News
Ad
Ad
Ad
Tag

Marcello Giroletti

Browsing

SCOPERTO IL GETTO OSCILLANTE DI M87

Un gruppo di ricercatori guidati dallo Zhejiang Laboratory (Cina), a cui partecipa anche l’Istituto Nazionale di Astrofisica (INAF) e l’Università di Bologna, ha recentemente scoperto che la vicina radiogalassia Messier 87 (M87), situata a 55 milioni di anni luce dalla Terra, presenta un getto oscillante. Questo getto ha origine da un buco nero 6,5 miliardi di volte più massiccio del Sole: esattamente quello la cui immagine è stata ottenuta nel 2019 con l’Event Horizon Telescope (EHT). Dai dati raccolti negli ultimi 23 anni con la tecnica Very Long Baseline Interferometry (VLBI), gli esperti hanno osservato che il getto oscilla con un’ampiezza di circa 10 gradi (il fenomeno è conosciuto con il nome di precessione). Come si legge nell’articolo pubblicato oggi su Nature, gli esperti hanno svelato un ciclo ricorrente di 11 anni nel movimento di precessione della base del getto, come previsto dalla teoria della relatività generale di Einstein nel caso di un buco nero rotante attorno al suo asse. Questo lavoro ha quindi collegato con successo la dinamica del getto con il buco nero supermassiccio centrale, offrendo la prova dell’esistenza della rotazione del buco nero di M87.

Rappresentazione schematica del modello del disco di accrescimento inclinato. Si presume che l’asse di rotazione del buco nero sia allineato verticalmente. La direzione del getto è quasi perpendicolare al disco. Il disallineamento tra l’asse di rotazione del buco nero e l’asse di rotazione del disco innescherà la precessione del disco e del getto. Crediti: Yuzhu Cui et al. 2023, Intouchable Lab@Openverse e Zhejiang Lab
Scoperto il getto oscillante di M87: rappresentazione schematica del modello del disco di accrescimento inclinato. Si presume che l’asse di rotazione del buco nero sia allineato verticalmente. La direzione del getto è quasi perpendicolare al disco. Il disallineamento tra l’asse di rotazione del buco nero e l’asse di rotazione del disco innescherà la precessione del disco e del getto. Crediti: Yuzhu Cui et al. 2023, Intouchable Lab@Openverse e Zhejiang Lab

I buchi neri supermassicci al centro delle galassie attive sono gli oggetti celesti più potenti dell’universo, in quanto in grado di accumulare enormi quantità di materiali a causa della straordinaria forza gravitazionale e allo stesso tempo alimentare getti che si allontanano a velocità vicina a quella della luce. Il meccanismo di trasferimento di energia tra i buchi neri supermassicci, il disco tramite il quale la materia cade sul buco nero e i getti relativistici rimane però un enigma ancora irrisolto. Una teoria prevalente suggerisce che l’energia può essere estratta da un buco nero in rotazione, che grazie alla energia gravitazionale ottenuta dalla materia in caduta su di esso è in grado di espellere getti di plasma a velocità vicine a quella della luce. Tuttavia, la rotazione dei buchi neri supermassicci non è ancora stata provata con certezza.

Marcello Giroletti, ricercatore presso l’INAF di Bologna e tra gli autori dell’articolo, spiega:

“Questa scoperta è molto importante, perché prova che il buco nero supermassccio al centro di M87 è in rotazione su sé stesso con grandissima velocità. Questa possibilità era stata ipotizzata proprio sulla base delle immagini ottenute con EHT ma ora ne abbiamo una dimostrazione inequivocabile”

Infatti quale forza nell’universo può alterare la direzione di un getto così potente? La risposta potrebbe nascondersi nel comportamento del disco di accrescimento, la struttura a forma di disco nella quale il materiale spiraleggia gradualmente verso l’interno finché non viene fatalmente attratto dal buco nero. E se il buco nero è in rotazione su sé stesso, ne segue un impatto significativo sullo spazio-tempo circostante, causando il trascinamento degli oggetti vicini, ovvero il “frame-dragging” previsto dalla Relatività Generale di Einstein.

 Pannello superiore: struttura del getto M87 a 43 GHz osservata nel periodo 2013-2018. Le frecce bianche indicano l'angolo di posizione del getto in ciascuna sottotrama. Pannello inferiore: risultati basati sull'immagine impilata annualmente dal 2000 al 2022. I punti verde e blu sono ottenuti da osservazioni rispettivamente a 22 GHz e 43 GHz. La linea rossa rappresenta la soluzione migliore secondo il modello di precessione. Crediti: Yuzhu Cui et al. 2023
Pannello superiore: struttura del getto M87 a 43 GHz osservata nel periodo 2013-2018. Le frecce bianche indicano l’angolo di posizione del getto in ciascuna sottotrama. Pannello inferiore: risultati basati sull’immagine impilata annualmente dal 2000 al 2022. I punti verde e blu sono ottenuti da osservazioni rispettivamente a 22 GHz e 43 GHz. La linea rossa rappresenta la soluzione migliore secondo il modello di precessione. Crediti: Yuzhu Cui et al. 2023

Gabriele Giovannini, professore dell’Università di Bologna e tra gli autori dell’articolo, aggiunge:

“La galassia M87 (Virgo A) non cessa di stupirci. Dopo averci regalato la prima immagine del suo supermassiccio buco nero centrale, ora ci rivela che il potente getto emesso grazie alla trasformazione di massa in energia non è stabile ma fa registrare una regolare oscillazione. Questo risultato mostra un non perfetto allineamento tra la rotazione del buco nero centrale ed il disco di materia che lo circonda ed in caduta su di esso. L’oscillazione del getto influenza notevolmente la materia e lo spazio tempo circostante in accordo con le leggi relativistiche”.

Dall’analisi dei dati si evince che l’asse di rotazione del disco di accrescimento si disallinea con l’asse di rotazione del buco nero, portando alla precessione del getto. Il rilevamento di questa precessione rappresenta un supporto convincente per concludere inequivocabilmente che il buco nero supermassiccio all’interno di M87 stia ruotando, aprendo nuove dimensioni nella nostra comprensione della natura dei buchi neri supermassicci.

“La precessione – dice Giroletti – è la variazione della direzione del getto emesso dal buco nero al centro di M87.  Per l’esattezza è una variazione regolare e ciclica per cui l’asse del getto nel corso degli anni descrive un cono attorno ad un asse immaginario. Guardando questa precessione proiettata nel piano del cielo noi vediamo il getto oscillare in modo regolare”.

Questo lavoro ha utilizzato un totale di 170 epoche di osservazioni ottenute dalla rete East Asian VLBI Network (EAVN), dal Very Long Baseline Array (VLBA), dal KVN e VERA (KaVA), e dalla rete East Asia to Italy Nearly Global VLBI (EATING). In totale, più di 20 telescopi in tutto il mondo hanno contribuito a questo studio, tra cui anche il Sardinia Radio Telescope (SRT) e la Stazione Radioastronomica di Medicina dell’INAF.

“Questo importante risultato nasce grazie a un’ampia collaborazione che ha coinvolto 79 ricercatori di 17 diversi osservatori, università ed enti ricerca sparsi in 10 Paesi”, dice ancora Giovannini. “”Di cruciale importanza, in particolare, è stata la sinergia tra studiosi italiani e dell’Asia Orientale (Cina, Giappone, Corea). La collaborazione è in continuo sviluppo, infatti nelle antenne italiane utilizzate per le osservazioni sono infatti stati installati alcuni ricevitori coreani che permetteranno di migliorare la collaborazione nelle osservazioni ad alta frequenza (alta energia) ed elevata risoluzione angolare”.

Giroletti aggiunge: “INAF ha fornito un contributo fondamentale tramite la partecipazione dei propri radiotelescopi che si trovano a grandissima distanza (circa 10 mila km) da quelli dell’Asia Orientale che costituivano il nucleo della rete osservativa.  Poiché i dettagli delle immagini dipendono dall’estensione della rete, l’aggiunta delle antenne INAF ha migliorato di quasi 10 volte il dettaglio delle immagini. Questo ha facilitato grandemente la rivelazione delle oscillazioni del getto. Inoltre INAF ha contribuito anche con la partecipazione del proprio personale di ricerca per l’interpretazione dei risultati”.

E conclude: “La collaborazione fra Italia ed estremo oriente sta crescendo anno dopo anno sia in ambito scientifico che tecnologico e questo risultato ci dà grande fiducia per i lavori che stiamo portando avanti nei due continenti”.


 

Per ulteriori informazioni:

L’articolo “Precessing jet nozzle connecting to a spinning black hole in M87”, di Yuzhu Cui et al., è stato pubblicato sulla rivista Nature.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)

MESSIER 87: FINALMENTE OSSERVATO IL COLLEGAMENTO TRA LA MATERIA CHE CIRCONDA IL BUCO NERO E LA BASE DEL GETTO RELATIVISTICO 

Un team internazionale di scienziati, a cui partecipano anche i ricercatori dell’Istituto Nazionale di Astrofisica (INAF), ha utilizzato nuove osservazioni a lunghezze d’onda millimetriche per “fotografare” per la prima volta la struttura ad anello che rivela la materia che cade nel buco nero centrale, insieme al potente getto relativistico, nella prominente radiogalassia Messier 87 (M87). Le immagini mostrano l’origine del getto e il flusso di accrescimento vicino al buco nero supermassiccio centrale. Le nuove osservazioni sono state ottenute con il Global Millimeter VLBI Array (GMVA), integrato dall’Atacama Large Millimeter/submillimetre Array (ALMA) e dal Greenland Telescope (GLT). L’aggiunta di questi due osservatori ha notevolmente migliorato le capacità di imaging del GMVA. I risultati sono pubblicati sulla rivista scientifica Nature.

Rappresentazione artistica che mostra uno zoom sul flusso di accrescimento e sul getto che emerge dalla regione del buco nero in Messier 87. Crediti: Sophia Dagnello, NRAO/AUI/NSF

Gabriele Giovannini e Marcello Giroletti, dell’INAF di Bologna e tra gli autori dello studio, raccontano:

“Il buco nero al centro della galassia M87 è ben noto essendo il primo di cui è stata ottenuta una immagine (dal team dell’Event Horizon Telescope EHT). Noi lo abbiamo osservato con alta sensibilità ad una lunghezza d’onda leggermente più grande (3,5 mm) e quindi più adatta a rivelare le strutture più estese della sorgente. Le immagini hanno infatti mostrato che la struttura ad anello intorno al buco nero è più estesa di quanto si credeva e che questo anello è collegato al getto relativistico visto in M87. Per la prima volta vediamo quindi il collegamento tra la materia che circonda il buco nero e la base del getto relativistico”.

Immagine GMVA+ALMA della regione centrale del buco nero in Messier 87 ottenuta il 14-15 aprile 2018 a una lunghezza d’onda di 3,5 mm. L’immagine grande raffigura il getto e l’anello centrale ricostruiti con il metodo CLEAN standard. L’inserto mostra un ingrandimento della regione interna ottenuta con il metodo SMILI a super risoluzione, rivelando la forma ad anello con un diametro di 64 microarcosecondi

Rusen Lu, dell’Osservatorio astronomico di Shanghai e leader del Max Planck Institute di Bonn partner group presso l’Accademia cinese delle scienze, primo autore di questa scoperta, commenta:

“In precedenza, avevamo visto sia il buco nero che il getto in immagini separate. Ora  è come se avessimo scattato una foto panoramica del buco nero insieme al suo getto a una nuova lunghezza d’onda”.

Si pensa che il materiale circostante cada nel buco nero in un processo noto come accrescimento, da cui ha origine il getto ma nessuno aveva mai visto direttamente l’origine del getto.

Mappa dei radiotelescopi utilizzati per l’immagine di Messier 87 a 3,5 millimetri nella campagna 2018 Global Millimeter VLBI Array (GMVA). Crediti: Helge Rottmann, MPIfR

La partecipazione di ALMA e GLT alle osservazioni del GMVA e il conseguente aumento della risoluzione e della sensibilità di questa rete intercontinentale di telescopi ha reso possibile per la prima volta l’immagine della struttura ad anello in M87 alla lunghezza d’onda di 3,5 mm. Il diametro dell’anello misurato dal GMVA è di 64 microsecondi d’arco, corrispondenti alle dimensioni di un piccolo anello luminoso (13 cm) visto da un astronauta sulla Luna che guarda la Terra. Questo diametro è del 50% più grande di quanto osservato dall’Event Horizon Telescope alla lunghezza d’onda di 1,3 mm, in accordo con le previsioni per l’emissione del plasma relativistico in questa regione.

L’emissione da questa regione di M87 è prodotta dall’interazione tra elettroni altamente energetici e campi magnetici, un fenomeno chiamato radiazione di sincrotrone. Le nuove osservazioni, a una lunghezza d’onda di 3,5 millimetri, rivelano maggiori dettagli sulla presenza e l’energia di questi elettroni. Ci dicono anche qualcosa sulle proprietà del buco nero, in particolare che non è molto “affamato”. Cosa vuol dire? Consuma materia a bassa velocità, convertendo solo una piccola frazione di essa in radiazioni.

I buchi neri sono la miglior macchina che conosciamo in grado di trasformare materia (la materia dell’anello) in energia (il getto relativistico espulso). Gli studi per saperne di più su Messier 87 non finiscono qui: ulteriori osservazioni e una flotta di potenti telescopi continueranno a svelarne i segreti. I radiotelescopi INAF (Medicina, Noto, Sardinia Radio Telescope) una volta completato il loro potenziamento attualmente in corso, saranno in grado di collaborare a queste osservazioni a 3,5 mm aumentandone ulteriormente la qualità.

Immagine GMVA+ALMA della regione centrale del buco nero in Messier 87 ottenuta il 14-15 aprile 2018 a una lunghezza d’onda di 3,5 mm. L’immagine grande raffigura il getto e l’anello centrale ricostruiti con il metodo CLEAN standard. L’inserto mostra un ingrandimento della regione interna ottenuta con il metodo SMILI a super risoluzione, rivelando la forma ad anello con un diametro di 64 microarcosecondi

 

Per ulteriori informazioni:

L’articolo “A ring-like accretion structure in M87 connecting its black hole and jet”, di Ru-Sen Lu et al. pubblicato su Nature.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF).