News
Ad
Ad
Ad
Tag

Laser Interferometer Space Antenna

Browsing

LISA: c’è il via libera dell’ESA per la missione spaziale che rivelerà onde gravitazionali dal cosmo

La missione LISA, un trio di satelliti in orbita attorno al Sole, ha ottenuto l’“adozione” da parte dell’Agenzia Spaziale Europea ESA: ora si procederà alla costruzione, che consentirà l’osservazione dei segnali più sfuggenti dell’Universo, le onde gravitazionali. Cruciale il ruolo dell’Università di Milano-Bicocca

Milano, 26 gennaio 2024 – È arrivato il via libera alla missione spaziale LISA. Si tratta di un passaggio cruciale, denominato in gergo “adozione”, con cui ESA ha approvato la costruzione dei satelliti e della strumentazione di bordo con l’importante contributo di ASI, l’Agenzia Spaziale Italiana. Grazie a LISA, il cui nome sta per Laser Interferometer Space Antenna, si aprirà una nuova finestra sull’Universo: l’obiettivo è infatti costruire un osservatorio spaziale per la rivelazione delle onde gravitazionali provenienti da molteplici sorgenti cosmiche. Centrale, nell’ambito del programma scientifico Cosmic Vision dell’ESA in cui rientra questa missione, è il ruolo dell’Università di Milano-Bicocca e del team dalla professoressa Monica Colpi del dipartimento di Fisica “Giuseppe Occhialini” che ha ricoperto posizioni di guida in diversi gruppi di ricerca, in ESA e nel LISA Consortium, un consorzio internazionale di scienziati che ha definito gli obiettivi scientifici di LISA e progettato la missione.

LISA non è una sola navicella spaziale, ma un trio di satelliti in orbita attorno al Sole disposti ai vertici di un triangolo equilatero. Ogni lato del triangolo sarà lungo 2,5 milioni di km (più di sei volte la distanza Terra-Luna) e le navicelle si scambieranno raggi laser su questa distanza. Il lancio di LISA è previsto per il 2035 e avverrà a bordo di un razzo Ariane 6. 

Ma che cosa sono le onde gravitazionali che LISA potrà osservare? Albert Einstein, un secolo fa, aveva dimostrato nella sua teoria della Relatività Generale che corpi celesti molto massicci, quando accelerati, scuotono il tessuto dello spazio-tempo, producendo minuscole increspature note appunto come onde gravitazionali che viaggiano nell’Universo alla velocità della luce. Ora, grazie agli sviluppi tecnologici moderni, siamo in grado di rivelare il passaggio di queste onde, tra le più sfuggenti nell’Universo al fine di risalire alla natura delle loro sorgenti.

LISA catturerà onde gravitazionali provenienti dalle regioni più remote dell’Universo, causate dallo scontro tra buchi neri massicci che risiedono al centro delle galassie, milioni di volte più pesanti del nostro Sole. Questo permetterà agli scienziati di scoprire l’origine di questi oggetti, ricostruirne la storia e il ruolo giocato nell’evoluzione delle galassie. La missione sarà anche pronta ad ascoltare il “mormorio” gravitazionale della nascita del nostro Universo, e sarà una finestra aperta sui primi istanti dopo il Big Bang. Inoltre, LISA aiuterà i ricercatori a misurare con accuratezza la velocità di espansione dell’Universo usando la gravità e non la luce come messaggero, confrontando il risultato con misure ottenute con altre tecniche e missioni (come Euclid). LISA osserverà anche un elevatissimo numero di sorgenti nella nostra Galassia, tra cui sistemi binari stellari composti da nane bianche e stelle di neutroni: un’opportunità senza precedenti per studiare gli stadi evolutivi finali delle stelle. Misurando la loro posizione e distanza, LISA creerà una mappa della struttura della Via Lattea, osservando oltre la buia cortina del Centro Galattico. Insieme alla missione ESA Gaia, conosceremo come la nostra Galassia, il nostro habitat ambiente si sia formato.

«Il primo disegno di LISA risale agli anni Settanta: è stato un lungo viaggio che ci ha portato oggi, dopo salite e discese, all’“adozione”, ovvero al passo decisivo verso la costruzione di LISA», spiega Monica Colpi. «Cruciale è stato il successo della missione LISA Pathfinder e la scoperta da parte degli interferometri a Terra LIGO-Virgo-KAGRA di onde gravitazionali emesse da buchi neri stellari in collisione. Con LISA cattureremo le vibrazioni dello spazio-tempo provenienti dalla fusione di buchi neri giganti. Qui, all’Università di Milano-Bicocca, stiamo cercando di capire come e quando, nell’Universo, queste collisioni avvengono e come LISA le osserverà».

Come avverrà dunque l’osservazione delle onde gravitazionali? LISA impiegherà coppie di cubi di una lega di oro e platino – le cosiddette “masse di test” (ognuna poco più piccola di un cubo di Rubik) – che galleggeranno in “caduta libera” al centro di ogni satellite, provviste di speciali schermature da disturbi esterni. Le onde gravitazionali causeranno minuscoli cambiamenti nella distanza tra le masse di test di due satelliti, e la missione traccerà queste variazioni usando l’interferometria laser. Questa tecnica richiede di far propagare fasci laser da un satellite all’altro nella costellazione. Confrontando i segnali registrati misureremo cambiamenti nelle distanze tra le masse di test fino a un miliardesimo di millimetro. I satelliti devono essere progettati per assicurare che nulla, eccetto la geometria dello spazio-tempo, possa perturbare il moto delle masse, che saranno perciò in quasi perfetta caduta libera. I satelliti della missione seguiranno appunto le orme di LISA PAthfinder, che ha dimostrato che è possibile mantenere le masse test in caduta libera con un impressionante livello di precisione. Lo stesso sistema di propulsione con cui sono state equipaggiate le missioni ESA Gaia e Euclid garantirà che ogni satellite mantenga la posizione e l’orientazione richieste con grandissima accuratezza. 

Per rendere l’idea della complessità dell’operazione, Riccardo Buscicchio, ricercatore di Milano-Bicocca che lavora all’analisi dei dati prodotti da LISA, usa una metafora musicale:

«I rivelatori terrestri oggi in funzione ricevono segnali isolati, uno alla volta, un po’ come ascoltare brevi concerti per violino solista. Il tipico timbro dello strumento ci permette di individuarlo, anche in presenza di “rumore”.

I satelliti di LISA ascolteranno invece un concerto a volume estremamente alto, eseguito da strumenti fuori-tempo, fuori-armonia, per tutta la durata della missione spaziale. Nondimeno, l’orchestra sarà composta da milioni di archi, legni, ottoni e percussioni». Conclude Buscicchio: «Il mio lavoro all’Università di Milano-Bicocca è di riscrivere le partiture del concerto, a partire da una singola registrazione in alta-fedeltà, estraendo più strumenti possibile, anche quelli di cui ancora non conosciamo l’esistenza».

«Ora che LISA viene “adottata” da ESA, la sua realizzazione richiede un grande contributo di tutta la comunità scientifica internazionale»,

aggiunge Alberto Sesana, astrofisico, professore del dipartimento che lavora al progetto.

«In Italia questo sforzo si va concretizzando sempre più, con una lunga collaborazione tra l’Università di Milano-Bicocca e altri atenei italiani».

Selezionata come missione di bandiera del programma ESA Cosmic Vision 2015-2025, LISA sarà parte della flotta di “osservatori cosmici” dell’ESA per rispondere a due profonde domande: quali sono le leggi fondamentali della fisica che descrivono l’Universo? Come si è formato l’Universo e di che cosa è composto? In questa avventura, LISA lavorerà in congiunzione con NewAthena, un’altra missione ESA al momento in fase di studio. NewAthena sarà il più grande osservatorio di raggi X mai costruito nello spazio e il suo lancio è previsto per il 2037.

ESA guida la missione LISA e fornirà satelliti, lanciatori, supporto alla missione e alla raccolta dati. I laser ultra-stabili, i telescopi da 30 cm di diametro per raccogliere la luce laser, e le sorgenti di luce ultravioletta per neutralizzare la carica elettrostatica sulle masse test, saranno forniti dalla NASA. Gli altri componenti chiave saranno: le masse di test schermate da forze esterne, fornite da ASI Italia con contributo da parte della Svizzera; il sistema di misura del segnale interferometrico, con accuratezza picometrica fornito da Germania, Regno Unito, Francia, Olanda, Belgio, Polonia e Repubblica Ceca; il Science Diagnostics Subsystem (un arsenale di sensori a bordo dei satelliti) fornito dalla Spagna.

Illustrazione della Missione LISA. Crediti per l'immagine: Riccardo Buscicchio
Illustrazione della Missione LISA. Crediti per l’immagine: Riccardo Buscicchio

 

Testo e immagine dall’Ufficio Stampa dell’Università di Milano-Bicocca

LISA e la scoperta di nuovi campi fondamentali 

Su Nature Astronomy lo studio pubblicato da Andrea Maselli, ricercatore del GSSI, associato INFN, e dai colleghi della Scuola Internazionale Superiore di Studi Avanzati, dell’Università di Nottingham e della Sapienza di Roma, che suggerisce un nuovo approccio per rilevare con grande accuratezza nuovi campi fondamentali e verificare la teoria della relatività generale grazie a LISA, il rivelatore di onde gravitazionali spaziale, che partirà come missione ESA – NASA nel 2037.

LISA campi fondamentali
Foto 1: Rappresentazione artistica della deformazione spazio-tempo di un EMRI. Un piccolo buco nero che ruota intorno ad un buco nero supermassiccio. (Credits: NASA)

La Relatività Generale di Einstein è la teoria corretta per i fenomeni gravitazionali? È possibile sfruttare tali fenomeni per scoprire nuovi campi fondamentali?

Il lavoro uscito oggi su Nature Astronomy, condotto da Andrea Maselli, ricercatore del GSSI, associato INFN, assieme a ricercatori della Scuola Internazionale Superiore di Studi Avanzati, dell’Università di Nottingham, e della Sapienza Università di Roma, mostra che le osservazioni di onde gravitazionali da parte dell’interferometro spaziale LISA (Laser Interferometer Space Antenna) saranno in grado di rivelare la presenza di nuovi campi fondamentali con grande accuratezza.

Il campo gravitazionale è, secondo la Relatività Generale, espressione della curvatura dello spazio-tempo creata dalla presenza di massa o energia che altera lo spazio circostante.

Nuovi campi fondamentali associati alla gravità, in particolare quelli scalari, sono alla base di modelli teorici sviluppati per spiegare una grande varietà di scenari fisici. Potrebbero ad esempio fornire indizi sull’espansione accelerata dell’Universo o sulla materia oscura, oppure essere manifestazioni a bassa energia di una descrizione consistente e completa della gravità e delle particelle elementari.

Le osservazioni di oggetti astrofisici caratterizzati da campi gravitazionali deboli e piccole curvature spazio-temporali non hanno mostrato finora alcuna indicazione dell’esistenza di questi campi. Tuttavia, diversi modelli suggeriscono che deviazioni dalla Relatività Generale, o interazioni tra la gravità e nuovi campi, siano più rilevanti quando la curvatura dello spazio-tempo è molto grande. Per questa ragione, l’osservazione di onde gravitazionali – che ha aperto una nuova finestra sul regime di campo gravitazionale forte – rappresenta un’opportunità unica per scoprire nuovi campi fondamentali.

LISA campi fondamentali
Foto 2: EMRI: Sezione di un’orbita percorsa da un oggetto stellare attorno a un buco nero massivo (Credits: N. Franchini)

LISA, il rivelatore di onde gravitazionali spaziale sviluppato per osservare onde gravitazionali da sorgenti astrofisiche, permetterà di studiare nuove famiglie di sorgenti astrofisiche, diverse da quelle osservate da Virgo e LIGO, come gli Extreme Mass Ratio Inspirals (EMRI).

“Gli EMRI, sistemi binari in cui un oggetto compatto con massa stellare – un buco nero o una stella di neutroni – orbita attorno ad un buco nero milioni di volte più massivo del nostro Sole, sono infatti tra le sorgenti che ci si aspetta di osservare con LISA, e rappresentano un’arena preziosissima per studiare il regime di campo forte della gravità. – spiega Andrea Maselli, primo autore del paper – Il corpo più piccolo di un EMRI compie decine di migliaia di cicli orbitali prima di cadere nel buco nero supermassivo, emettendo così segnali di lunga durata che permettono di misurare anche le più piccole deviazioni dalle predizioni della teoria di Einstein e del modello standard delle particelle”.

Gli autori dello studio hanno sviluppato uno nuovo approccio per modellizzare il segnale emesso dagli EMRI, studiando per la prima volta in modo rigoroso se e come LISA possa scoprire l’esistenza di campi scalari accoppiati all’interazione gravitazionale, e misurare la carica scalare, una grandezza che quantifica il campo associato al corpo più piccolo del sistema binario.

Il nuovo approccio sviluppato è “agnostico” rispetto alla teoria che predice l’esistenza del campo scalare, poichè non dipende dall’origine della carica o dalla natura dell’oggetto compatto.  L’analisi mostra anche come future misure della carica scalare potranno essere tradotte in vincoli molto stringenti sulle deviazioni della Relatività Generale o del Modello Standard.

LISA, che partirà come missione ESA-NASA nel 2037, opererà in orbita attorno al Sole, in una costellazione di tre satelliti distanti milioni di chilometri l’uno dall’altro, osservando onde gravitazionali emesse a bassa frequenza, in una banda non accessibile agli interferometri terrestri a causa del rumore ambientale. Lo spettro visibile di LISA aprirà una nuova finestra sull’evoluzione degli oggetti compatti in una grande varietà di sistemi astrofisici del nostro Universo.

Riferimenti:

Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals – Andrea Maselli, Nicola Franchini, Leonardo Gualtieri, Thomas P. Sotiriou, Susanna Barsanti, Paolo Pani – Nature Astronomy DOI: https://doi.org/10.1038/s41550-021-01589-5

 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma