News
Ad
Ad
Ad
Tag

lampi di raggi gamma

Browsing

EINSTEIN PROBE: RIVELATA LA COMPLESSITÀ DEI FLASH DI RAGGI X NELL’EVENTO EP241021a

Un team di ricerca, con la guida e il contributo fondamentale dell’Istituto Nazionale di Astrofisica (INAF), ha di recente analizzato nel dettaglio l’evento EP241021a, una sorgente di raggi X nota come flash di raggi X (X-Ray Flash o XRF) scoperta il 21 ottobre 2024 dalla missione cinese Einstein Probe. La ricerca, frutto di un’imponente campagna osservativa multibanda accettata per la pubblicazione sulla rivista Astronomy & Astrophysics, getta nuova luce sull’origine e la natura di questi misteriosi e fugaci transienti cosmici, storicamente legati ai più noti lampi di raggi gamma (Gamma Ray Burst o GRB).

“Cugini” dei transienti veloci di raggi X (FXRT, dall’inglese fast X-ray transient), gli XRF sono brevissime esplosioni di raggi X, con durata che varia dai 10 secondi ai 10 minuti, prodotte da sorgenti extragalattiche. Identificati nei primi anni ’90 dal satellite italo-olandese BeppoSAX, questi eventi condividono molte caratteristiche con i lampi di raggi gamma, ma si differenziano per spettri più “soffici” e un picco energetico meno intenso. Lo strumento Wide-field X-ray Telescope (WXT) a bordo del satellite Einstein Probe, caratterizzato da una capacità unica di osservazione di vaste regioni del cielo in raggi X ad alta sensibilità, ha permesso di rivelare nuovi flash di raggi X e di studiarne in modo accurato la complessa emissione.

 Un disegno dello scenario proposto dal team di ricerca per EP241021a. A piccoli angoli polari viene prodotto un getto relativistico con un nucleo e ali ampie, mentre a grandi angoli polari il getto è circondato da un bozzolo strutturato. La linea di vista dell’osservatore si trova all’interno delle ali del getto. Crediti: G. Gianfagna (INAF) / A&A 2025
Un disegno dello scenario proposto dal team di ricerca per EP241021a. A piccoli angoli polari viene prodotto un getto relativistico con un nucleo e ali ampie, mentre a grandi angoli polari il getto è circondato da un bozzolo strutturato. La linea di vista dell’osservatore si trova all’interno delle ali del getto. Crediti: G. Gianfagna (INAF) / A&A 2025

EP241021a si distingue per la ricchezza delle sue componenti. Giulia Gianfagna, prima autrice dell’articolo e assegnista di ricerca presso l’INAF di Roma, spiega:

“EP241021a è probabilmente l’XRF scoperto dall’Einstein Probe che presenta nella sua emissione il maggior numero di componenti, e, di conseguenza, un grado di complessità nell’interpretazione fisica non indifferente. Ma, per lo stesso motivo, è l’evento che più dà informazioni sulla famiglia di questi oggetti”.

L’evento transiente presenta, infatti, la caratterizzazione di un getto strutturato che si evolve rapidamente e un ambiente stellare denso che ne modella la forma e la dinamica. Dopo l’emissione nei raggi X scoperta da Einstein Probe, osservazioni nel visibile e soprattutto nelle frequenze radio e millimetriche, grazie all’utilizzo di telescopi e network come ALMA, uGMRT, e-MERLIN e ATCA, hanno permesso di identificare le peculiarità.

“Tutte le componenti – dice Gianfagna – sono consistenti con il collasso di una stella massiccia: subito dopo il collasso, si è creato un sistema formato da un getto centrale stretto ed energetico (detto nucleo o core), circondato da ‘ali’ a più basse energie e meno veloci. Circonda le ali un ‘bozzolo’ sferico (detto cocoon), composto a sua volta da due componenti concentriche, con velocità che diminuisce verso l’esterno. L’emissione dei raggi gamma, quindi il lampo di raggi gamma, viene prodotta dal core del getto”.

Questa emissione gamma non è però visibile in quanto il getto punta lontano dalla Terra.

Rappresentazione artistica del telescopio spaziale Einstein Probe. Crediti: Chinese Academy of Sciences
Einstein Probe: rivelata la complessità dei flash di raggi X nell’evento EP241021a; lo studio accettato su Astronomy & Astrophysics. Rappresentazione artistica del telescopio spaziale Einstein Probe. Crediti: Chinese Academy of Sciences

Tali osservazioni sono un modello unificato secondo cui i flash di raggi X sono varianti dei lampi di raggi gamma, viste da angolazioni diverse o influenzate da condizioni ambientali peculiari, come la densità e la struttura del materiale espulso dalla stella progenitrice. EP241021a è inoltre il primo caso in cui tutte queste componenti si osservano simultaneamente con tale dettaglio.

“Terminata la missione BeppoSAX all’inizio degli anni 2000”, commenta Luigi Piro, dirigente di ricerca INAF e coautore dello studio, “osservare questi transienti è diventato molto più difficile a causa del ridotto campo di vista degli strumenti attivi. Einstein Probe, lanciato nel gennaio 2024, ha riportato in orbita un rilevatore con un ampio campo visivo e una sensibilità superiore. La capacità di osservare porzioni così ampie di cielo ci ha permesso, finalmente, di ricominciare a scoprire nuovi flash di raggi X”.

Gianfagna conclude: “Dimostrare che questo flash di raggi X può essere modellizzato come un lampo di raggi gamma, probabilmente con delle caratteristiche particolari, in un contesto più ampio porterebbe ad avere un’idea più chiara su come muoiono le stelle massicce e cosa producono dopo la loro morte”.

Lo studio in questione è il primo guidato da ricercatrici e ricercatori europei sull’analisi di eventi XRF con dati provenienti da Einstein Probe, segnando una tappa fondamentale nella collaborazione internazionale e nello studio delle esplosioni cosmiche.

 

Riferimenti bibliografici:

L’articolo di Giulia Gianfagna, Luigi Piro, Gabriele Bruni, Aishwarya Linesh Thakur, Hendrik Van Eerten, Alberto Castro-Tirado, Yong Chen, Ye-hao Cheng, Han He, Shumei Jia, Zhixing Ling, Elisabetta Maiorano, Rosita Paladino, Roberta Tripodi, Andrea Rossi, Shuaikang Yang, Jianghui Yuan, Weimin Yuan, Chen Zhang, “The soft X-ray transient EP241021A: a cosmic explosion with a complex off-axis jet and cocoon from a massive progenitor”, è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

GRB 231115A: LA GALASSIA SIGARO SI ACCENDE CON UN MEGA BRILLAMENTO, UN RAPIDO LAMPO DI RAGGI GAMMA

Il satellite Integral, realizzato con un fondamentale contributo dell’Agenzia Spaziale Italiana, scopre il primo caso di giant flare proveniente da una magnetar fuori dalla Via Lattea. Lo studio a guida INAF pubblicato su Nature.

La sezione di cielo osservata dal rilevatore di raggi gamma sul satellite INTEGRAL dell’ESA. Uno dei due riquadri mostra i dati a raggi X della galassia M82 e l'altro mostra un'osservazione in luce visibile. Il cerchio blu sulle due immagini ritagliate indica la posizione corrispondente al brillamento gigante. Crediti: ESA/Integral, ESA/XMM-Newton, INAF/TNG, M. Rigoselli (INAF)
La sezione di cielo osservata dal rilevatore di raggi gamma sul satellite INTEGRAL dell’ESA. Uno dei due riquadri mostra i dati a raggi X della galassia M82 e l’altro mostra un’osservazione in luce visibile. Il cerchio blu sulle due immagini ritagliate indica la posizione corrispondente al brillamento gigante GRB 231115A. Crediti: ESA/Integral, ESA/XMM-Newton, INAF/TNG, M. Rigoselli (INAF)

Utilizzando i dati del satellite dell’Agenzia Spaziale Europea (ESA) Integral (International Gamma-Ray Astrophysics Laboratory), costruito con il contributo dell’Agenzia Spaziale Italiana (ASI) responsabile del telescopio principale IBIS, il 15 novembre 2023 un gruppo di ricercatrici e ricercatori guidati dall’Istituto Nazionale di Astrofisica (INAF) ha individuato l’improvvisa esplosione di un oggetto raro: per solo un decimo di secondo, un rapido lampo di raggi gamma è apparso dalla direzione di una luminosa galassia vicino alla nostra. Di cosa si tratta? Il team ha scoperto la presenza di un brillamento gigante (Giant Flare, in inglese) generato da una magnetar nella galassia Sigaro (conosciuta anche con le sigle M82 o NGC 3034), uno degli oggetti celesti più affascinanti che costellano il cielo. L’articolo relativo alla scoperta è stato pubblicato oggi sulla rivista Nature.

Particolare classe di stelle di neutroni (resti stellari super-densi delle esplosioni di supernovae), le magnetar sono i magneti più potenti dell’universo noti per emettere brevi esplosioni di raggi gamma che in genere durano meno di un secondo ma sono miliardi di volte più luminose del Sole. Le magnetar possono produrre brillamenti giganti, cioè brevi esplosioni durante le quali possono emettere in meno di un secondo l’energia che il Sole irradia in un milione di anni, ma individuarle è davvero arduo.

La scoperta è stata ottenuta grazie all’Integral Burst Alert System (IBAS), che permette la localizzazione in tempo reale di lampi di raggi gamma e altri fenomeni transienti nei raggi gamma. Nello specifico, Integral ha rilevato un lampo di raggi gamma solo per un decimo di secondo. Il software di IBAS, che esamina i dati ricevuti al data center scientifico Integral di Ginevra, ha determinato la localizzazione precisa di questo evento e l’ha distribuita agli astronomi di tutto il mondo solo tredici secondi dopo che Integral lo aveva rivelato.

“Quando il software automatico IBAS ci ha allertati per questo evento, ci  siamo subito resi conto che si trattava di qualcosa di speciale. Si sospetta da tempo che alcuni dei lampi di raggi gamma di breve durata (GRB, lampi luminosi di raggi gamma osservati al ritmo di uno al giorno da direzioni imprevedibili del cielo) potrebbero essere Giant Flare provenienti da magnetar nelle galassie vicine, ma ciò non era stato ancora dimostrato in maniera inequivocabile”, spiega Sandro Mereghetti, primo autore dell’articolo e ricercatore presso l’INAF di Milano.

Mereghetti aggiunge: “I brillamenti giganti sono la manifestazione più estrema delle magnetar, in termini di energia emessa e rapidità, ma non si conosce ancora bene cosa li produca”.

Quello scoperto dal team guidato da INAF (GRB 231115A) è il primo Giant Flare generato da una magnetar in una galassia che non appartiene al Gruppo Locale.

“Sono eventi estremamente rari, tanto che ne sono stati osservati solo tre in 50 anni: due nella nostra Galassia e uno nella Grande Nube di Magellano. Poterli rivelare anche in galassie più lontane, come nel presente caso, permette di studiarne un maggior numero e in condizioni più favorevoli”, sottolinea l’autore. “I casi precedenti di ‘candidati’ Giant Flare al di fuori del gruppo locale non erano stati individuati in tempo reale e le incertezze sulla loro posizione rende incerte anche le associazioni con galassie vicine”, continua.

“Integral è un telescopio spaziale longevo e a 22 anni dal lancio continua a fornire contributi sorprendenti”, sottolinea Elisabetta Cavazzuti, responsabile ASI del programma Integral. “Il team scientifico ha migliorato sempre più l’utilizzo di tutti gli apparati del satellite, sviluppando un software che sfrutta ogni singola informazione trasmessa dal telescopio anche in maniera completamente nuova. Questo modo di osservare e sfruttare gli strumenti in ottica sempre innovativa consente di raggiungere risultati importanti confermando che l’universo è fonte inesauribile di scoperte”.

La rilevazione del fenomeno con Integral ha avviato poi una serie di osservazioni rapide ad altre lunghezze d’onda (ottiche, X, radio) che hanno permesso di stabilirne la natura. Nell’articolo i ricercatori presentano, infatti, anche dati richiesti al satellite XMM-Newton e dati ottici provenienti da telescopi italiani dell’INAF (il TNG alle Canarie, lo Schmidt di Asiago e lo Schmidt di Campo Imperatore) e francesi (come il French Observatoire de Haute-Provence): se si fosse trattato di un lampo di raggi gamma causato dalla collisione di due stelle di neutroni, lo scontro avrebbe creato onde gravitazionali e avrebbe avuto un intenso bagliore residuo nei raggi X e nella luce visibile. Le osservazioni di XMM-Newton hanno mostrato solo il gas caldo e le stelle nella galassia.

L’articolo pubblicato su Nature conferma quindi un’ipotesi che si sospettava da diversi anni.

“Inoltre non è casuale che questo brillamento gigante provenga proprio da una delle galassie che sta formando nuove stelle di alta massa a un ritmo elevato. In queste regioni ci si aspetta, infatti, di trovare il maggior numero di stelle di neutroni e quindi di magnetar”, aggiunge Ruben Salvaterra,  ricercatore INAF di Milano e coautore dell’articolo.

Osservabile anche con piccoli telescopi, M82 è una galassia starburst (in cui appunto il processo di formazione stellare è eccezionalmente elevato) a spirale barrata che si trova a circa 12 milioni di anni luce dalla Terra, in direzione della costellazione dell’Orsa Maggiore. L’interazione gravitazionale con altre galassie vicine, in particolare M81, ha accelerato drasticamente il suo tasso di formazione stellare che è almeno dieci volte maggiore di quello della Via Lattea.

“Dopo questa scoperta, la galassia M82 diventa un ‘sorvegliato speciale’ da cui aspettarci altri eventi simili nei prossimi anni”, conclude Mereghetti.


 

Per altre informazioni:

L’articolo “A magnetar giant flare in the nearby starburst galaxy M82”, di S. Mereghetti et al., è stato pubblicato sulla rivista Nature.

Testo e immagine dagli Uffici Stampa ASI e Istituto Nazionale di Astrofisica – INAF

IL LAMPO GAMMA COSÌ POTENTE DA PERTURBARE L’ALTA IONOSFERA

Rivelata per la prima volta una forte perturbazione della parte più alta della ionosfera terrestre generata da un lampo di raggi gamma, grazie ai dati del satellite INTEGRAL dell’Agenzia Spaziale Europea e del sino-italiano CSES-01. I risultati dello studio, guidato da ricercatori dell’Istituto Nazionale di Astrofisica in collaborazione con l’Istituto Nazionale di Fisica Nucleare, l’Agenzia Spaziale Italiana e diverse università italiane, sono pubblicati su Nature Communications.

Illustrazione del lampo di raggi gamma che ha colpito la Terra il 9 ottobre 2022, è stato rivelato dal satellite ESA INTEGRAL e ha prodotto una forte perturbazione della parte più alta della ionosfera terrestre, registrata dal satellite CSES (CNSA-ASI). Crediti: ESA/ATG Europe; CC BY-SA 3.0 IGO
Illustrazione del lampo di raggi gamma che ha colpito la Terra il 9 ottobre 2022, è stato rivelato dal satellite ESA INTEGRAL e ha prodotto una forte perturbazione della parte più alta della ionosfera terrestre, registrata dal satellite CSES (CNSA-ASI). Crediti: ESA/ATG Europe; CC BY-SA 3.0 IGO

Il 9 ottobre 2022, 15:21 ora italiana, molti satelliti in orbita attorno alla Terra e nello spazio interplanetario hanno registrato il più forte lampo di raggi gamma (in inglese gamma-ray burst, o GRB) mai osservato. Tra questi, anche il satellite INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) dell’Agenzia Spaziale Europea (ESA) ha rivelato un flusso di raggi gamma estremamente intenso e di lunga durata. Contemporaneamente, il satellite CSES-01 (China Seismo-Electromagnetic Satellite), una collaborazione tra l’Agenzia Spaziale Italiana (ASI) e quella cinese (CNSA), ha registrato una perturbazione macroscopica del campo elettrico nella parte superiore della ionosfera, lo strato più alto e tenue dell’atmosfera terrestre, dovuta a un’improvvisa, forte corrente. Un effetto del genere non era mai stato osservato in questo strato dell’atmosfera.

Simili perturbazioni nella ionosfera sono solitamente associate a eventi energetici legati all’attività del Sole, ma in questo caso la coincidenza con l’arrivo del lampo gamma indica che l’origine è da ricercarsi molto più lontano, nell’esplosione di una stella a quasi due miliardi di anni luce di distanza. I risultati dell’analisi, condotta da un team multidisciplinare a guida italiana che è riuscito a sintetizzare dati da due discipline molto diverse – l’astronomia a raggi gamma e la ricerca delle interazioni tra Sole, Terra e cosmo – sono pubblicati su Nature Communications.

“Siamo stati fortunati perché, al momento dell’arrivo del lampo, il satellite CSES si trovava dalla parte del pianeta colpita dall’enorme flusso di raggi gamma” dice Mirko Piersanti, ricercatore dell’Università dell’Aquila e associato all’Istituto Nazionale di Astrofisica (INAF), primo autore dell’articolo, che ha lavorato alla ricerca insieme a Pietro Ubertini dell’INAF, principal investigator dello strumento IBIS a bordo di INTEGRAL. “È stato eccitante scoprire l’effetto registrato a bordo di CSES pochi istanti dopo l’arrivo del GRB registrato da INTEGRAL. Era la prova che la ionosfera terrestre era stata ionizzata in modo così intenso da raggi gamma di alta energia, da generare una variazione della conducibilità tale da produrre variazioni del campo elettrico ionosferico.”

Il lampo gamma del 9 ottobre 2022 è stato il più luminoso mai rivelato sinora: il secondo in ordine di intensità è dieci volte meno luminoso. Lo studio indica come eventi cosmici dovuti a raggi gamma di estrema intensità possano avere una forte influenza nell’equilibrio della composizione della ionosfera. Il lampo gamma, generato in una galassia lontana, una volta arrivato sulla Terra aveva ancora abbastanza energia da perturbare la nostra atmosfera in modo molto marcato, “spostando” sostanzialmente la ionosfera verso il basso per tutta la sua durata. Un effetto simile si registra durante brillamenti solari di forte intensità che provocano veri e propri black-out radio.

“È sorprendente come fenomeni che avvengono nello spazio profondo riescano a produrre conseguenze così significative sul nostro pianeta”, nota Piergiorgio Picozza dell’Istituto Nazionale di Fisica Nucleare (INFN), responsabile della collaborazione CSES-Limadou.

Statisticamente, un lampo di raggi gamma così intenso colpisce la Terra ogni diecimila anni. Se fosse stato generato da un’esplosione simile nella nostra galassia, anziché – come in questo caso – in una galassia a quasi due miliardi di anni luce, avrebbe potuto avere conseguenze molto serie per il nostro pianeta, mettendo in pericolo la sopravvivenza della biosfera terrestre. Il dibattito scientifico sulle possibili conseguenze di un ipotetico GRB proveniente dalla Via Lattea, potenzialmente miliardi di volte più intenso di questo, prevede, nel peggiore dei casi, un’alterazione dello strato di ozono atmosferico che protegge la biosfera dalle radiazioni ultraviolette prodotte dal Sole. È stata anche avanzata l’ipotesi che un simile effetto possa aver causato alcune delle estinzioni di massa avvenute in passato sulla Terra.

L’interazione del GRB con la ionosfera è durata più di 800 secondi (quasi un quarto d’ora) ed è stata così intensa da attivare i rivelatori di fulmini in India. In Germania, strumenti a terra hanno registrato per ore disturbi della trasmissione radio ionosferica. Conoscendo bene gli effetti che lampi di luce solare provocano nella ionosfera, i ricercatori italiani della collaborazione CSES hanno subito capito che un GRB straordinariamente intenso come quello del 9 ottobre 2022 poteva avere avuto un impatto profondo sulla parte alta dell’atmosfera. In passato, tuttavia, solo alcuni GRB erano stati in grado di generare variazioni significative sulla ionosfera, ma solo a basse quote e di notte, quando il contributo legato all’illuminazione solare non è presente. Non era mai stato osservato l’effetto di un GRB all’altezza dell’alta atmosfera dove orbita CSES-01.

“Questo risultato avvalora la scelta dell’ASI di sostenere fin dal 2016 un team multidisciplinare per l’analisi dei dati CSES, che include astrofisici, geofisici, fisici delle particelle, fisici dell’atmosfera ed esperti di space weather”, racconta Simona Zoffoli dell’Unità Osservazione della Terra dell’Agenzia Spaziale Italiana. “La contaminazione tra diverse competenze è preziosa e ha permesso di utilizzare i dati di CSES per obiettivi nuovi inizialmente non previsti”.

La ionosfera, tra 50 e 950 km di altitudine, è uno strato fondamentale per la propagazione delle onde radio, senza la quale non si potrebbero effettuare trasmissioni radio di bassa frequenza attorno al pianeta. La sua densità è però così bassa che i satelliti riescono a orbitare al suo interno. Uno di questi satelliti è proprio CSES-01, che monitora l’alta ionosfera (oltre 350 km di altitudine) e la magnetosfera per rivelare perturbazioni collegabili a fenomeni naturali sia di origine terrestre, come terremoti, tsunami o eruzioni vulcaniche, sia di origine esterna come le perturbazioni dovute a tempeste solari.

Tra gli strumenti a bordo del satellite CSES-01, un rivelatore di particelle (High Energetic Particle Detector) è stato realizzato in collaborazione tra ASI e INFN, e un rivelatore di campo elettrico (Electric Field Detector) è stato sviluppato in collaborazione tra ASI, INAF e INFN. Completano l’equipaggiamento scientifico una serie di rivelatori, tra cui quelli di campo magnetico e delle proprietà del plasma, realizzati da ricercatori cinesi. I dati di tutti gli strumenti sono archiviati e messi a disposizione della comunità scientifica presso il centro ASI SSDC. È stata proprio la straordinaria sensibilità dello strumento di campo elettrico che ha permesso di osservare per la prima volta questo effetto. Dopo questa scoperta, il team della collaborazione CSES ha iniziato ad analizzare sistematicamente tutti i dati del rivelatore di campo elettrico registrati in coincidenza con i GRB a partire dal lancio del satellite, nel 2018.

Per ulteriori informazioni:

L’articolo “First Evidence of Earth’s top-side ionospheric electric field variation triggered by impulsive cosmic photons”, di Mirko Piersanti, Pietro Ubertini, Roberto Battiston, Angela Bazzano, Giulia D’Angelo, James G. Rodi, Piero Diego, Roberto Ammendola, Davide Badoni, Simona Bartocci, Stefania Beolè, Igor Bertello, William J. Burger, Donatella Campana, Antonio Cicone, Piero Cipollone, Silvia Coli, Livio Conti, Andrea Contin, Marco Cristoforetti, Fabrizio De Angelis, Cinzia De Donato, Cristian De Santis, Andrea Di Luca, Emiliano Fiorenza, Francesco M. Follega, Giuseppe Gebbia, Roberto Iuppa, Alessandro Lega, Marco Lolli, Bruno Martino, Matteo Martucci, Giuseppe Masciantonio, Matteo Mergè, Marco Mese, Alfredo Morbidini, Coralie Neubüser, Francesco Nozzoli, Fabrizio Nuccilli, Alberto Oliva, Giuseppe Osteria, Francesco Palma, Federico Palmonari, Beatrice Panico, Emanuele Papini, Alexandra Parmentier, Stefania Perciballi, Francesco Perfetto, Alessio Perinelli, Piergiorgio Picozza, Michele Pozzato, Gianmaria Rebustini, Dario Recchiuti, Ester Ricci, Marco Ricci, Sergio B. Ricciarini, Andrea Russi, Zuleika Sahnoun, Umberto Savino, Valentina Scotti, Alessandro Sotgiu, Roberta Sparvoli, Silvia Tofani, Nello Vertolli, Veronica Vilona, Vincenzo Vitale, Ugo Zannoni, Simona Zoffoli, e Paolo Zuccon, è stato pubblicato online sulla rivista Nature Communications.

Testo e immagine dagli Uffici Stampa INAF, ASI, INFN

GRB 230307A: JWST RIVELA ELEMENTI PESANTI NELL’ESPLOSIONE DI UNA KILONOVA

Il James Webb Space Telescope (JWST) ha svelato che il secondo lampo di raggi gamma più luminoso di sempre, osservato il 7 marzo 2023, ha avuto origine dalla fusione esplosiva di due stelle di neutroni. Il potente evento ha prodotto ed espulso nelle zone circostanti diversi elementi pesanti, tra cui il tellurio. Allo studio, pubblicato su Nature, hanno partecipato diversi ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e di altri istituti di ricerca e atenei italiani.

Un team internazionale di scienziati ha identificato l’origine di un potente lampo di raggi gamma (gamma-ray burst, o GRB) osservato lo scorso marzo: a generarlo è stata una kilonova, ovvero l’esplosione causata dalla fusione tra due stelle di neutroni. La ricerca è basata su osservazioni realizzate con il James Webb Space Telescope (JWST), che ha anche permesso di rilevare l’elemento chimico tellurio nel materiale espulso dalla potente esplosione. Il lampo, denominato GRB 230307A, è il secondo più luminoso mai scoperto in oltre 50 anni di osservazioni. È stato individuato il 7 marzo 2023 dal telescopio spaziale per raggi gamma Fermi, a cui ha fatto seguito il Neil Gehrels Swift Observatory, entrambi della NASA. I risultati sono stati pubblicati sulla rivista Nature.

“Il materiale in queste esplosioni è lanciato nello spazio a velocità molto elevate, causando una rapida evoluzione della luminosità e della temperatura del plasma in espansione”, afferma Om Sharan Salafia, ricercatore dell’Istituto Nazionale di Astrofisica (INAF) a Milano, tra gli autori dello studio. “Con l’espansione, il materiale si raffredda e il picco della sua luce si sposta sempre più verso il rosso, per poi passare all’infrarosso su scale temporali che vanno da giorni a settimane”.

Le kilonove sono esplosioni estremamente rare, il che ne rende difficile l’osservazione. Per molto tempo, si è ritenuto che i GRB brevi, dalla durata inferiore a due secondi, derivassero da questi eventi, mentre i GRB più lunghi fossero associati alla morte esplosiva di una stella massiccia, o supernova. Il caso di GRB 230307A è peculiare: il lampo è durato 200 secondi, come i GRB di lunga durata, eppure le osservazioni di JWST indicano chiaramente che proviene dalla fusione di due stelle di neutroni. Oltre al tellurio, è probabile che nel materiale espulso nella kilonova  siano presenti anche altri elementi pesanti, vicini ad esso sulla tavola periodica, come ad esempio lo iodio, necessario per gran parte della vita sulla Terra.

Bright galaxies and other light sources in various sizes and shapes are scattered across a black swath of space: small points, hazy elliptical-like smudges with halos, and spiral-shaped blobs. The objects vary in colour: white, blue-white, yellow-white, and orange-red. Toward the centre right is a blue-white spiral galaxy seen face-on that is larger than the other light sources in the image. The galaxy is labelled “former home galaxy.” Toward the upper left is a small red point, which has a white circle around it and is labelled “GRB 230307A kilonova.
GRB 230307A è il secondo lampo di raggi gamma più luminoso di sempre, generato da una kilonova: elementi pesanti rilevati nell’esplosione. Immagine del lampo di raggi gamma GRB 230307A e la relativa kilonova (in alto a sinistra) realizzata con la fotocamera NIRCam a bordo del telescopio spaziale Webb. La galassia di colore bluastro in basso a destra è il luogo d’origine delle due stelle di neutroni che, dopo aver viaggiato per circa 120mila anni luce, hanno dato luogo all’esplosione. Credit: NASA, ESA, CSA, STScI, A. Levan (IMAPP, Warw), A. Pagan (STScI)

La collaborazione di molti telescopi, sia a terra che nello spazio, ha permesso al team di raccogliere una gran quantità di informazioni su questo evento subito dopo il primo rilevamento, aiutando loro a individuare la sorgente nel cielo e a monitorare la sua luminosità nel tempo. Le osservazioni nei raggi gamma, nei raggi X, nell’ottico, nell’infrarosso e in banda radio hanno mostrato che la controparte ottica/infrarossa era debole, evolvendosi rapidamente e passando dal blu al rosso: i tratti distintivi di una kilonova. In particolare, la sensibilità di JWST nell’infrarosso ha aiutato gli scienziati a identificare l’origine delle due stelle di neutroni che hanno prodotto la kilonova: una galassia a spirale a circa 120mila anni luce dal luogo della fusione. I progenitori del poderoso evento erano due stelle massicce che formavano un sistema binario in questa galassia: le esplosioni che le hanno trasformate in stelle di neutroni, tuttavia, hanno espulso il sistema binario dalla galassia. Prima di fondersi e dare luogo alla kilonova, diverse centinaia di milioni di anni più tardi, hanno percorso un tragitto pari al diametro della Via Lattea.

Alla campagna osservativa ha partecipato anche il VST (VLT Survey Telescope), telescopio dell’INAF presso l’Osservatorio di Paranal, in Cile.

“Quando il GRB fu scoperto, non si conosceva ancora la sua controparte ottica, in quanto Swift non lo aveva osservato e quindi non si aveva idea della posizione esatta con precisione di arcosecondi, in modo da attivare il follow-up classico”

spiega il co-autore Luca Izzo, ricercatore presso l’INAF a Napoli e presso il Dark Cosmology Center, Niels Bohr Institute, Università di Copenhagen, in Danimarca.

“Avendo del tempo di osservazione al VST per un mio programma sulle galassie vicine, decisi di pianificare delle osservazioni per la ricerca della controparte nella notte a me riservata, due giorni dopo la scoperta del GRB. Queste osservazioni hanno identificato correttamente la controparte ottica poche ore dopo la prima conferma, ottenuta dalla ULTRACAM sul New Technology Telescope. Questo dimostra il contributo del VST nell’identificazione ottica di sorgenti ad alta energia e nel successivo follow-up e caratterizzazione. Una cosa che faremo sicuramente nel futuro immediato”.

 


 

Per ulteriori informazioni:

L’articolo “Heavy element production in a compact object merger observed by JWST”, di Andrew Levan, Benjamin P. Gompertz, Om Sharan Salafia, Mattia Bulla, Eric Burns, Kenta Hotokezaka, Luca Izzo, Gavin P. Lamb, Daniele B. Malesani, Samantha R. Oates, Maria Edvige Ravasio, Alicia Rouco Escorial, Benjamin Schneider, Nikhil Sarin, Steve Schulze, Nial R. Tanvir, Kendall Ackley, Gemma Anderson, Gabriel B. Brammer, Lise Christensen, Vikram S. Dhillon, Phil A. Evans, Michael Fausnaugh, Wen-fai Fong, Andrew S. Fruchter, Chris Fryer, Johan P. U. Fynbo, Nicola Gaspari, Kasper E. Heintz, Jens Hjorth, Jamie A. Kennea, Mark R. Kennedy, Tanmoy Laskar, Giorgos Leloudas, Ilya Mandel, Antonio Martin-Carrillo, Brian D. Metzger, Matt Nicholl, Anya Nugent, Jesse T. Palmerio, Giovanna Pugliese, Jillian Rastinejad, Lauren Rhodes, Andrea Rossi, Andrea Saccardi, Stephen J. Smartt, Heloise F. Stevance, Aaron Tohuvavohu, Alexander van der Horst, Susanna D. Vergani, Darach Watson, Thomas Barclay, Kornpob Bhirombhakdi, Elm e Breedt, Alice A. Breeveld, Alexander J. Brown, Sergio Campana, Ashley A. Chrimes, Paolo D’Avanzo, Valerio D’Elia, Massimiliano De Pasquale, Martin J. Dyer, Duncan K. Galloway, James A. Garbutt, Matthew J. Green, Dieter H. Hartmann, Páll Jakobsson, Paul Kerry, Chryssa Kouveliotou, Danial Langeroodi, Emeric Le Floc’h, James K. Leung, Stuart P. Littlefair, James Munday, Paul O’Brien, Steven G. Parsons, Ingrid Pelisoli, David I. Sahman, Ruben Salvaterra, Boris Sbarufatti, Danny Steeghs, Gianpiero Tagliaferri, Christina C. Th one, Antonio de Ugarte Postigo, David Alexander Kann, è stato pubblicato online sulla rivista Nature.

Testo dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)

GRB220101A, IL GRB PIÙ BRILLANTE IN OTTICO RILEVATO FINORA: UN CASO ESTREMO

Un team di ricerca a cui partecipa anche l’Istituto Nazionale di Astrofisica (INAF) è riuscito a osservare le primissime fasi di un lampo di raggi gamma (GRB, dall’inglese gamma-ray burst) risultato essere il più luminoso nelle bande ottiche rilevato finora. I GRB sono fenomeni transienti esplosivi al centro di continue rivoluzioni scientifiche e INAF è impegnato sia sul piano osservativo-interpretativo che con la partecipazione a grandi missioni dallo spazio per rilevarli e studiarli. I lampi di raggi gamma sono eventi tra i più violenti dell’universo, a distanza di miliardi di anni luce da noi. La loro energia viene trasferita in potentissimi getti collimati che emettono la radiazione che osserviamo. Nello specifico, i ricercatori hanno studiato GRB220101A, il cui segnale – come dice la sigla – è stato rilevato per la prima volta nel capodanno del 2022.

Gli esperti, guidati dal Purple Mountain Observatory (Cina), hanno utilizzato un nuovo metodo sviluppato per ricavare una fotometria affidabile da fonti “catturati” dall’Ultraviolet and Optical Telescope (UVOT), uno dei tre strumenti a bordo del Neil Gehrels Swift Observatory, osservatorio spaziale della NASA con una importante partecipazione italiana dell’ASI e dell’INAF.

Stefano Covino, ricercatore presso l’INAF di Milano e unico italiano tra gli autori dello studio, spiega che

“questa scoperta rivela le diverse origini dei brillamenti ultravioletti/ottici estremamente energetici e dimostra la necessità dell’osservazione ad alta risoluzione temporale nei primi istanti di evoluzione del fenomeno”. E aggiunge: “Ogni evento GRB mostra dei comportamenti originali, ma in generale troviamo che anche i casi più estremi rientrano comunque nella stessa fenomenologia. GRB220101A non fa eccezione. Non si tratta quindi di una nuova categoria di GRB ma plausibilmente di un caso estremo fra quelli già noti”.

Perché allora è un caso “monstre”? Covino osserva che

“il motivo è probabilmente duplice. Da una parte semplicemente accumulando più osservazioni si possono identificare casi più rari che normalmente ci sarebbe bassa probabilità di poter osservare. E in aggiunta c’è una questione tecnica che consiste nell’avere definito una procedura per poter ottenere informazioni affidabili dalle osservazioni da satellite anche quando, come in questo caso, i dati sono, come si dice tecnicamente, saturi. Questo ci ha permesso di poter avere informazioni nella primissima fase di questo evento e quindi identificare l’impressionante picco in luminosità di cui parliamo”.

GRB220101A è stato osservato da Swift, ma anche da altri telescopi spaziali come Fermi e Agile.

“Come sempre quando Swift identifica un GRB si ripuntano gli strumenti di bordo, come UVOT, e si ottengono dati pochi secondi dall’identificazione dell’evento di alte energie (il GRB vero e proprio). Un ottimo risultato per uno strumento che ormai vola dal 2004! Non appena l’alert per l’identificazione è arrivato a terra anche i telescopi “ground-based” hanno cominciato ad osservare ed il telescopio cinese di Xinglong, da 2,2 metri, ha ottenuto la misura di distanza, tramite uno spettro, che è risultata essere il notevole valore di z=4,6. All’epoca dell’evento che ha generato questo GRB l’universo aveva poco più di un miliardo d’anni”, dice Covino.

Il ricercatore sottolinea il grande lavoro tecnico fatto su questo GRB:

“Dobbiamo prima di tutto immaginare che un telescopio ottico, qualunque, riceve la radiazione luminosa da un oggetto celeste e la converte in un’immagine sul suo rivelatore. Ora, quello che accade è che, in dipendenza dalle caratteristiche del telescopio, l’immagine che si crea per un oggetto puntiforme, come le stelle o anche un GRB a distanze cosmologiche, ha una forma matematica ben precisa (tecnicamente è la PSF). Per visualizzarla possiamo immaginare un cappello a punta, tipo quello dei maghi, con la punta in alto e delle larghe falde intorno. Fare “fotometria” significa misurare bene l’estensione e l’altezza di questo ipotetico cappello! In pratica però, per eventi così brillanti, la parte centrale del “cappello” è cancellata, come tagliata, e quindi non è possibile ottenere le informazioni necessarie. Tuttavia esistono delle relazioni ben precise fra l’altezza del “cappello” e le faglie, che dipendono per telescopi nello spazio (cioè senza l’effetto dell’atmosfera) solo dalle caratteristiche tecniche del telescopio stesso. Con un lavoro davvero certosino siamo riusciti a misurare i parametri di queste relazioni e quindi a ricostruire a posteriori la forma del “cappello” in modo da ottenere le informazioni fotometriche complete. Anche questo può essere un esempio di come, anche con uno strumento che vola dal 2004, non si smetta mai di migliorare”.

Nonostante i decenni di studio, i GRB continuano a mostrare sorprese. Covino conclude dicendo:

“sembra quasi che siano un serbatoio inesauribile di comportamenti estremi ed ovviamente grandemente interessanti. Dal punto vista più modellistico ci mostrano come determinate combinazioni di parametri che portano alla prodigiosa luminosità in ottico osservata sono realmente possibili nel mondo reale. Questo ha importanti conseguenze ad esempio nel valutare l’impatto dei GRB nell’ambiente delle galassie che li ospitano”.

Uno dei co-autori del paper, Hao Zhou, e il primo autore, Zhi-Ping Jin, del Purple Mountain Observatory, hanno un forte legame con l’Italia. Jin è stato postdoc a Merate proprio con Covino, mentre Zhou, un giovane alla fine del suo dottorato, è attualmente in visita nella sede INAF di Merate dove lavora con Covino.


Rappresentazione artistica di un lampo di raggi gamma GRB220101A
Immagine artistica di un Gamma Ray Burst e dei suoi due getti che si propagano in direzioni opposte. Quando vediamo il Grb è grazie al fatto che il getto, che ha un angolo di apertura di pochi gradi, punta in direzione della terra. La bolla di luce che si vede al centro è la stella di grande massa che sta scoppiando, al cui centro si è appena formato il buco nero da cui hanno origine i due getti. Crediti: Eso/A. Roquette

 

Per ulteriori informazioni:

L’articolo “An optical/ultraviolet flare with absolute AB magnitude of -39.4 detected in GRB 220101A”, di Zhi-Ping Jin, Hao Zhou, Yun Wang, Jin-Jun Geng, Stefano Covino, Xue-Feng Wu, Xiang Li, Yi-Zhong Fan, Da-Ming Wei e Jian-Yan Wei è stato pubblicato su pubblicato sulla rivista Nature Astronomy.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF)

Una magnetar appena formata e rapidamente rotante può spiegare in modo dettagliato le diverse fasi dell’emissione dei lampi di raggi gamma

Un team italiano di ricercatori dell’Istituto Nazionale di Fisica Nucleare (INFN), dell’Istituto Nazionale di Astrofisica (INAF) e della Stony Brook University (USA) ha dimostrato per la prima volta che una magnetar appena formata e rapidamente rotante, cioè una stella di neutroni con un campo magnetico elevatissimo che ruota su se stessa molte centinaia di volte al secondo, può spiegare in modo dettagliato le diverse fasi dell’emissione dei lampi di raggi gamma, dalla loro violenta accensione fino allo spegnimento definitivo. Questo risultato è stato ottenuto confrontando le previsioni teoriche con un ricco insieme di dati nella banda dei raggi X e gamma. Lo studio è stato pubblicato sulla rivista The Astrophysical Journal Letters.

magnetar stella di neutroni lampi di raggi gamma
Resa artistica di una magnetar. Immagine di Robert S. Mallozzi, Università dell’Alabama, Huntsville, e NASA Marshall Space Flight Center”, in pubblico dominio

I lampi di raggi gamma (in inglese Gamma-Ray Burst, o GRB) sono brevi eventi esplosivi tra i più violenti dell’universo, a distanza di miliardi di anni luce da noi. La loro energia viene trasferita in potentissimi getti collimati che emettono la radiazione che osserviamo. Si ritiene che i GRB siano originati nel processo di formazione di un buco nero di massa stellare, in seguito al collasso gravitazionale di una stella alla fine del suo ciclo evolutivo, o alla collisione e fusione di due stelle di neutroni. Negli ultimi anni è stata sviluppata un’altra ipotesi: i GRB, o almeno una frazione rilevante di essi, potrebbero essere prodotti dalla formazione di una magnetar che ruota su sé stessa molte centinaia di volte al secondo. Le magnetar, come le altre stelle di neutroni, hanno una massa simile a quelle del Sole concentrata in un volume dalle dimensioni comparabili con quelle di una grande città, ma posseggono campi magnetici elevatissimi. Scoperte nella nostra Galassia negli anni ‘90 del secolo scorso, sono caratterizzate da un’intensa emissione di origine magnetica in raggi X e gamma, punteggiata da ricorrenti episodi parossistici di breve durata ed enorme luminosità. La loro origine è ad oggi un mistero tra i più studiati nell’astrofisica degli oggetti compatti.

Il nuovo lavoro combina conoscenze acquisite nello studio delle magnetar e delle stelle di neutroni che catturano materia con le principali caratteristiche dei GRB, dimostrando come una magnetar appena formata e rapidamente rotante possa spiegare le proprietà di alcuni tra i GRB più studiati meglio di un buco nero.

Simone Dall’Osso, ricercatore presso l’INFN, associato INAF e primo autore dell’articolo, commenta: “Il nostro studio spiega in modo quantitativo le diverse fasi dell’emissione di un lampo gamma e del suo graduale spegnimento. I processi fisici coinvolti sono gli stessi che operano in altri sistemi contenenti stelle magnetiche in rotazione quali nane bianche, stelle di neutroni ordinarie (non magnetar) ed anche stelle ordinarie in fase di formazione. Applicati ad una magnetar appena formata e rapidamente rotante questi stessi processi portano al rilascio di enormi quantità di energia in tempi brevissimi, con segni distintivi identificabili”.

Giulia Stratta, ricercatrice INAF, associata INFN e membro del cluster di ricerca ELEMENTS presso la Goethe University di Francoforte, aggiunge “Per poter fornire una spiegazione organica delle diverse fasi dei lampi gamma, è stato necessario basarsi sui GRB per i quali abbiamo le informazioni più complete da osservazioni in banda ottica, X e gamma. Si tratta di una dozzina di casi in tutto, frutto di un lungo lavoro di ricerca tra molte centinaia”.

Lo scenario teorizzato nel lavoro del team italiano suggeriscew che, in una prima fase, la magnetar cattura parte della materia che ancora sta cadendo a seguito del collasso gravitazionale o della collisione tra stelle di neutroni. Questo genera la parte iniziale e più brillante del GRB, liberando un’enorme quantità di energia gravitazionale in poche decine di secondi. Quando l’afflusso di materia diminuisce, la rotazione del campo magnetico della magnetar inizia a respingere la materia stessa fiondandola via – un po’ come un’elica che gira – e una quantità via via più piccola di energia gravitazionale viene rilasciata, causando un graduale calo della luminosità. Infine, quando non vi è più materia che cade, la magnetar si comporta come una stella di neutroni isolata e dissipa progressivamente la sua energia rotazionale.

Secondo Rosalba Perna, professore ordinario presso la Stony Brook University e co-autore dello studio, “questo risultato getta una nuova luce su due misteri cosmici, suggerendo un probabile legame tra di essi: ‘che cos’è che produce un lampo gamma?’ e ‘dove si formano le magnetar e in quali speciali condizioni, tali da differenziarle dalle altre stelle di neutroni?’“.

Luigi Stella, dirigente di ricerca presso l’INAF di Roma e autore anch’egli dello studio, sottolinea che: “appena formate le magnetar, come anche i buchi neri di massa stellare, possono essere motori astrofisici di eccezionale potenza, capaci di alimentare l’emissione dei lampi gamma, ma anche di generare forti onde gravitazionali, come abbiamo dimostrato in alcuni studi precedenti”.

“Nel prossimo futuro” conclude Dall’Osso “un’ulteriore e definitiva conferma della formazione di una magnetar potrà venire proprio  dalla rivelazione di un segnale in onde gravitazionali”.


 

Per ulteriori informazioni:

L’articolo “Magnetar central engines in gamma-ray bursts follow the universal relation of accreting magnetic stars”, di Simone Dall’Osso, Giulia Stratta, Rosalba Perna, Giovanni De Cesare e Luigi Stella, è stato pubblicato su pubblicato sulla rivista The Astrophysical Journal Letters.

Testo dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF).