ERC SYNERGY GRANT 2024: AL PROGETTo RECAP 10 MILIONI DI EURO PER SVELARE I MISTERI DEL COSMO
Il progetto RECAP, presentato da un team di quattro scienziate, di cui tre italiane, ha vinto un finanziamento dal Consiglio Europeo della Ricerca (ERC) da 10 milioni di euro per studiare un periodo fondamentale della storia dell’Universo, la cosiddetta era della reionizzazione.
Rappresentazione artistica della porzione di storia dell’Universo attorno all’epoca della reionizzazione, il processo che ha ionizzato la maggior parte della materia presente nel cosmo. Crediti: ESA – C. Carreau
Sono stati annunciati oggi alle ore 12 dal Consiglio europeo della ricerca (ERC) i vincitori degli ERC Synergy Grant 2024 e il progetto RECAP, che sta per REionization Complementary Approach Project si è aggiudicato un finanziamento da 10 milioni di euro. Guidato da un team internazionale composto da quattro scienziate di cui tre italiane, RECAP promette di studiare in dettaglio l’epoca della reionizzazione, uno dei periodi fondamentali per comprendere l’evoluzione dell’Universo. Laura Pentericci e Valentina D’Odorico dell’Istituto Nazionale di Astrofisica (INAF) coordinano due dei team coinvolti nel progetto.
L’epoca della reionizzazione rappresenta l’ultima importante fase di transizione attraversata dall’Universo, iniziata circa 100-200 milioni di anni dopo il Big Bang e protrattasi per molte centinaia di milioni di anni. Il suo nome è dovuto al fatto che in quel periodo il gas presente tra le galassie è stato ionizzato dalla radiazione delle prime sorgenti cosmiche. RECAP si propone di sviluppare simulazioni tridimensionali e osservazioni multi-frequenza sfruttando dati raccolti dal telescopio spaziale James Webb Space, dal Very Large Telescope e dall’Osservatorio Alma, e l’obiettivo è comprendere questa complessa fase dell’Universo, la natura delle prime sorgenti e l’impatto sulla successiva evoluzione del cosmo.
RECAP è un progetto sviluppato da un team interdisciplinare composto da quattro scienziate che lavorano tra l’Italia, la Svezia e la Germania. Oltre a Laura Pentericci e Valentina D’Odorico dell’INAF il team comprende anche Benedetta Ciardi dell’Istituto Max Planck per l’Astrofisica a Garching in Germania e Kirsten KraibergKnudsen della Chalmers Università della Tecnologia di Göteborg. Le diverse esperienze e specializzazioni delle quattro ricercatrici, che vanno dall’osservazione di oggetti celesti lontanissimi alla realizzazione di modelli numerici, permetteranno al team di affrontare lo studio della reionizzazione con una nuova prospettiva ad ampio spettro. RECAP è uno dei 57 progetti finanziati nel 2024 dal Consiglio Europeo della Ricerca nell’ambito dei Synergy Grant, tra quasi 550 proposte pervenute.
“Il nostro progetto nasce dalla voglia di combinare le nostre capacità diverse e complementari, per affrontare insieme uno dei più grandi misteri dell’astrofisica moderna, cioè l’epoca della reionizzazione”, dice Laura Pentericci. “Sarà sicuramente entusiasmante e stimolante lavorare con le altre colleghe: unendo le forze saremo in grado di svelare quest’epoca remota e affascinante della storia del nostro Universo, quando si sono formate le prime galassie e finalmente è terminata la cosiddetta ‘età oscura’”.
Il finanziamento stanziato copre un periodo di sei anni e prevede l’assunzione di ricercatori e studenti di dottorato che forniranno il loro contributo ai lavori di simulazione e osservazione. L’intenzione è quella di creare un’eredità scientifica duratura, che guiderà le campagne osservative delle infrastrutture di nuova generazione, come l’Extremely Large Telescope e l’Osservatorio SKA. I risultati ottenuti contribuiranno ad arricchire le conoscenze della comunità scientifica, che potrà programmare in maniera ottimale i futuri progetti di osservazione, dotandosi di nuovi strumenti all’avanguardia.
“Sono molto soddisfatta e orgogliosa di questo risultato», spiega Valentina D’Odorico. «Abbiamo lavorato molto per raggiungerlo e credo che la sinergia fra di noi, sia scientifica che umana, abbia giocato un ruolo fondamentale già nella preparazione della proposta e dell’interview. Questo progetto ci permetterà di allargare i nostri gruppi di ricerca proprio per dedicare il tempo necessario a combinare i nostri risultati e riuscire a rispondere ad alcune delle domande fondamentali legate al processo di reionizzazione cosmica”.
foto delle ricercatrici che compongono il team RECAP. Da sinistra a destra: Kirsten Kraiberg Knudsen, Laura Pentericci, Benedetta Ciardi e Valentina D’Odorico
Testo e immagini Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)
IL PROTOAMMASSO PIÙ ANTICO E LONTANO DELL’UNIVERSO, A2744-z7p9OD, L’HA TROVATO WEBB. LO STUDIO PUBBLICATO SU THE ASTROPHYSICAL JOURNAL LETTERS
Avvistato da Hubble e confermato da Webb, con la preziosa collaborazione dell’ammasso Pandora che ha agito come lente gravitazionale, il protoammasso di galassie più antico e più lontano conta, ad oggi, sette galassie. Si stava assemblando già circa 650 milioni di anni dopo il Big Bang, un periodo in cui stavano cominciando a formarsi le prime strutture cosmiche. Nel team che ha realizzato lo studio partecipano anche ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica.
Le sette galassie evidenziate in questa immagine del James Webb Space telescope sono state confermate avere un redshift di 7,9 che le colloca a un’epoca di 650 milioni di anni dopo il Big Bang. Queste sono le più antiche galassie ad essere confermate spettroscopicamente come costituenti di un ammasso in formazione. Crediti: NASA, ESA, CSA, Takahiro Morishita (IPAC), image processing: Alyssa Pagan (STScI)
Ogni gigante è stato un tempo un bambino, ma riuscire a immaginarlo senza averlo mai visto può essere difficile. Un esercizio che hanno dovuto fare per anni, gli astronomi, dovendo ricostruire come si sono formate le strutture cosmiche più grandi, come gli ammassi di galassie, senza poterne vedere direttamente i progenitori. Fino ad oggi. Grazie al telescopio spaziale James Webb di NASA ed ESA, e grazie all’aiuto della lente gravitazionale di un ammasso di galassie vicino, l’inaccessibile è diventato accessibile. In un articolo pubblicato su The Astrophysical Journal Letters arriva la conferma dell’osservazione del protoammasso più antico e più lontano di sempre, in un’epoca in cui la formazione e l’assemblaggio delle galassie era cominciato da poco. Redshift 7,9, o 650 milioni di anni dopo il Big bang, a tanto si è spinto lo specchio dorato di Webb. In quel momento cominciava a formarsi questa struttura destinata – secondo i calcoli – a diventare un enorme ammasso di galassie. Grazie alle osservazioni di spettroscopia infrarossa di Webb, un gruppo di astronomi, fra cui alcuni dell’istituto Nazionale di Astrofisica (INAF), ha confermato che si possono contare almeno sette galassie legate gravitazionalmente all’interno del protoammasso, e molte altre sono destinate a finirci dentro.
«Questo è un sito molto speciale e unico in cui le galassie evolvono in maniera accelerata, e Webb ci ha dato la possibilità senza precedenti di misurare le velocità di queste sette galassie e di confermare con sicurezza che sono legate insieme in un protoammasso», dice Takahiro Morishita, ricercatore all’IPAC-California Institute of Technology e primo autore dello studio.
Gli ammassi di galassie sono le più grandi concentrazioni di massa dell’universo conosciuto e possono ospitare migliaia di galassie legate gravitazionalmente all’interno di un’unica culla (o alone) di materia oscura. Sono talmente massicci da deformare visibilmente il tessuto dello spaziotempo, in un effetto di relatività generale noto come lensing gravitazionale. Proprio come una classica lente ottica, un ammasso di galassie produce un ingrandimento degli oggetti che si trovano, in proiezione, dietro di esso, rendendoli così visibili nonostante la distanza. L’ammasso che è stato utilizzato come lente in questo studio è l’ammasso di Pandora, o Abell 2744, che si trova a poco più di 3,5 miliardi di anni luce da noi.
“È sorprendente che solo 650 milioni di anni dopo il Big Bang ci fosse già una sovradensità di questo tipo formata, nell’universo”, commenta Benedetta Vulcani, ricercatrice dell’INAF di Padova e coautrice dell’articolo. “Il protoammasso ha un raggio di 195.000 anni luce, che è circa la distanza tra noi e la Grande nube di Magellano. È quindi abbastanza compatto, visto che il raggio di un ammasso nell’universo locale può essere 20 volte tanto. Stimare la massa è molto difficile, abbiamo seguito diversi approcci e abbiamo trovato un valore – che riteniamo conservativo – di circa 400 miliardi di masse solari. È un valore che può sembrare molto piccolo a noi addetti ai lavori che siamo abituati a pensare ai grandi ammassi moderni, ma con l’aiuto delle simulazioni abbiamo potuto vedere che questa struttura, evolvendo nel tempo, potrebbe raggiungere una massa simile all’ammasso di Coma, il più grande ammasso noto”.
La pulce nell’orecchio a Morishita e collaboratori, nel caso di A2744-z7p9OD – questo il nome del protoammasso – l’ha messa Hubble. Le sette galassie erano infatti già state individuate nel programma Frontier Fields del telescopio spaziale ottico e ultravioletto, attraverso osservazioni che sfruttavano proprio l’effetto di lente gravitazionale di alcuni ammassi di galassie vicini per vedere oggetti lontani. Per vedere i dettagli di queste strutture, però, non basta ingrandirle: occorre disporre di strumenti in grado di lavorare a lunghezze d’onda infrarosse, alle quali la luce ottica emessa da questi oggetti è stata portata a causa dell’espansione dell’Universo. Ma non potendo osservare a queste lunghezze d’onda, il telescopio Hubble non era stato in grado di dire molto sulla struttura e aveva lasciato aperta la porta della curiosità.
Curiosità che il telescopio spaziale Webb, grazie al suo spettrografo nel vicino infrarosso NIRSpec, è riuscito a soddisfare. Per prima cosa, infatti, è riuscito a confermare la distanza delle sette galassie finora confermate come parte della struttura, a misurare la velocità con la quale si muovono all’interno dell’alone di materia oscura dell’ammasso, e le principali proprietà fisiche. E in secondo luogo, ha consentito di modellare e costruire la storia futura del protoammasso, scoprendo che somiglierà molto all’ammasso di Coma – uno degli ammassi più densi e popolosi dell’universo moderno.
Per crescere, una struttura come questa finirà per acquisire diverse centinaia e migliaia di altre galassie, delle quali gli astronomi hanno già trovato alcune tracce. Nella stessa regione di cielo ci sono infatti altre galassie che hanno un redshift fotometrico – stimato cioè con un metodo meno sicuro di quello utilizzato da Webb – simile a quello del protoammasso. Si trovano però ancora abbastanza lontane da questo, fino a un milione di anni luce di distanza dal centro della struttura, cinque volte più in là del suo raggio.
“Tutte le sette candidate che abbiamo osservato si sono rivelate parte della struttura, con un successo del 100%”, continua Vulcani. “In futuro di certo cercheremo di confermare anche gli altri candidati, per riuscire ad avere una stima più accurata delle dimensioni del protoammasso. Molto probabilmente finora ne abbiamo osservato solo il cuore, o una zona densa, ma pensiamo che ci siano altre galassie che non abbiamo individuato e che appartengono alla stessa struttura”.
Secondo la teoria della formazione e accrescimento delle strutture comiche, nel corso di miliardi di anni nuove galassie “cadranno” in questo protoammasso e contribuiranno alla sua crescita.
“La crescita delle strutture è simile a quella dei corsi d’acqua: torrenti che nascono da montagne diverse possono poi confluire in fiumi più grandi fino a formare i grandi fiumi. Così galassie inizialmente lontane con il passare del tempo si agglomerano in uno stesso spazio” commenta Vulcani, e conclude: “Quello che è sorprendente è che il nostro risultato supporta l’idea secondo cui galassie ad alto redshift che sono fisicamente lontane e magari non ancora parte di una struttura formata, in qualche modo sono già consapevoli del loro destino che le porterà a confluire in un ammasso. Queste galassie, infatti, formano stelle in maniera e quantità molto simili nel corso degli anni e hanno tutte un’evoluzione accelerata rispetto alle altre galassie che vivono la stessa epoca cosmica ma sono isolate. Come se, tornando all’immagine del fiume, le gocce d’acqua che nascono da sorgenti diverse in qualche modo sapessero che prima o poi si incontreranno”.
L’articolo Early results from GLASS-JWST. XVIII:A spectroscopically confirmed protocluster 650 million years after the Big Bang di Takahiro Morishita, Guido Roberts-Borsani, Tommaso Treu, Gabriel Brammer, Charlotte A. Mason, Michele Trenti, Benedetta Vulcani, Xin Wang, Ana Acebron, Yannick Bah´e, Pietro Bergamini, Kristan Boyett, Marusa Bradac, Antonello Calabrò, Marco Castellano, Wenlei Chen, Gabriella De Lucia, Alexei V.Filippenko, Adriano Fontana, Karl Glazebrook, Claudio Grillo, Alaina Henry, Tucker Jones, Patrick L. Kelly, Anton M. Koekemoer, Nicha Leethochawalit, Ting-Yi Lu, Danilo Marchesini, Sara Mascia, Amata Mercurio, Emiliano Merlin, Benjamin Metha, Themiya Nanayakkara, Mario Nonino, Diego Paris, Laura Pentericci, Piero Rosati, Paola Santini, Victoria Strait, Eros Vanzella, Rogier A.Windhorst e Lizhi Xie è stato pubblicato sul sito web della rivista The Astrophysical Journal Letters. DOI: 10.3847/2041-8213/acb99e
Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)
JWST CATTURA LE GALASSIE CHE HANNO REIONIZZATO L’UNIVERSO
Un team internazionale di ricercatrici e ricercatori guidato dall’Istituto Nazionale di Astrofisica (INAF) ha studiato 29 galassie ai primordi dell’universo, stimando per la prima volta la frazione di luce da esse rilasciata in grado di ionizzare il gas circostante. Questo lavoro è stato reso possibile grazie al telescopio spaziale JWST e l’aiuto di un massiccio ammasso di galassie che, come una lente, ha amplificato la luce proveniente dalle galassie ancora più distanti.
Le prime stelle e galassie nella storia dell’universo, nate oltre tredici miliardi di anni fa, quando il cosmo aveva solo poche centinaia di milioni di anni d’età, si sono formate a partire da una miscela di gas neutro, costituito principalmente da atomi di idrogeno. La radiazione energetica proveniente da queste prime stelle e galassie ha poi contribuito, nelle centinaia di milioni di anni seguenti, a trasformare questo gas e ionizzarlo, cioè scinderlo in elettroni e protoni. Gli astronomi la chiamano “reionizzazione” poiché durante questa fase il mezzo intergalattico che pervade l’universo, da neutro, torna a essere ionizzato come lo era nel cosmo primordiale. Non è però ancora chiaro quali galassie abbiano contribuito maggiormente a reionizzare il mezzo intergalattico nei primi stadi di questo processo, né quale percentuale di fotoni – le particelle di luce – con energie sufficienti a ionizzare il gas circostante sia fuoriuscita dai diversi tipi di galassie presenti all’epoca.
JWST cattura le galassie che hanno reionizzato l’universo. JWST-Abell-2744: L’ammasso di galassie Abell 2744, chiamato anche Ammasso di Pandora, osservato con il telescopio spaziale Webb. L’ammasso agisce da lente gravitazionale, amplificando la luce proveniente da sorgenti più distanti e permettendo di rilevare galassie tra le prime a formarsi nella storia dell’universo. Crediti: NASA, ESA, CSA, I. Labbe (Swinburne University of Technology), R. Bezanson (University of Pittsburgh), A. Pagan (STScI)
Con il suo specchio dal diametro di 6,5 metri e la sensibilità osservativa nella banda infrarossa, il James Webb Space Telescope (JWST), osservatorio spaziale della NASA in collaborazione con ESA e CSA, può spingersi indietro nel tempo fino alle galassie più distanti, tra le prime a formarsi nella storia dell’universo. Il progetto GLASS, una collaborazione internazionale di ricercatrici e ricercatori in 24 istituti di ricerca e università tra Italia, Stati Uniti, Giappone, Danimarca, Australia, Cina e Slovenia, che utilizza JWST per cercare risposta ai quesiti ancora aperti sulla reionizzazione cosmica, ha recentemente pubblicato un nuovo articolo a guida italiana sulla rivista Astronomy & Astrophysics.
“Abbiamo studiato, tramite osservazioni spettroscopiche e fotometriche ottenute con JWST, 29 galassie lontane e siamo riuscite a misurare in maniera indiretta le loro capacità ionizzanti, dato che a distanze così elevate non è possibile osservare direttamente i fotoni di così alta energia che sono quelli che hanno portato alla reionizzazione del mezzo intergalattico”, spiega la prima autrice del nuovo articolo Sara Mascia, dottoranda in Astronomy, Astrophysics and Space Science all’Università di Roma Tor Vergata, che porta avanti la sua ricerca presso l’Istituto Nazionale di Astrofisica (INAF). “Questo studio dimostra la capacità di JWST non solo di trovare le galassie più distanti ma anche di svelarne le proprietà fisiche.”
La luce proveniente da queste galassie, catturata con gli strumenti NIRCam e NIRSPec a bordo di JWST, è stata emessa quando l’universo aveva un’età compresa tra circa 650 milioni e 1,3 miliardi di anni. Prima di queste osservazioni, le proprietà ionizzanti di queste lontanissime galassie erano ignote, soprattutto per quanto riguarda le galassie di piccola massa, molto difficili da studiare.
“Abbiamo stimato per la prima volta la capacità ionizzante delle galassie nell’epoca della reionizzazione: in particolare, siamo riusciti a stimare quanti fotoni ionizzanti fuoriescono dalle galassie di piccola massa grazie all’effetto di lente gravitazionale da parte di Abell 2744, un ammasso di galassie che si trova tra noi e le galassie distanti e amplifica il loro segnale”,
aggiunge Laura Pentericci, ricercatrice INAF a Roma e co-autrice del nuovo lavoro.
“I nostri risultati indicano che oltre l’80 percento delle galassie osservate contribuisce in maniera significativa alla reionizzazione.”
Nuove osservazioni che saranno realizzate prossimamente con JWST estenderanno questa analisi a campioni più grandi di galassie, includendo quelle con masse più elevate o più distanti. Lo scopo è di determinare se la maggior parte dei fotoni che hanno contribuito a reionizzare l’universo sia stata fornita da galassie più massicce e luminose di quelle osservate oppure se, come ritenuto dai principali modelli attuali, il contributo maggiore sia dovuto alle galassie più deboli, molto più numerose.
Per ulteriori informazioni:
L’articolo “Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program”, di S. Mascia, L. Pentericci, A. Calabrò, T. Treu, P. Santini, L. Yang, L. Napolitano, G. Roberts-Borsani, P. Bergamini, C. Grillo, P. Rosati, B. Vulcani, M. Castellano, K. Boyett, A. Fontana, K. Glazebrook, A. Henry, C. Mason, E. Merlin, T. Morishita, T. Nanayakkara, D. Paris, N. Roy, H. Williams, X. Wang, G. Brammer, M. Bradac, W. Chen, P. L. Kelly, A. M. Koekemoer, M. Trenti, R. A. Windhorst, è stato pubblicato online sulla rivista Astronomy & Astrophysics.
Allo studio hanno partecipato anche ricercatori delle università di Ferrara e Statale di Milano.
Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)
Una delle prime osservazioni realizzate con il telescopio spaziale James Webb lo scorso giugno ritrae due galassie tra le più antiche mai osservate, che popolavano l’universo quando aveva solo 350 e 450 milioni di anni, rispettivamente. Lo conferma lo studio di un team internazionale, guidato da ricercatori dell’Istituto Nazionale di Astrofisica e pubblicato su The Astrophysical Journal Letters.
Appena pochi giorni dall’inizio delle operazioni scientifiche, il James Webb Space Telescope (JWST) è stato in grado di rivelare la luce proveniente da due galassie tra le primissime dell’universo primordiale, tra 350 e 450 milioni di anni dopo il Big Bang. Sono i risultati dell’analisi di osservazioni del lontanissimo ammasso di galassie Abell 2744 e di due regioni del cielo ad esso adiacenti, realizzate dal potente telescopio spaziale tra il 28 e il 29 giugno 2022 nell’ambito del progetto GLASS-JWST Early Release Science Program.
“Questo lavoro mostra innanzitutto la capacità di JWST di selezionare sorgenti nell’epoca della cosiddetta ‘alba cosmica’. Non meno importante il fatto di avere trovato, tra le altre, due sorgenti brillanti in un’area relativamente piccola”, afferma Marco Castellano, ricercatore INAF a Roma e primo autore dell’articolo che descrive la ricerca di queste due lontanissime galassie, pubblicato recentemente su The Astrophysical Journal Letters. “Sulla base di tutte le previsioni, pensavamo che avremmo dovuto sondare un volume di spazio molto più grande per trovare tali galassie. I risultati invece sembrano indicare che il numero di galassie brillanti sia molto maggiore di quanto ci si aspettasse, forse per effetto di una maggiore efficienza di formazione stellare”.
Il gruppo di ricerca guidato da Castellano è stato tra i primi a usare i dati di JWST, pubblicando un preprint sulla piattaforma open-access arXiv a luglio, solo 5 giorni dopo che i dati erano stati resi disponibili.
“C’era molta curiosità nel vedere finalmente cosa JWST poteva dirci sull’alba cosmica, oltre naturalmente al desiderio e all’ambizione di essere i primi a mostrare alla comunità scientifica i risultati ottenuti dalla nostra survey GLASS”, aggiunge il ricercatore.
“Non è stato facile analizzare dei dati così nuovi in breve tempo: la collaborazione ha lavorato 7 giorni su 7 e in pratica 24 ore su 24 anche grazie al fatto di avere una partecipazione che copre tutti i fusi orari”.
Alla collaborazione internazionale, che vede numerosi ricercatori e ricercatrici dell’INAF coinvolti sin dalla presentazione della proposta osservativa, hanno partecipato anche colleghi dello Space Science Data Center dell’Agenzia Spaziale Italiana e delle università di Ferrara e Statale di Milano.
Due delle galassie più lontane mai osservate, catturate dal telescopio spaziale JWST nelle regioni esterne del gigantesco ammasso di galassie Abell 2744. Le galassie, evidenziate da due piccoli quadrati indicati con i numeri 1 e 2, e in maggior dettaglio nei due riquadri centrali, non fanno parte dell’ammasso, ma si trovano a molti miliardi di anni luce al di là di esso. Oggi osserviamo queste galassie come apparivano rispettivamente 450 (nel riquadro 1, a sinistra nell’immagine) e 350 milioni di anni (nel riquadro 2, a destra) dopo il big bang. Crediti: Analisi scientifica: NASA, ESA, CSA, Tommaso Treu (UCLA); elaborazione delle immagini: Zolt G. Levay (STScI)
La distanza delle due galassie in questione dovrà essere confermata con maggior precisione mediante osservazioni spettroscopiche, ma si tratta già dei candidati più robusti selezionati ad oggi con dati JWST. A confermare l’affidabilità dei risultati è proprio l’accordo con quanto riscontrato anche in altri studi, tra cui il lavoro guidato da Rohan Naidu dell’Harvard Center for Astrophysics, negli Stati Uniti, che analizza gli stessi dati del progetto GLASS, apparso lo stesso giorno su arXiv e attualmente in corso di pubblicazione, anch’esso su The Astrophysical Journal Letters.
“Queste osservazioni sono rivoluzionarie: si è aperto un nuovo capitolo dell’astronomia” commenta Paola Santini, ricercatrice INAF a Roma e coautrice del nuovo articolo. “Già dopo i primissimi giorni dall’inizio della raccolta dati, JWST ha mostrato di essere in grado di svelare sorgenti astrofisiche in epoche ancora inesplorate”.
A differenza degli strumenti usati in precedenza – dal telescopio spaziale Hubble ai più grandi osservatori disponibili a terra – JWST ha una sensibilità e risoluzione nell’infrarosso che permettono di cercare oggetti così distanti.
“Stiamo esplorando un’epoca a poche centinaia di anni dal Big Bang che in parte era sconosciuta e in parte a malapena esplorata, con molte incertezze al limite delle possibilità dei telescopi precedenti”, ricorda Castellano.
Come e quando si sono formate le prime galassie e la primissima generazione di stelle – la cosiddetta popolazione III – è una delle grandi domande ancora aperte dell’astrofisica.
“Queste galassie sono molto diverse dalla Via Lattea o altre grandi galassie che vediamo oggi intorno a noi”, spiega Tommaso Treu, professore all’Università della California a Los Angeles e principal investigator del progetto GLASS-JWST. “La domanda era: quando vedi le stelle più rosse e più vecchie con Webb, vedi che in realtà la galassia è molto più grande di quello che sembrava dalle osservazioni nell’ultravioletto?”
Le nuove osservazioni di JWST sembrano indicare che le galassie nell’universo primordiale fossero molto più luminose, anche se più compatte del previsto. Se ciò fosse vero, potrebbe rendere più facile per il potente osservatorio trovare un numero ancor maggiore di queste galassie precoci nelle sue prossime osservazioni del cielo profondo.
“La sorgente più lontana è effettivamente molto compatta”, sottolinea Adriano Fontana, responsabile della divisione nazionale abilitante dell’astronomia ottica ed infrarossa dell’INAF e coautore dello studio. “I colori di questa galassia sembrano indicare che la sua popolazione stellare sia particolarmente priva di elementi pesanti, e potrebbe contenere anche alcune stelle di popolazione III. La conferma verrà dai dati spettroscopici di JWST”.
Osservare le galassie più distanti, come quelle rivelate in queste osservazioni di JWST, è un passo fondamentale per iniziare a capire come si sono formate le primissime sorgenti luminose nella storia del cosmo e comprendere le prime fasi della lunghissima evoluzione che ha portato l’universo a essere così come lo vediamo oggi, con la nostra galassia, il Sole, la Terra e noi umani che la abitiamo. Occorreranno ulteriori sforzi sia osservativi, per confermare e caratterizzare il risultato, che teorici, per comprenderne la fisica sottostante.
Per ulteriori informazioni: L’articolo “Early results from GLASS-JWST. III: Galaxy candidates at z~9-15” di Marco Castellano, Adriano Fontana, Tommaso Treu, Paola Santini, Emiliano Merlin, Nicha Leethochawalit, Michele Trenti, Uros Mestric, Eros Vanzella, Andrea Bonchi, Davide Belfiori, Mario Nonino, Diego Paris, Gianluca Polenta, Guido Roberts-Borsani, Kristan Boyett, Marusa Bradac, Antonello Calabro, Karl Glazebrook, Claudio Grillo, Sara Mascia, Charlotte Mason, Amata Mercurio, Takahiro Morishita, Themiya Nanayakkara, Laura Pentericci, Piero Rosati, Benedetta Vulcani, Xin Wang, Lilan Yang, è stato pubblicato online su The Astrophysical Journal Letters.
Testo e foto dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF) sulle due galassie all’alba del cosmo osservate con JWST.