ma con un ritmo più moderato, fino a raggiungere un massimo tra 5.000 e 1.700 anni fa con valori anche hanno superato il livello attuale. Dopo questa fase, c’è stata una sostanziale stabilizzazione, fino al nuovo recente innalzamento dovuto al riscaldamento globale che ha riguardato gli ultimi 100 anni.

“Il nostro studio fornisce una ricostruzione dettagliata e senza precedenti delle variazioni del livello del mare lungo la costa atlantica dell’Africa dal massimo glaciale fino all’epoca moderna – dice Matteo Vacchi – si tratta di dati fondamentali per comprendere i trend attuali e prevedere le future variazioni del livello del mare con implicazioni molteplici che toccano diversi ambiti scientifici e applicativi. Nonostante l’intero continente Africano contribuisca solo per il 4% alle emissioni globali di gas serra, il cambiamento climatico avrà effetti molto significativi in Africa occidentale, dove il 31% della popolazione e le principali infrastrutture sono concentrate nella zona costiera”.

Matteo Vacchi Oceano Atlantico Africa
Matteo Vacchi

Insieme all’Università di Pisa hanno collaborato alla studio l’Earth Observatory di Singapore, Università Aix Marseille (Francia), L’Università di Bologna e l’INGV.

Riferimenti bibliografici:

Vacchi, M., Shaw, T.A., Anthony, E.J. et al. Sea level since the Last Glacial Maximum from the Atlantic coast of Africa, Nat Commun 16, 1486 (2025), DOI: https://doi.org/10.1038/s41467-025-56721-0

 

Testo e foto dall’Ufficio Stampa dell’Università di Pisa.

Fossili di grandi squali e mammiferi marini raccontano come è cambiato il Mediterraneo dopo la Crisi di Salinità del Messiniano

L’Università di Pisa ha partecipato a uno studio sulle conseguenze del “gigante salino” formatosi oltre cinque milioni di anni fa

Tra 7,2 e 5,3 milioni di anni fa, nell’intervallo di tempo che i geologi chiamano Messiniano, le specie marine del Mediterraneo furono decimate da un aumento vertiginoso di sale nelle acque del mare, con una perdita di biodiversità che riuscì a ricostituirsi solo nel corso di oltre un milione e mezzo di anni.  In uno studio appena pubblicato sulla rivista scientifica Science, un gruppo internazionale di geologi e paleontologi composto da 29 scienziati di 25 università e istituti di ricerca europei è stato in grado di quantificare tale perdita di biodiversità nel Mar Mediterraneo in corrispondenza della Crisi di Salinità del Messiniano e il successivo recupero biotico.

Guidato da Konstantina Agiadi dell’Università di Vienna, tale team di ricerca ha visto la partecipazione dell’Università di Pisa nelle persone del professor Giovanni Bianucci e del ricercatore Alberto Collareta, paleontologi del Dipartimento di Scienze della Terra dell’Università di Pisa.

Sulla base di un estensivo censimento del registro fossile risalente al Miocene Superiore e al Pliocene Inferiore (da 12 a 3,6 milioni di anni fa), il team ha scoperto che i due terzi delle specie marine del Mar Mediterraneo del Pliocene Inferiore era differente da quelle presenti nel bacino precedentemente alla Crisi di Salinità del Messiniano. Solo 86 delle 779 specie endemiche del Mediterraneo (presenti, cioè, esclusivamente in tale bacino) sopravvissero agli sconvolgimenti ambientali conseguenti alla separazione dall’Oceano Atlantico.

In particolare, i due ricercatori dell’Università di Pisa hanno analizzato le evidenze paleontologiche dei popolamenti a squali e mammiferi marini del Mar Mediterraneo a cavallo di questo grande evento geologico.

“Mentre il registro fossile, nel suo complesso, suggerisce un drastico impatto della Crisi di Salinità del Messiniano sulle forme di vita presenti nel Mediterraneo – spiega Alberto Collareta – i fossili di squali offrono delle informazioni diverse e complementari. In particolare, il rinnovamento faunistico che si osserva nel Pliocene Inferiore – con la comparsa nel Mar Mediterraneo di forme moderne come lo squalo bianco (Carcharodon carcharias) e il declino di altri predatori apicali più tipici del Miocene (ad esempio il famoso ‘Megalodon’) – riflette fenomeni evolutivi e turnover faunistici osservabili alla scala globale più che eventi relativi dalla portata regionale. In questo senso, il biota mediterraneo che rinacque dalle ceneri della crisi messiniana fu dunque necessariamente altro rispetto a quello che aveva caratterizzato il bacino nel corso del Miocene”.

“Una dinamica simile si osserva anche nell’evoluzione della fauna a cetacei del Mediterraneo – osserva Giovanni Bianucci – con l’emergere e la rapida diversificazione dei delfini oceanici (famiglia Delphinidae) nel Pliocene Inferiore, come testimoniato da un eccezionale record fossile rinvenuto in Toscana, Piemonte ed Emilia-Romagna. Analogamente a quanto osservato per gli squali, la comparsa di forme moderne coincide con il declino di specie tipicamente mioceniche, come i grandi capodogli macropredatori. Il fatto che anche questo turnover tra i cetacei abbia avuto una portata globale suggerisce che la coincidenza temporale degli eventi non sia casuale: un fenomeno regionale, ma comunque catastrofico, come la Crisi di Salinità Messiniana, potrebbe infatti aver avuto ripercussioni su scala mondiale sugli ecosistemi marini”.

Nella foto: i due ricercatori, a sinistra Giovanni Bianucci, a destra Alberto Collareta
Nella foto: i due ricercatori, a sinistra Giovanni Bianucci, a destra Alberto Collareta

Questo nuovo studio apre a nuove prospettive sulla Crisi di Salinità Messiniana e provvede, per la prima volta, a una quantificazione sinottica delle conseguenze di tale crisi su molti gruppi di organismi marini. Allo stesso tempo, esso fornisce uno stimolo per ulteriori questioni di ricerca: dove si rifugiarono le poche specie endemiche del Mediterraneo miocenico che furono in grado di sopravvivere alla Crisi di Salinità Messiniana? Quale fu l’impatto dei molti altri “giganti salini” che punteggiano la crosta terrestre? Quale sono le lezioni che questo evento può insegnarci nell’attuale contesto di crisi biologica?

La Crisi di Salinità del Messiniano

Da oltre cinquant’anni la comunità scientifica si interroga sulle cause e le conseguenze della Crisi di Salinità del Messiniano, e soprattutto sull’impatto di un evento tanto eccezionale sugli ecosistemi mediterranei. Ipotesi contrastanti si sono confrontate – e talvolta scontrate – nel corso dei decenni: alcuni ricercatori hanno ipotizzato la quasi completa sterilizzazione di un Mar Mediterraneo divenuto eccessivamente salino, mentre altri hanno argomentato a favore della persistenza locale di corpi d’acqua a salinità normale e di ecosistemi francamente marini per tutta la durata della Crisi di Salinità del Messiniano.

Riconosciuto nelle sue proporzioni titaniche nei primi anni ’70 del secolo scorso, questo “gigante salino” si formò in un bacino in via di disseccamento a seguito dell’emersione dei corridoi marini che fino ad allora avevano connesso il Mediterraneo all’Oceano Atlantico nell’area ispano-marocchina garantendo l’afflusso costante di acque marine di origine atlantiche nell’arida regione mediterranea. Tali condizioni estreme si protrassero alcune centinaia di migliaia di anni: il ritorno a condizioni marine normali avvenne soltanto 5,3 milioni di anni fa, all’inizio dell’epoca pliocenica, in conseguenza dell’apertura dello Stretto di Gibilterra e a seguito di una breve fase in cui le acque mediterranee divennero salmastre.

Fossili di grandi squali e mammiferi marini raccontano come è cambiato il Mediterraneo dopo la Crisi di Salinità del Messiniano
Fossili di grandi squali e mammiferi marini raccontano come è cambiato il Mediterraneo dopo la Crisi di Salinità del Messiniano

 

Testo e immagini dal Polo Comunicazione CIDIC – Centro per l’innovazione e la diffusione della cultura dell’Università di Pisa.

Mediterraneo, Milano-Bicocca sulle tracce della foca monaca: mappare il suo ritorno grazie al DNA ambientale

Attraverso il prelievo e il rilevamento di campioni molecolari dal mare, i ricercatori dell’ateneo milanese rilevano il passaggio del pinnipede lungo le coste italiane e in alto mare. Il metodo, descritto in un articolo appena pubblicato su “Biodiversity and Conservation”, favorirà il monitoraggio e la salvaguardia della specie.

foca monaca DNA
Foca adulta nuota in superficie. È molto raro osservare una foca monaca perché questi animali trascorrono gran parte del tempo in immersione. In alcune specie affini alla foca monaca è stato calcolato che circa l’80% tempo è trascorso in immersione. Infatti in apnea le foche mangiano, si accoppiano e dormono profondamente. Foto: E. Coppola/GFM

Milano, 22 febbraio 2022 – Da decenni la foca monaca, tra i pinnipedi più rari al mondo e l’unico presente nel Mar Mediterraneo, era considerata estinta nelle acque dei mari italiani, fino ai recenti avvistamenti nel Mar Tirreno e Ionio, che hanno fatto ipotizzare un suo ritorno. Per mapparne la presenza, i ricercatori dell’Università di Milano-Bicocca hanno realizzato un metodo di rilevazione innovativo e non invasivo, basato sul recupero e analisi del DNA ambientale (eDNA) dai campioni di acqua prelevati nel Mare Nostrum. I primi test e i risultati delle azioni di monitoraggio hanno dato riscontro positivo, anticipando alcune delle recenti segnalazioni del mammifero marino al largo delle coste toscane e siciliane, in tratti di mare poco frequentati.

 

Il metodo è stato descritto in un articolo dal titolo “A species-specific qPCR assay provides novel insight into range expansion of the Mediterranean monk seal (Monachus monachus) by means of eDNA analysis”, appena pubblicato dalla rivista scientifica “Biodiversity and Conservation” (DOI: https://doi.org/10.1007/s10531-022-02382-0). Prima autrice Elena Valsecchi, ecologa molecolare del dipartimento di Scienze dell’ambiente e della terra dell’Università di Milano-Bicocca e docente di Marine Vertebrate Zoology.

foca monaca DNA
La foca nuota in immersione. Le foche hanno un corpo perfettamente adattato al nuoto, con le pinne posteriori utilizzate esattamente come la coda di un pesce e le pinne anteriori tenute aderenti al corpo o usate solo per migliorare l’assetto e per i rapidi spostamenti laterali. In foto, una foca monaca (Monachus monachus) del Mediterraneo, femmina adulta Riserva Naturale di Kamenjak, Istria meridionle, Croazia 12-2011. Foto: E. Coppola/GFM

Alla base del metodo, un assunto: ogni organismo vivente lascia una traccia del proprio passaggio e questa viene rivelata dal suo DNA rimasto nell’ambiente. Per esempio per la foca monaca, dal DNA che resta nella massa d’acqua in cui si muove. Elena Valsecchi coordina il gruppo di DNA ambientale marino (Marine eDna Group) dell’ateneo milanese, che da due anni ha promosso il progetto “MeD for Med – Marine environmental DNA for the Mediterranean”, sistema di monitoraggio della biodiversità marina basato proprio sull’analisi del DNA ambientale contenuto in campioni d’acqua raccolti da traghetti lungo le rotte commerciali. Un progetto nato grazie al cofinanziamento del programma Bicocca Università del Crowdfunding dell’Università di Milano-Bicocca e descritto in un articolo pubblicato lo scorso agosto su “Frontiers in Marine Science” (DOI: https://doi.org/10.3389/fmars.2021.704786).

Per mettere a punto una strategia molecolare in grado di intercettare, dall’analisi di semplici campioni d’acqua marina, la presenza della foca monaca, una volta diffusa in tutto il bacino centro-orientale del Mediterraneo ma oggi concentrata principalmente nel Mar Egeo, Elena Valsecchi ha identificato regioni “informative” del DNA mitocondriale del pinnipede, ovvero sequenze target che si trovano solo in questa specie. I ricercatori hanno così potuto sviluppare sonde specifiche per poter “pescare” all’interno di un miscuglio di milioni di molecole di DNA provenienti dagli animali più disparati – come quello presente all’interno di un campione di DNA ambientale prelevato dal mare – il DNA della foca monaca: una sorta di “calamita molecolare”.

 

Foche. La presenza delle foche viene immortalata dal sistema automatizzato di monitoraggio fotografico che scatta una foto ogni ora in punti frequentati dalle foto. Questa foto è stata scattata alla stessa data ed ora in cui un campione è stato prelevato in mare, a 70 metri dalla battigia

In collaborazione con Antonia Bruno, microbiologa del dipartimento di Biotecnologie e bioscienze, si è passati allo screening di “veri” campioni ambientali. Le sonde molecolari sono quindi state testate sul campo, attraverso il confronto con un ampio spettro di campioni, alcuni dei quali (campioni positivi) contenenti il DNA della foca monaca, come quelli prelevati nelle acque dell’Oceano Atlantico intorno dell’arcipelago portoghese di Madera, dove si trova una piccola popolazione stanziale di una trentina di esemplari di foca monaca, grazie alla collaborazione dell’Instituto das Florestas e Conservação da Natureza di Madera.

Campionamento. Mauricio Pereira, ranger del Instituto das Florestas e Conservação da Natureza di Madera, raccoglie un campione d’acqua in prossimità della Isola Grande Deserta (Madera) dove le foche monache hanno trovato riparo per dare alla luce i piccoli

I test hanno dimostrato l’efficienza delle sonde nell’intercettare la presenza del mammifero marino e hanno convinto i ricercatori a sperimentarle in campioni di DNA ambientale raccolti nel Mediterraneo, nell’ambito di altri progetti di ricerca portati avanti dal Marine eDna Group. Questi i risultati:

«Abbiamo rilevato la presenza della specie – afferma Elena Valsecchi – in circa il 50 per cento dei campioni prelevati al largo dell’isola di Lampedusa nell’estate 2020 e in alcuni campioni prelevati tra il 2018 e il 2019 da traghetto al largo dell’arcipelago Toscano nell’ambito del progetto Med for Med, lungo la rotta Livorno-Golfo Aranci (Corsica Sardinia Ferries)».

L’efficacia del test ha avuto una conferma nella realtà. «L’analisi di circa 50 campioni di acqua prelevati nei mari italiani sia sotto costa che in alto mare – prosegue l’ecologa molecolare – ha anticipato alcune delle più importanti segnalazioni e avvistamenti di foca monaca avvenute di recente in Toscana e in Sicilia e ne hanno svelato la presenza in tratti di Mediterraneo finora inesplorati».
da sinistra, Emanuele Coppola e Andrea Parmegiani, laureato all_Università di Milano-Bicocca (corso di laurea magistrale in Marine Sciences), in un campionamento. Foto: E. Coppola/GFM
Le applicazioni di questo sistema di rilevazione molecolare sono molteplici.
«Si potranno monitorare aree dove è già nota la presenza della foca monaca – osserva Emanuele Coppola, documentarista che si è occupato di foca monaca per decenni, nonché presidente del Gruppo Foca Monaca APS e coautore nella pubblicazione – al fine di stimare il passaggio stagionale dei pinnipedi e il grado di fedeltà al sito, anche durante le stagioni invernali o in orari notturni, e tenere sotto osservazione, in modo assolutamente non invasivo, siti costieri che, per conformazione fisica, costituiscono i potenziali habitat di elezione per la foca monaca, quali grotte riparate dalla forza del mare e con spiagge interne ideali per il parto».
foca monaca DNA
Femmina adulta in grotta. Le foche partoriscono a terra e per questo scelgono ambienti molto riparati, come grotte marine con ingresso subacqueo. In foto, una foca monaca (Monachus monachus) del Mediterraneo, femmina adulta Riserva Naturale di Kamenjak, dopo la muta, animale in grotta, Colombarica, Istria meridionale, Croazia 05-2013. Foto: E. Coppola/GFM
Ciò favorirà lo studio e la ricerca sulla specie, la conservazione dei siti e la tutela della foca monaca. 

da sinistra, Emanuele Coppola, Elena Valsecchi, Antonia Bruno. Foto scattata alla mostra IllusiOcean ospitata all_Università di Milano-Bicocca. Foto: E. Coppola/GFM
In questo senso, Università di Milano-Bicocca, Gruppo Foca Monaca APS e numerosi altri partner sono ora impegnati nell’iniziativa “Spot the Monk”, un ambizioso piano di campionamento del Mediterraneo che vede coinvolti anche diversi programmi di citizen science, con diversi equipaggi e imbarcazioni coinvolti nella raccolta dei campioni.
da sinistra, Emanuele Coppola ed Elena Valsecchi. Foto scattata alla mostra IllusiOcean ospitata all_Università di Milano-Bicocca. Foto: E. Coppola/GFM
Testo e foto dall’Ufficio Stampa Università di Milano-Bicocca

Il Carbonio controlla la profondità di genesi dei magmi nel mantello superiore della Terra

In un nuovo studio (https://www.nature.com/articles/s41561-021-00797-y), pubblicato sulla rivista Nature Geoscience (https://www.nature.com/ngeo/), un team di ricercatori italiani guidato da Alessandro Aiuppa (Università di Palermo) e che vede fra i co-autori Federico Casetta (Università di Ferrara), Massimo Coltorti (Università di Ferrara), Vincenzo Stagno (Sapienza Università di Roma) e Giancarlo Tamburello (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna), ha sviluppato un nuovo approccio per ricostruire la quantità di Carbonio immagazzinato nel mantello superiore della terra, dalla cui fusione sono segregati i magmi.

Il Carbonio, il quarto elemento più abbondante in termini di massa nell’universo, è un elemento chiave per la vita. Il suo ricircolo, da e verso l’interno della Terra, regola i livelli di CO2 nell’atmosfera, giocando quindi un ruolo fondamentale nel rendere il nostro pianeta abitabile. Il Carbonio è un elemento unico, perché può essere immagazzinato nelle profondità della Terra in varie forme: all’interno di fluidi, come componente di fasi minerali, oppure disciolto nei magmi. Si ritiene, inoltre, che il Carbonio giochi un ruolo chiave nella geodinamica terrestre, in quanto questo elemento è in grado di controllare i processi di fusione che avvengono mantello superiore. Vista la sua tendenza ad essere incorporato nei magmi prodotti per fusione delle rocce peridotitiche nel mantello superiore, il Carbonio è facilmente trasportato verso la superficie terrestre, ove viene poi rilasciato come CO2 nelle emissioni gassose di vulcani attivi o quiescenti. I magmi ed i gas derivati dal mantello sono, pertanto, i mezzi di trasporto più efficaci per portare il Carbonio verso l’idrosfera e l’atmosfera, dove gioca un ruolo primario nel controllo dei cambiamenti climatici su scala geologica.

Ma quanto Carbonio è immagazzinato all’interno della Terra?

Questa domanda ha ispirato ricerche in diversi ambiti delle geoscienze, che si sono avvalse di molteplici approcci empirici, quali lo studio dei gas emessi in aree vulcaniche, del contenuto in CO2 nelle lave eruttate lungo le dorsali medio-oceaniche e/o nelle inclusioni di magma all’interno dei cristalli, delle inclusioni fluide in xenoliti di mantello portati in superficie dai magmi, e le misure sperimentali sviluppate con lo scopo di comprendere la massima quantità di CO2 che può essere disciolta nei magmi a pressioni e temperature tipiche dell’interno della Terra. Sfortunatamente, questi approcci hanno portato spesso a conclusioni contrastanti, al punto che le stime sul contenuto di Carbonio del mantello (così come dell’intera Terra) divergono di più di un ordine di grandezza. Le “melt inclusions”, o inclusioni di magma, cioè piccole goccioline di fuso silicatico intrappolate nei cristalli al momento della loro formazione nei magmi, possono essere sorgenti di informazione uniche per quantificare il contenuto di Carbonio del mantello da cui i magmi stessi sono segregati. Tuttavia, il massivo rilascio di gas (degassamento), tra cui CO2, a cui i magmi sono soggetti durante la loro risalita verso la superficie (prima della loro messa in posto ed eruzione) ha rappresentato un fattore limitante nella comprensione delle variazioni di concentrazione di Carbonio nel mantello.

Nel loro studio, Aiuppa e co-autori hanno revisionato e catalogato i dati relativi al contenuto in CO2 (e zolfo) nei gas vulcanici emessi da 12 vulcani di hot-spot e di rifting continentale, i cui magmi sono generati da sorgenti mantelliche più profonde rispetto a quelle del mantello impoverito da cui derivano i magmi delle dorsali medio-oceaniche.

Gas magmatici ricchi in CO2 rilasciati dal degassamento del lago di lava a condotto aperto presso il vulcano Nyiragongo, Repubblica Democratica del Congo (foto di Sergio Calabrese, Università di Palermo)

I risultati ottenuti hanno permesso di comprendere che il mantello superiore (50-250 km di profondità) che alimenta il vulcanismo in aree di rifting continentale e di hot-spot contiene in media 350 parti per milione (ppm) di Carbonio (intervallo compreso tra 100 e 700 ppm di C). Questo ampio range conferma la visione di un mantello superiore fortemente eterogeneo, la cui composizione è stata variabilmente modificata, in tempi geologici, dall’infiltrazione di fusi carbonatici-silicatici generati in profondità. Le nuove stime ottenute da Aiuppa e co-autori indicano che il mantello superiore ha una capacità totale di Carbonio di circa ~1.2·1023 g. È possibile che la Terra, nelle sue porzioni interne, sia in grado di contenere ancora più Carbonio, come suggerito dai diamanti provenienti da profondità sub-litosferiche (fino a 700 km), i quali mostrano evidenze dell’esistenza di minerali e fusi che contengono significative quantità di C.

In aggiunta, il team di ricercatori ha stimato che il contenuto di Carbonio aumenta con la profondità di fusione parziale nel mantello. Questa scoperta permette di validare i dati sperimentali, che suggeriscono come il Carbonio giochi un ruolo nel determinare percentuale e profondità di fusione parziale nelle sorgenti di mantello che alimentano i vulcani in aree di rift continentali e di hot-spot. I risultati ottenuti, indicando che le porzioni di mantello ricche in Carbonio fondono più in profondità rispetto a porzioni povere in Carbonio, confermano il ruolo di primaria importanza giocato da questo elemento nel guidare i cicli geodinamici.

Aumento della concentrazione di Carbonio con la profondità di fusione nel mantello superiore terrestre. I magmi prodotti in contesti di Isole Oceaniche e di Rift Continentale sono alimentati da sorgenti di mantello più ricche in Carbonio rispetto alle porzioni di “Depleted MORB Mantle (DMM)”, cioè di mantello impoverito da cui sono prodotti i “Mid-Ocean Ridge Basalts (MORB)”, ovvero basalti di dorsale medio-oceanica

L’esistenza di un mantello ricco in Carbonio, evidenziata da Aiuppa e co-autori, ha profonde implicazioni rispetto alle modalità di immagazzinamento del Carbonio primordiale nel mantello, e per il suo riciclo nel tempo e nello spazio. I risultati ottenuti con questo studio sono anche importanti per comprendere le possibili variazioni nel ciclo geologico del Carbonio causate da eventi vulcanici di grande magnitudo, quali la messa in posto delle “Large Igneous Provinces (LIP)”, o grandi province ignee. Se i magmi prodotti dai “plume”, o pennacchi, di mantello sono ricchi in Carbonio, come suggerito da questo studio, allora il rilascio di Carbonio dalle grandi province ignee nel Fanerozoico può aver contribuito a causare le estinzioni di massa, le cui tracce sono preservate nei record sedimentari in tutto il mondo.

carbonio genesi magmi mantello
Sezione schematica dall’Oceano Atlantico all’Oceano Indiano (passando attraverso il cratone Africano), che mostra le variazioni nelle concentrazioni di Carbonio ricostruite nelle sorgenti di mantello da cui sono prodotti i magmi delle Isole Oceaniche e dei Rift Continentali

Il Carbonio controlla la profondità di genesi dei magmi nel mantello superiore della Terra

CITAZIONE

Alessandro Aiuppa, Federico Casetta, Massimo Coltorti, Vincenzo Stagno and Giancarlo Tamburello (2021), Carbon concentration increases with depth of melting in Earth’s upper mantle, Nature Geoscience, https://doi.org/10.1038/s41561-021-00797-y

La ricerca è stata finanziata dal Deep Carbon Observatory (https://deepcarbon.net/) e dal Miur, Progetto PRIN2017 Connect4Carbon (https://prin2017.wixsite.com/connectforcarbon)

Il Carbonio controlla la profondità di genesi dei magmi nel mantello superiore della Terra. Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma, Università di Palermo, Università di Ferrara, Istituto Nazionale di Geofisica e Vulcanologia.

7 MILIONI DI ANNI FA IL COCCODRILLO AFRICANO ATTRAVERSÒ L’ATLANTICO E COLONIZZÒ IL NUOVO MONDO

 

La ricostruzione in 3D dei resti del cranio di un coccodrillo, ritrovato ad As Sahabi (Libia) e conservato per quasi un secolo presso il Museo Universitario di Scienze della Terra (MUST) della Sapienza Università di Roma, ha permesso di identificare nel rettile sahariano l’antenato degli attuali coccodrilli americani. I risultati dello studio, sviluppato da Massimo Delfino dell’Università di Torino in collaborazione con l’Università di Firenze e altri ricercatori italiani, sono stati pubblicati sulla rivista Scientific Reports, permettendo di ripercorrere milioni di anni di storia evolutiva.

Dopo una lunga traversata dell’Oceano Atlantico, l’esploratore scorge in lontananza la terra ferma, un continente fino a quel momento sconosciuto, dove presto però sarebbe stata scritta una nuova storia.

Sembra la narrazione dell’approdo di Cristoforo Colombo nel Nuovo Mondo circa 500 anni fa, eppure si tratta di quanto emerge da un nuovo studio pubblicato sulla rivista Scientific Reports grazie al quale viene ricostruito un tassello della storia evolutiva dei coccodrilli. È possibile che alcuni esemplari di coccodrilli siano partiti circa 7 milioni di anni fa dal Nord Africa, e abbiano verosimilmente attraversato l’Oceano Atlantico per arrivare sulle coste del Sud America, dove si sono adattati e diversificati dando origine alle specie di Crocodylus, che ancora oggi abitano il continente americano.

La ricerca colloca il reperto africano del Miocene, identificato come Crocodylus checchiaialla base dell’albero evolutivo dei coccodrilli americani.

Libia
As Sahabi in Libia: è possibile che – 7 milioni di anni fa – esemplari di coccodrillo africano abbiano attraversato l’Oceano Atlantico

Il lavoro, sviluppato da Massimo Delfino dell’Università di Torino e coordinato da Raffaele Sardella, Direttore del Museo Universitario di Scienze della Terra (MUST) della Sapienza Università di Roma, in collaborazione con l’Università di Firenze, ha permesso di ricostruire in 3D l’unico “superstite” dei cinque crani fossili ritrovati agli inizi degli anni ‘30 nel corso di una spedizione scientifica in Libia, in una località del Sahara settentrionale chiamata As Sahabi. Il fossile studiato è stato conservato nelle collezioni del museo romano per quasi un secolo.

coccodrillo Atlantico Libia Crocodylus checchiai
Il cranio di Crocodylus checchiai ancora conservato al Museo Universitario di Scienze della Terra

“L’esemplare di Crocodylus checchiai – spiega Raffaele Sardella – è il cranio meglio conservato di questa specie vissuta nel Miocene, oltre 7 milioni di anni fa, in Africa, quando il Sahara era un territorio molto diverso da come appare oggi, popolato da grandi mammiferi e ricco di vegetazione e corsi d’acqua”.

 

“Abbiamo visto che il coccodrillo di As Sahabi condivide con le specie americane numerose particolarità anatomiche” – commenta Massimo Delfino, del Dipartimento di Scienze della Terra dell’Università di Torino“Ma non solo, abbiamo confrontato, grazie a specifici software, i dati ottenuti con le caratteristiche anatomiche di altre specie sia esistenti che fossili con lo scopo di realizzare una analisi filogenetica che ha chiarito che questa specie rappresenta una sorta di anello di congiunzione fra le specie africane e quelle americane”.

“Il nostro è un risultato di estrema importanza – afferma Lorenzo Rook dell’Università di Firenze – che valorizza le collezioni storiche di un giacimento paleontologico unico per la comprensione dei popolamenti faunistici dell’area circum-mediterranea alla fine del Miocene”.

Attraverso l’uso di scansioni tomografiche i ricercatori hanno ottenuto le immagini 3D sia dell’interno, sia dell’esterno del cranio. Le dimensioni della testa hanno permesso di stabilire che il coccodrillo fosse di età adulta e lungo poco più di 3 metri.

“L’uso di queste tecnologie – aggiunge Dawid A. Iurino, ricercatore del team che ha elaborato le TAC realizzate sul cranio libico, ora all’Università di Perugia – apre grandi prospettive nel campo della ricerca paleontologica e permette di analizzare elementi altrimenti impossibili da osservare”.

I risultati dello studio trovano infatti conferme anche da un punto di vista cronologico. Nel Nuovo Mondo infatti, i fossili più antichi di Crocodylus risalgono all’inizio del Pliocene (5 milioni di anni fa) risultando ben più recenti della specie studiata. È quindi possibile che durante il Miocene alcuni esemplari di C. checchiai (o una forma affine e ancora sconosciuta) abbiano attraversato l’Oceano Atlantico approdando sulle coste del sud America.

coccodrillo Atlantico Libia Crocodylus checchiai
Ricostruzione di Crocodylus checchiai: è possibile che esemplari di coccodrillo africano abbiano attraversato l’Oceano Atlantico

L’attraversamento di un così ampio tratto di mare, che nel Miocene era comunque più breve di oggi, potrebbe apparire sorprendente, ma tra i coccodrilli attuali esistono specie in grado di tollerare l’elevata salinità dell’acqua marina e di compiere ampi spostamenti in mare aperto sfruttando le correnti di superficie. Studi con tracciamento satellitare condotti su alcuni esemplari di coccodrillo marino australiano (Crocodylus porosus), hanno rivelato come, sfruttando le correnti, questi rettili siano in grado di percorrere in diversi giorni oltre 500 km in mare aperto.

I risultati di questo studio rappresentano un importante contributo per ricostruire la storia evolutiva e la paleobiogeografia dei coccodrilli, ovvero le modalità e i tempi con i quali questi rettili hanno colonizzato i diversi continenti raggiungendo la loro attuale distribuzione geografica.

 

Riferimenti:

Old African fossils provide new evidence for the origin of the American crocodiles – Delfino, M., Iurino, D., Mercurio, B., Piras, P., Rook, L., and Sardella, R., 2020, Scientific Reports  https://doi.org/10.1038/s41598-020-68482-5

 

Testo, video e immagine sul coccodrillo africano e l’attraversamento dell’Atlantico dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma e dall’Università degli Studi di Torino.