News
Ad
Ad
Ad
Tag

Neuroscience Institute Cavalieri Ottolenghi

Browsing

DIMOSTRATO PER LA PRIMA VOLTA UN LEGAME DIRETTO TRA MICROBIOTA INTESTINALE E SISTEMA NERVOSO PERIFERICO

Lo studio apre nuove prospettive terapeutiche per le lesioni dei nervi ed è il risultato di una collaborazione internazionale tra le ricercatrici di NICO – Università di Torino, Università di Padova e Università di Hannover.

Il microbiota intestinale, costituito da un insieme di microorganismi tra cui batteri, virus e funghi, colonizza il tratto gastrointestinale umano e influisce in modo decisivo sulla salute. Negli ultimi decenni sono stati dimostrati gli effetti del microbiota su altri organi e le alterazioni di questo complesso ecosistema – note come disbiosi – sono state collegate all’insorgenza di diverse patologie.

Ora, per la prima volta, c’è la conferma di un legame diretto tra microbiota intestinale e sistema nervoso periferico. In particolare, lo studio pubblicato di recente sulla rivista scientifica Gut Microbes dimostra come la totale o parziale assenza del microbiota intestinale interferisca negativamente sullo sviluppo dei nervi periferici e del loro bersaglio, il muscolo scheletrico.

La ricerca è frutto di una collaborazione internazionale tra l’Università di Torino – con le professoresse Giulia Ronchi, Giovanna Gambarotta e Stefania Raimondo del NICO – Neuroscience Institute Cavalieri Ottolenghi e del Dipartimento di Scienze Cliniche e Biologiche, insieme al prof. Salvatore Oliviero del Dipartimento di Scienze della Vita e Biologia dei Sistemi UniTo ­- unitamente alla prof.ssa Matilde Cescon del Dipartimento di Medicina Molecolare dell’Università di Padova e nella persona della prof.ssa Kirsten Haastert-Talini per l’Università di Hannover in Germania.

Stefania Raimondo - Giulia Ronchi - Giovanna Gambarotta (NICO-UNITO)
Stefania Raimondo – Giulia Ronchi – Giovanna Gambarotta (NICO-UNITO)

Lesioni dei nervi periferici: cause, incidenza e strategie terapeutiche

Incidenti stradali, sportivi, domestici o sul lavoro e (non ultimi) anche interventi chirurgici. Sono queste le cause più frequenti delle lesioni dei nervi periferici che in Italia raggiungono un’incidenza di 400.000 casi all’anno.

legame tra microbiota intestinale e sistema nervoso periferico Immagini acquisite al microscopio elettronico che mostrano due fibre mieliniche a confronto. A parità di diametro dell’assone (A), i nervi che si sono sviluppati in totale assenza di microbiota mostrano una guaina mielinica più spessa (M) rispetto ai nervi che si sono sviluppati in presenza di un normale microbiota
Immagini acquisite al microscopio elettronico che mostrano due fibre mieliniche a confronto. A parità di diametro dell’assone (A), i nervi che si sono sviluppati in totale assenza di microbiota mostrano una guaina mielinica più spessa (M) rispetto ai nervi che si sono sviluppati in presenza di un normale microbiota

«Malgrado i notevoli progressi della ricerca e della microchirurgia ricostruttiva – che oggi puntano su ingegneria tissutale e nuovi biomateriali – il recupero delle funzioni nervose e muscolari dopo una lesione è spesso solo parziale, influendo negativamente sulla qualità della vita dei pazienti. È quindi necessario – sottolineano Matilde Cescon dell’Università di Padova e Giulia Ronchi del NICO – Università di Torino – approfondire la conoscenza dei complessi meccanismi neurobiologici che regolano la rigenerazione dei nervi. Indagare il ruolo del microbiota intestinale in condizioni patologiche o di lesioni va proprio in questa direzione: aprire strade inesplorate che offrano nuove prospettive terapeutiche, con importanti ricadute cliniche».

Questo studio, che dimostra per la prima volta l’esistenza di un asse intestino – sistema nervoso periferico, è il punto di partenza per il progetto Gut-NeuroMuscle, finanziato dal programma PRIN – Progetti di Rilevante Interesse Nazionale con cui il Ministero della Ricerca sostiene la ricerca di base, che ha l’obiettivo di esplorare l’interazione tra microbiota e rigenerazione nervosa.

legame tra microbiota intestinale e sistema nervoso periferico Grafico “a vulcano” ottenuto in seguito a sequenziamento dell’RNA messaggero, nel quale ogni puntino rappresenta un gene la cui espressione è deregolata nei neuroni sensitivi che si sono sviluppati in totale assenza di microbiota (in rosso quelli espressi di più, in blu quelli espressi di meno)
Grafico “a vulcano” ottenuto in seguito a sequenziamento dell’RNA messaggero, nel quale ogni puntino rappresenta un gene la cui espressione è deregolata nei neuroni sensitivi che si sono sviluppati in totale assenza di microbiota (in rosso quelli espressi di più, in blu quelli espressi di meno)

Gut-NeuroMuscle (Intestino e sistema neuromuscolare: studio dell’impatto del microbiota sulla rigenerazione nervosa e reinnervazione muscolare dopo lesione del nervo periferico) vede coinvolti due gruppi di ricerca composti dalle prof.sse Giulia Ronchi e Giovanna Gambarotta (NICO – Università di Torino) e dalla prof.ssa Matilde Cescon (Università di Padova) e la dott.ssa Sonia Calabrò (Università di Padova).

Giulia Ronchi - Giovanna Gambarotta - Stefania Raimondo (NICO-UNITO)
Giulia Ronchi – Giovanna Gambarotta – Stefania Raimondo (NICO-UNITO)

Link alla ricerca: www.tandfonline.com/doi/full/10.1080/19490976.2024.2363015

Titolo: “Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation – «Gut Microbes»- 2024

Autori: Matilde Cescon, Giovanna Gambarotta, Sonia Calabrò, Chiara Cicconetti, Francesca Anselmi, Svenja Kankowski, Luisa Lang, Marijana Basic, Andre Bleich, Silvia Bolsega, Matthias Steglich, Salvatore Oliviero, Stefania Raimondo, Dario Bizzotto, Kirsten Haastert-Talini & Giulia Ronchi

 

Testo e foto dall’Ufficio Stampa Area Relazioni Esterne e con i Media Università degli Studi di Torino

DALL’UNIVERSITÀ DI TORINO UNA NUOVA MOLECOLA CHE RALLENTA LA PROGRESSIONE DELL’ATROFIA MUSCOLARE SPINALE (SMA)

 Una ricerca dell’Università di Torino, pubblicata sulla prestigiosa rivista americana Proceedings of the National Academy of Sciences (PNAS), ha recentemente dimostrato come una piccola molecola sintetica chiamata MR-409, sia capace di rallentare la progressione della SMAl’Atrofia Muscolare Spinale (SMA).

Il trattamento con MR-409 ha migliorato l’innervazione dei muscoli scheletrici

L’Atrofia Muscolare Spinale (SMA) è una malattia neuromuscolare rara dell’infanzia, caratterizzata dalla perdita dei motoneuroni, le cellule nervose che trasportano i segnali dal sistema nervoso centrale ai muscoli, controllandone il movimento. La SMA, che ha un’incidenza di circa 1 su 10.000 nati vivi, provoca debolezza, atrofia muscolare progressiva e complicazioni respiratorie. È causata da mutazioni del “gene per la sopravvivenza del motoneurone” e conseguente carenza della proteina SMN (Survival Motor Neuron), essenziale per la sopravvivenza e il normale funzionamento dei motoneuroni.

Fino a poco tempo fa, il trattamento della SMA era esclusivamente sintomatico, finalizzato a migliorare la qualità di vita dei pazienti. Oggi, invece, sono stati approvati nuovi farmaci in grado di incrementare la produzione di proteina SMN funzionale, ma non sono ancora considerati come cura definitiva per la SMA.

Uno studio dell’Università di Torino, coordinato dalla Prof.ssa Riccarda Granata, della Divisione di Endocrinologia e Malattie del Metabolismo (diretta dal Prof. Ezio Ghigo) del Dipartimento di Scienze Mediche e dal Prof. Alessandro Vercelli, direttore del NICO – Neuroscience Institute Cavalieri Ottolenghi, Dipartimento di Neuroscienze, ha recentemente dimostrato come una piccola molecola sintetica chiamata MR-409, analoga del growth hormone-releasing hormone (GHRH, neurormone che stimola il rilascio dell’ormone della crescita), sia capace di rallentare la progressione della SMA.

Nuova ricerca dell'Università di Torino: una nuova molecola, MR-409, rallenta la progressione dell'Atrofia Muscolare Spinale (SMA)
La somministrazione di MR-409 ha significativamente contrastato l’atrofia muscolare

MR-409 è prodotta a Miami nel laboratorio del Prof. Andrew Viktor Schally, Premio Nobel per la Medicina e co-autore del lavoro. Nello specifico, i ricercatori che hanno condotto lo studio, la Prof.ssa Marina Boido, il Dr. Iacopo Gesmundo e la Dr.ssa Anna Caretto, hanno evidenziato come MR-409 sia in grado di migliorare le funzioni motorieattenuare l’atrofia muscolare e promuovere la maturazione delle giunzioni neuromuscolari in un modello sperimentale di SMA. Inoltre, MR-409 contrasta la perdita dei motoneuroni e riduce l’infiammazione nel midollo spinale. Questi risultati suggeriscono che MR-409 possa rappresentare un potenziale farmaco, in associazione ad altre terapie, nel trattamento della SMA.

molecola rallenta atrofia muscolare spinale SMA MR-409
MR-409, migliorando l’innervazione ed il trofismo muscolare, ha anche contribuito a rallentare la degenerazione dei motoneuroni spinali (mostrati in verde)

Lo studio, pubblicato sulla prestigiosa rivista americana Proceedings of the National Academy of Sciences (PNAS), è il risultato di una collaborazione tra il gruppo di neuroscienziati, da anni impegnati nella ricerca sulla SMA, ed il gruppo di endocrinologia cellulare e molecolare, che insieme al Prof. Schally ed i suoi collaboratori, ha dimostrato già in precedenza gli effetti protettivi degli analoghi del GHRH, anche a livello cardiaco e muscolare. Pur non essendo ancora disponibili per uso umano, sono in corso ulteriori studi per l’autorizzazione di queste sostanze per uso clinico, definite “agonisti” del GHRH, così come degli “antagonisti”, promettenti farmaci antitumorali, già studiati nel mesotelioma pleurico maligno e nei tumori ipofisari.

Testo e immagini dall’Area Relazioni Esterne e con i Media dell’Università degli Studi di Torino sulla molecola MR-409, che rallenta la progressione dell’Atrofia Muscolare Spinale (SMA).

L’EREDITÀ NASCOSTA DELLE CELLULE DIVERSI ALLA NASCITA E NELLA RISPOSTA AL DANNO: NUOVA LUCE SUI PROGENITORI DEGLI OLIGODENDROCITI
Uno studio guidato da ricercatori del NICO – Università di Torino chiarisce la relazione fra l’eterogeneità di queste cellule del Sistema Nervoso Centrale e la loro risposta al danno al DNA, responsabile dell’invecchiamento delle cellule e coinvolto in molte patologie che colpiscono il cervello.
progenitori degli oligodendrociti OPC
Progenitori degli oligodendrociti (OPC) in coltura. La marcatura verde identifica gli OPC di origine dorsale, più vulnerabili al danno al DNA. ImageJ=1.52i
unit=micron
Il cervello è un organo complesso e per questo affascinante. Parte di questa complessità risiede nella diversità delle cellule che lo compongono. Da diversi anni ormai si è capito che i neuroni non sono tutti uguali, ma presentano differenze che li fanno contribuire in modo diverso e specifico al funzionamento del sistema nervoso, e che li rendono più o meno vulnerabili durante l’invecchiamento o in caso di patologia. Non è ancora chiaro invece se e quanto le cellule gliali – oligodendrociti, astrociti e microglia, cioè le cellule non neuronali del sistema nervoso – siano eterogenee e quanto questo possa avere impatto sulla fisiologia o sulla patologia del sistema nervoso centrale (SNC).

In un recente lavoro pubblicato sulla prestigiosa rivista Nature Communications, i ricercatori del NICO, Neuroscience Institute Cavalieri Ottolenghi – Università di Torino Enrica Boda, Martina Lorenzati, Roberta Parolisi, Gianmarco Pallavicini, Ferdinando di Cunto, Annalisa Buffo (Dipartimento di Neuroscienze e NICO) e Luca Bonfanti (Dipartimento di Scienze Veterinarie e NICO), in collaborazione con il gruppo di ricerca della Dr.ssa Stephanie Bielas (University of Michigan, USA) e con il Dr. Brian Harding (University of Pennsylvania and Children’s Hospital of Philadelphia, USA), hanno cercato di rispondere a questa domanda concentrandosi sui progenitori degli oligodendrociti, anche detti OPC.

I ricercatori del NICO-UNITO coinvolti nella ricerca, da sinistra: Roberta Parolisi, Gianmarco Pallavicini, Martina Lorenzati, Annalisa Buffo, Ferdinando di Cunto, Enrica Boda e Luca Bonfanti

Gli OPC sono le cellule che danno origine agli oligodendrociticioè le cellule che producono la mielina necessaria per assicurare la conduzione fedele e veloce dei segnali fra i neuroni.

«Uno degli aspetti di eterogeneità degli OPC è la loro diversa “origine di nascita”: durante lo sviluppo del SNC, diverse popolazioni di OPC vengono generate a partire da “nicchie” diverse e in tempi diversi. A dispetto di questa diversa origine, nel cervello adulto, le popolazioni di OPC non presentano differenze evidenti. Se e quanto la diversa origine di nascita degli OPC possa invece condizionare il loro funzionamento o destino in condizioni patologiche non era stato mai studiato, sebbene questa sia una questione rilevante, essendo gli OPC e gli oligodendrociti il bersaglio specifico di alcune fra le più diffuse patologie del SNC» riferisce la prof.ssa Enrica Boda, primo autore del lavoro.

In questo contesto, i ricercatori hanno scoperto che, in base alla loro diversa origine di nascita, gli OPC “ereditano” una diversità nascosta, latente fino al momento in cui queste cellule non si trovino in presenza di una lesione, e nello specifico di un danno al loro DNAQuesta eredità nascosta consiste in una diversa capacità di attivare risposte antiossidanti e quindi di sopravvivere in caso di danno. «

Poiché il danno al DNA contribuisce all’invecchiamento di tutte cellule e, in modo primario o secondario, alla maggior parte delle patologie del SNC, questa scoperta rappresenta un importante passo in avanti per la comprensione del comportamento degli OPC nel cervello dell’anziano e in condizioni patologiche e, auspicabilmente, per il disegno di nuovi approcci di terapia» conclude la prof.ssa Boda.

 

Nature Communications. First published: 28 April 2022, Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage, link: www.nature.com/articles/s41467-022-30010-6

Testo e immagini dall’Ufficio Stampa dell’Università degli Studi di Torino

Su Age and Ageing (British Geriatrics Society) i risultati del progetto My-AHA finanziato dall’Unione Uuropea e coordinato dall’Università di Torino 

DALLE APP UN AIUTO PER PREVENIRE IL DECLINO COGNITIVO

Prevenire la fragilità aiuta a mantenere una buona qualità di vita: lo conferma uno studio di 18 mesi su 200 persone over 65  

my AHA app declino cognitivo my AHA app declino cognitivo

Prevenire e arrestare la fragilità e il declino cognitivo, garantendo una buona qualità della vita nell’invecchiamento. È questa una delle maggiori sfide per la sanità del 21° secolo: la maggiore aspettativa di vita degli ultimi decenni si traduce infatti in un significativo aumento del numero di persone affette da demenza che, com’è noto, si manifesta soprattutto negli anziani. In Europa sono quasi 9 milioni i pazienti con demenza di cui 1.200.00 in Italia, paese che presenta un’elevata prevalenza di soggetti anziani. Nel 2015 i pazienti con malattia di Alzheimer e demenze correlate erano circa 47 milioni nel mondo, un numero destinato a triplicarsi nel 2050 in mancanza di strategie efficaci per prevenire il deficit cognitivo e rallentarne la progressione.

Le malattie neurodegenerative che causano demenza sono caratterizzate da una lunga fase preclinica – che può durare anche 20 anni – in cui i meccanismi responsabili delle lesioni cerebrali sono già attivi ma causano sintomi modesti, che non interferiscono in modo significativo sulla vita quotidiana. Con il passare degli anni, tuttavia, questi deficit si aggravano fino a evolvere in una demenza conclamata. Negli ultimi anni, l’interesse di ricercatori e medici per questa fase preclinica è cresciuto in modo esponenziale, nella speranza di prevenire la comparsa di demenza.

Un aiuto importante arriva dalle nuove tecnologie digitali, efficaci nel monitorare primi sintomi di deficit cognitivo e attuare quanto prima le strategie di prevenzione. Lo dimostrano i risultati – pubblicati sulla prestigiosa rivista Age and Ageing della British Geriatrics Society – del progetto di ricerca My-AHA – My Active and Healthy Aging, coordinato dal prof. Alessandro Vercelli,  Dipartimento di Neuroscienze Rita Levi Montalcini e direttore del NICO Neuroscience Institute Cavalieri Ottolenghi dell’Università di Torino, e finanziato dalla Comunità europea nell’ambito del Programma Horizon 2020.

my AHA app declino cognitivo

Il progetto My-AHA, forte della sinergia di 15 centri di ricerca e aziende ICT europei ed extra-UE (Australia, Giappone e Corea del Sud), ha portato in 4 anni allo sviluppo e validazione di una piattaforma tecnologica che – integrando una serie app – è in grado di monitorare lo stato di salute, rilevando precocemente il rischio di fragilità, e suggerire – in parallelo – attività utili per prevenire il deficit cognitivo e mantenere una buona qualità di vita nei soggetti anziani.

Valore aggiunto di My-AHA l’approccio integrato che ha unito le competenze multidisciplinari di medici, ingegneri ed esperti di informatica, questi ultimi – afferenti all’Istituto di Biomeccanica di Valencia, all’Università di Siegen (Germania), all’Istituto Fraunhofer (Portogallo) e ad alcune piccole imprese europee – coordinati dall’ing. Marco Bazzani della Fondazione LINKS di Torino. Le attività psicologiche e fisiche sono state invece monitorate e stimolate mediante protocolli disegnati dalle Università di Loughborough e di Siegen.

LO STUDIO CLINICO DI VALIDAZIONE DELLA PIATTAFORMA MY-AHA 

Dopo uno screening iniziale di alcune migliaia di persone in Italia (Università di Torino), Giappone (Università di Tohoku), Spagna (Istituto GESMED di Valencia), Austria (Johanniter Inst. di Vienna) e Australia (Università della Sunshine Coast), sono stati selezionati 200 soggetti di età maggiore di 65 anni in condizione di pre-fragilità fisica, cognitiva o psicosociale.

Le persone selezionate, divise in due gruppi, hanno partecipato per un periodo complessivo di 18 mesi allo studio clinico di validazione della piattaforma My-AHA, coordinato dal prof. Innocenzo Rainero, della Clinica Neurologica del Dipartimento di Neuroscienze UniTo, Città della Salute e della Scienza di Torino, responsabile del workpackage clinico del progetto.

I partecipanti di entrambi i gruppi hanno caricato sui loro smartphone le app My-AHA, e sono stati costantemente monitorati mediante la piattaforma tecnologica sviluppata per il progetto e delle visite regolari per valutarne l’attività fisica, cognitiva e sociale, l’alimentazione e il sonno.

Il primo gruppo (di controllo) è stato seguito secondo i normali standard assistenziali, mentre il secondo ha ricevuto anche l’intervento multifattoriale della piattaforma My-AHA: 100 soggetti hanno quindi utilizzato delle app con “giochi” per stimolare le funzioni cognitive e programmi per incoraggiare l’attività fisica. Inoltre, i partecipanti del secondo gruppo sono stati coinvolti in attività sociali (gite, visite ai musei, occasioni conviviali) e incentivati ad adottare una corretta alimentazione e una appropriata igiene del sonno.

Dopo 12 mesi abbiamo comparato i risultati dei soggetti che usavano regolarmente le diverse app con quelli del gruppo di controllo. Questi ultimi – spiega il prof. Innocenzo Rainero – hanno dimostrato al termine dello studio un peggioramento significativo della qualità di vita, misurato con una apposita scala dell’Organizzazione Mondiale della Sanità. Al contrario, i soggetti nel gruppo ‘attivo’ hanno mantenuto una buona qualità di vita e la differenza tra i due gruppi, come indicano i dati pubblicati su Age and Ageing, è risultata statisticamente significativa. Inoltre – continua il prof. Rainero – i soggetti che hanno utilizzato la piattaforma e gli interventi suggeriti da My-AHA dimostrano un significativo miglioramento del tono dell’umore e del comportamento alimentare: due parametri molto importanti per la prevenzione delle patologie correlate all’età”.

my AHA app declino cognitivo

Questo studio – aggiunge il prof. Alessandro Vercelli – conferma che, se si interviene precocemente, è possibile mantenere una buona qualità di vita nelle persone anziane, prevenendo o rallentando l’evoluzione delle malattie neurodegenerative che causano demenza. Ancora, conferma che per prevenire la malattia di Alzheimer e le demenze correlate è necessario intervenire su diversi fattori di rischio, inclusi l’attività fisica, la funzione cognitiva, lo stato psicologico ma anche l’isolamento sociale. Un precoce intervento su più ambiti – conclude il coordinatore del progetto My-AHA – sembra essere la strada maestra per prevenire le demenze. Lo studio dimostra inoltre che la tecnologia della informazione e comunicazione (ICT) può essere di grande aiuto nell’assistenza dell’anziano”.

Age and Ageing22 January 2021, The My Active and Healthy Aging ICT platform prevents quality of life decline in older adults: a randomised controlled study

 

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Torino

I risultati dello studio su Neurochemistry International

POLVERI SOTTILI E SCLEROSI MULTIPLA: DIMOSTRATO L’EFFETTO SU NEUROINFIAMMAZIONE E RIPARAZIONE DELLA MIELINA

I ricercatori del NICO – Università di Torino hanno dimostrato per la prima volta gli effetti negativi dell’esposizione al PM sulle capacità rigenerative del tessuto nervoso

polveri sottili sclerosi multipla mielina
Foto di JuergenPM

Secondo l’OMS causa la morte prematura di circa 4 milioni di persone nel mondo ogni anno. Ma l’esposizione cronica ad alti livelli di polveri sottili – il famoso PM (particulate matter) – è anche associata a una prevalenza della Sclerosi Multipla in alcune popolazioni. In particolare nei grandi centri urbani, dove i picchi di PM precedono sistematicamente i ricoveri ospedalieri dovuti all’esordio o alla recidiva di patologie croniche autoimmuni, tra cui la Sclerosi Multipla, come dimostrano numerosi studi epidemiologici. A oggi restano tuttavia da chiarire i meccanismi con cui l’esposizione al PM eserciti un effetto sul sistema nervoso centrale.

Grazie a un progetto pilota finanziato da AISM e la sua Fondazione FISM – Fondazione Italiana Sclerosi Multipla, le ricercatrici del NICO – Neuroscience Institute Cavalieri Ottolenghi dell’Università di Torino hanno chiarito per la prima volta che l’esposizione al PM ha effetti negativi sulle capacità rigenerative del tessuto nervoso, e in particolare della mielina, il rivestimento degli assoni che – se danneggiato, come avviene nella SM – compromette la trasmissione delle informazioni fra i neuroni.

 

Lo studio è nato grazie alla collaborazione tra i ricercatori del NICO Enrica Boda, Roberta Parolisi, Annalisa Buffo (Gruppo Fisiopatologia delle Cellule Staminali Cerebrali), Francesca Montarolo e Antonio Bertolotto (Gruppo Neurobiologia Clinica – CRESM, Centro di Riferimento Regionale SM dell’Ospedale San Luigi Gonzaga di Orbassano, TO) con il gruppo di ricerca di Valentina Bollati dell’Università di Milano e Andrea Cattaneo dell’Università dell’Insubria.

I risultati della ricerca – pubblicati sulla rivista Neurochemistry International – dimostrano in un modello animale che l’esposizione al PM2.5 ostacola la riparazione della mielina, inibisce il differenziamento degli oligodendrociti e promuove l’attivazione degli astrociti e della microglia, cellule che di norma svolgono funzioni di sostegno per i neuroni ma che – quando attivate dal sistema immunitario come accade nella Sclerosi Multipla – contribuiscono alla neuroinfiammazione.

Nelle prime fasi di malattia, la mielina può comunque essere riparata da cellule gliali presenti nel tessuto nervoso, chiamate oligodendrociti, il che contribuisce alla remissione – purtroppo spesso solo temporanea – dei sintomi. Le ricerche in corso nei nostri laboratori sono importanti perché permettono di capire quali fattori possono ostacolarne la riparazione – sottolinea la prof.ssa Enrica Boda del NICO, Università di Torino –  aggiungendo un tassello nella comprensione dei meccanismi di neurotossicità del PM. I nostri studi – continua – ora si focalizzano nell’identificare i meccanismi cellulari e molecolari che mediano il trasferimento del ‘danno’ dovuto all’inalazione del PM2.5 dai polmoni al sistema nervoso centraleRiconoscere fattori di rischio ambientali modificabili – come l’inquinamento dell’aria – e i meccanismi che mediano le loro azioni può fornire informazioni importanti per prevenire le recidive della Sclerosi Multipla agendo su politiche ambientali, stile di vita e possibilmente, progettazione di nuovi strumenti di prevenzione e interventi terapeutici”.

 

Neurochemistry International, maggio 2021

Exposure to fine particulatematter (PM2.5) hampers myelin repair in a mouse model of white matter demyelination.
Parolisi R, Montarolo F, Pini A, Rovelli S, Cattaneo A, Bertolotto A, Buffo A, Bollati V, Boda E

Testo e immagini dall’Ufficio Stampa dell’Università degli Studi di Torino