News
Ad
Ad
Ad
Tag

Mara Salvato

Browsing

QUANDO UN BUCO NERO SI È RISVEGLIATO: LAMPI DI RAGGI X DA ANSKY

Un buco nero supermassiccio si è recentemente risvegliato, emettendo potenti lampi di raggi X. Grazie alle osservazioni del telescopio XMM-Newton, un team internazionale a cui partecipa anche l’Istituto Nazionale di Astrofisica, ha studiato questo raro fenomeno, offrendo nuove e preziose informazioni sul comportamento dei buchi neri supermassicci.

Un buco nero supermassiccio al centro della galassia SDSS1335+0728, situata a 300 milioni di anni luce dalla Terra, ha recentemente iniziato a rilasciare intensi e regolari lampi di raggi X, attirando l’attenzione degli astrofisici. Dopo decenni di inattività, questo colosso dalla smisurata forza di attrazione gravitazionale si è improvvisamente “risvegliato”, dando vita a un fenomeno raro che offre una straordinaria opportunità per studiare il comportamento di un buco nero in tempo reale. L’osservazione di questi lampi, resa possibili grazie al telescopio spaziale XMM-Newton dell’Agenzia Spaziale Europea (ESA), ha portato a scoperte senza precedenti sugli eventi energetici generati dai buchi neri supermassicci. I risultati del lavoro condotto da un team di ricercatrici e ricercatori internazionali, di cui fa parte anche l’Istituto Nazionale di Astrofisica (INAF), è stato pubblicato oggi sulla rivista Nature Astronomy.

Sebbene i buchi neri supermassicci (con masse di milioni o addirittura miliardi pari a quella del nostro Sole) siano noti per nascondersi al centro della maggior parte delle galassie, la loro stessa natura li rende difficili da individuare e quindi studiare. In contrasto con l’idea popolare che i buchi neri “divorino” continuamente materia, questi mostri gravitazionali possono passare lunghi periodi in una fase dormiente. Questo è stato il caso del buco nero al centro di SDSS1335+0728, soprannominato Ansky, che per decenni è rimasto inattivo. Nel 2019 qualcosa cambia, quando gli astronomi osservano un’improvvisa “accensione” della galassia, seguita da straordinari lampi di raggi X. Questi segnali hanno portato alla conclusione che il buco nero fosse entrato in una nuova fase attiva, trasformando la galassia che lo ospita in un nucleo galattico attivo.

Nel febbraio 2024, il team di ricerca guidato da Lorena Hernández-García, ricercatrice presso l’Università di Valparaíso in Cile, ha iniziato a osservare i lampi regolari di raggi X provenienti da Ansky.

“Questo raro evento ci permette di osservare il comportamento di un buco nero in tempo reale, utilizzando i telescopi spaziali XMM-Newton e quelli della NASA NICER, Chandra e Swift”, spiega. “Questo fenomeno è conosciuto come eruzione quasi periodica (in inglese Quasiperiodic Eruption, QPE) di breve durata ed è la prima volta che osserviamo un tale evento in un buco nero che sembra essersi risvegliato”.

Tali fenomeni sono stati finora associati a piccole stelle od oggetti che interagiscono con la materia in orbita attorno al buco nero stesso, il cosiddetto disco di accrescimento, ma nel caso di Ansky, non ci sono prove che una stella sia stata distrutta. Gli astronomi ipotizzano che i lampi possano derivare da oggetti più piccoli che disturbano ripetutamente il materiale del disco di accrescimento, generando potenti shock che liberano enormi quantità di energia. Ognuna di queste eruzioni sta rilasciando cento volte più energia rispetto alle eruzioni quasi periodiche tipiche: sono infatti dieci volte più lunghe e luminose, e con una cadenza mai osservata prima di circa 4,5 giorni, che mette alla prova i modelli teorici esistenti sui buchi neri.

Rappresentazione artistica del disco di accrescimento attorno al buco nero massiccio Ansky e della sua interazione con un piccolo oggetto celeste (crediti ESA)
Rappresentazione artistica del disco di accrescimento attorno al buco nero massiccio Ansky e della sua interazione con un piccolo oggetto celeste (crediti ESA)

Osservare l’evoluzione di Ansky in tempo reale offre agli astronomi un’opportunità unica per approfondire la comprensione dei buchi neri e degli eventi energetici che li alimentano. Attualmente, esistono ancora più modelli che dati sulle eruzioni quasi periodiche, e saranno quindi necessarie ulteriori osservazioni per comprendere a pieno il fenomeno.

“Nonostante la notevole attività nella banda dei raggi X, Ansky risulta ancora sopito nella banda radio”, commenta Gabriele Bruni, ricercatore dell’INAF e co-autore del lavoro pubblicato. “Infatti, né le nostre osservazioni con il radiotelescopio australiano ATCA, né le campagna osservativa radio che hanno osservato la sua regione di cielo negli ultimi anni hanno rilevato emissione dalla sua direzione, escludendo così la presenza di un getto relativistico prodotto durante la riattivazione del buco nero. Nei prossimi mesi continueremo a tenere d’occhio Ansky per scovare la possibile nascita di un getto come già verificato in altri casi di nuclei galattici attivi riattivati”.

Le eruzioni ripetitive di Ansky potrebbero anche essere associate alle onde gravitazionali, obiettivo dalla futura missione LISA dell’ESA. L’analisi di questi dati nei raggi X, insieme agli studi sulle onde gravitazionali, aiuterà a risolvere il mistero di come i buchi neri massicci evolvono e interagiscono con l’ambiente circostante.


Riferimenti bibliografici:

L’articolo “Discovery of extreme Quasi-Periodic Eruptions in a newly accreting massive black hole”, di Lorena Hernández-García, Joheen Chakraborty, Paula Sánchez-Sáez, Claudio Ricci, Jorge Cuadra, Barry McKernan, K.E. Saavik Ford, Arne Rau, Riccardo Arcodia, Patricia Arevalo, Erin Kara, Zhu Liu,Andrea Merloni, Gabriele Bruni, Adelle Goodwin, Zaven Arzoumanian, Roberto Assef, Pietro Baldini, Amelia Bayo, Franz Bauer, Santiago Bernal, Murray Brightman, Gabriela Calistro Rivera, Keith Gendreau,  David Homan, Mirko Krumpe, Paulina Lira, Mary Loli Martínez-Aldama, Mara Salvato e Belén Sotomayor è stato pubblicato online sulla rivista Nature Astronomy, (2025), DOI: https://doi.org/10.1038/s41550-025-02523-9

Testo e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica – INAF

MISURATO IL “COMBUSTIBILE” DELLE GALASSIE DI  4 MILIARDI DI ANNI FA

Lo studio dell’Università di Padova e INAF pubblicato su «Astrophysical Journal Letters» indica che queste galassie lontane hanno riserve di idrogeno atomico comparabili a quelle delle galassie più vicine

Misurato il “combustibile” delle galassie di 4 miliardi di anni faGalassia spirale ricca di idrogeno neutro
Misurato il “combustibile” delle galassie di 4 miliardi di anni fa. Galassia spirale ricca di idrogeno neutro. L’immagine è stata ottenuta da dati acquisiti con la Hyper Suprime-Cam installata al telescopio Subaru (Osservatorio di Mauna Kea, Hawaii) e indica l’estensione dell’emissione luminosa proveniente dalle stelle. Il contorno bianco delimita la regione da cui proviene l’emissione dell’idrogeno, che si estende ben oltre l’emissione delle stelle e consiste in una nube di gas. (Credits Francesco Sinigaglia/MIGHTEE)

L’evoluzione di una galassia è caratterizzata dalla formazione di nuove stelle e dalla trasformazione di quelle preesistenti. Lo scenario standard della formazione stellare nelle galassie prevede che ci sia stato un picco di attività circa 11-12 miliardi di anni fa e che da allora le galassie abbiano cominciato a formare progressivamente sempre meno stelle. Ma cosa determina questo comportamento?
Le stelle si formano a partire dal collasso di dense nubi di idrogeno molecolare che a loro volta si formano quando gli atomi di idrogeno neutro si legano insieme. Una galassia “consuma” idrogeno neutro, lo trasforma in idrogeno molecolare e, successivamente, in stelle. Per mantenere attiva la formazione di nuove stelle, una galassia, quindi, necessita di un continuo rifornimento di idrogeno atomico.

Come si genera il nuovo idrogeno neutro all’interno delle galassie? La letteratura scientifica suggerisce due vie: l’accrescimento di gas diffuso dal mezzo intergalattico (accrescimento cosmologico), la fusione di galassie (galaxy merging). Finora le relazioni che legano l’idrogeno neutro, ad altre proprietà osservabili delle galassie, è stato osservato in modo diretto solo nell’Universo vicino, corrispondente all’ultimo miliardo di anni.

Nell’articolo dal titolo “MIGHTEE-Hi: Evolution of Hi Scaling Relations of Star-forming Galaxies at z < 0.5” pubblicato su «Astrophysical Journal Letters», il team di ricerca guidato da Francesco Sinigaglia, dottorando al Dipartimento di Fisica e Astronomia “Galileo Galilei” dell’Università di Padova e associato all’Istituto Nazionale di Astrofisica – unitamente ai ricercatori di MIGHTEE (MeerKAT International GHz Tiered Extragalactic Exploration) – ha misurato per la prima volta le relazioni che legano la massa di idrogeno atomico alla massa stellare e al tasso di formazione stellare in galassie a una distanza corrispondente a 4 miliardi di anni fa.

«Abbiamo osservato, a una distanza mai raggiunta finora, come la variazione di idrogeno atomico muti in funzione della quantità di stelle e del tasso di formazione stellare in lontane galassie “attive” (star-forming) –  spiega Francesco Sinigaglia, primo autore dello studio –. I risultati indicano che queste galassie lontane 4-5 miliardi di anni hanno riserve di idrogeno atomico comparabili a quelle delle galassie attuali, soprattutto nel caso delle galassie massicce. Questo dato, sapendo che la formazione delle stelle consuma rapidamente l’idrogeno atomico, può essere spiegato ipotizzando che esista un meccanismo che “rifornisce” di idrogeno atomico, in modo efficiente e dall’esterno, le galassie. Puntiamo in futuro a interpretare, utilizzando modelli teorici, quale meccanismo di rifornimento di idrogeno sia quello predominante ai fini di spiegare i risultati ottenuti dalle osservazioni».

Foto Francesco Sinigaglia
Foto Francesco Sinigaglia

«Sebbene sia evidente che l’idrogeno atomico rivesta un ruolo fondamentale, poiché è l’ingrediente primario per poter formare stelle, non è chiaro se si “limiti” a essere tale o se influenzi in modo più profondo la storia e la modalità di formazione stellare. Ecco perché diventa fondamentale capire se esistano o meno correlazioni tra la massa di idrogeno atomico e le altre proprietà delle galassie – afferma Giulia Rodighiero, Professoressa del Dipartimento di Fisica e Astronomia “Galileo Galilei” dell’Università di Padova e coordinatrice locale della partecipazione in MIGHTEE –. Per far questo ci servono sia i dati sull’idrogeno neutro provenienti da MeerKAT, situato in Sudafrica, che quelli sull’idrogeno molecolare ottenuti con telescopi submillimetrici come ALMA, situato in Cile nel deserto di Atacama».

Foto Giulia Rodighiero
Foto Giulia Rodighiero

«In futuro estenderemo, anche attraverso nuovi dati provenienti da MeerKAT e da altri radiotelescopi, lo studio a distanze maggiori e a nuove proprietà galattiche per capire come l’interazione con altre galassie, e in generale l’ambiente in cui esse vivono, influenzi la massa di idrogeno. Utilissima – conclude Sinigaglia – sarà quindi la collaborazione al progetto SKA (Square Kilometre Array), una delle infrastrutture astronomiche più grandi e affascinanti operativo a partire dal 2030, che ha come obiettivo la costruzione della più grande rete di radiotelescopi al mondo tra Australia e Sudafrica».

Link all’articolohttps://iopscience.iop.org/article/10.3847/2041-8213/ac85ae

Titolo: “MIGHTEE-HI: Evolution of HI Scaling Relations of Star-forming Galaxies at z<0.5” – «Astrophysical Journal Letters» 2022

Autori: Francesco Sinigaglia, Giulia Rodighiero, Ed Elson, Mattia Vaccari, Natasha Maddox, Bradley S. Frank, Matt J. Jarvis, Tom Oosterloo, Romeel Davé, Mara Salvato, Maarten Baes, Sabine Bellstedt, Laura Bisigello, Jordan D. Collier, Robin H. W. Cook, Luke J. M. Davies, Jacinta Delhaize, Simon P. Driver, Caroline Foster, Sushma Kurapati, Claudia del P. Lagos, Christopher Lidman, Pavel E. Mancera Piña, Martin J. Meyer, K. Moses Mogotsi, Hengxing Pan, Anastasia A. Ponomareva, Isabella Prandoni, Sambatriniaina H. A. Rajohnson, Aaron S. G. Robotham, Mario G. Santos, Srikrishna Sekhar, Kristine Spekkens, Jessica E. Thorne, Jan M. van der Hulst, and O. Ivy Wong

 

Testo e foto dall’Università degli Studi di Padova