News
Ad
Ad
Ad
Tag

La Palma

Browsing

PRIMA LUCE PER WEAVE, IL NUOVO SPETTROGRAFO DEL TELESCOPIO HERSCHEL

È stato il gruppo di galassie chiamato “Quintetto di Stephan”, osservato dal James Webb Space Telescope della NASA, il primo obiettivo dello strumento WHT Enhanced Area Velocity Explorer (WEAVE), un nuovo e potente spettrografo a multifibre montato al Telescopio William Herschel (WHT) dell’Osservatorio del Roque de los Muchachos a La Palma, nelle Isole Canarie. WEAVE è ora in fase di verifica e presto produrrà i suoi primi dati scientifici. Le osservazioni di quella che in gergo viene chiamata “prima luce” sono state effettuate utilizzando uno dei tre modi di osservazione a disposizione per questo strumento: l’unità a campo integrale LIFU (large integral-field unit fibre bundle). Al progetto collabora anche l’Italia: il gruppo WEAVE Italia coinvolge più di 80 ricercatori e ricercatrici dell’Istituto Nazionale di Astrofisica (INAF), che hanno anche collaborato alla costruzione dello strumento.

 

Il telescopio William Herschel e lo strumento WEAVE. Il posizionatore di WEAVE è alloggiato nella scatola nera di 1,8 metri sopra l’anello superiore del telescopio. Le fibre ottiche corrono lungo la struttura del telescopio fino all’involucro a sinistra, che ospita lo spettrografo WEAVE. Crediti: Sebastian Kramer

Gestito dall’Isaac Newton Group of Telescopes (ING) e dalla Collaborazione WEAVE, composta da oltre 500 ricercatori in tutto il mondo, lo spettrografo sarà in grado di osservare gli spettri di diversi milioni di oggetti celesti, stelle e galassie. “WEAVE è il primo degli spettrografi multifibre ad alta risoluzione a grande campo, e l’unico collocato nell’emisfero Nord. Come tale fornisce una visione privilegiata del disco Galattico, principalmente nelle regioni  esterne”, racconta Antonella Vallenari, ricercatrice presso l’INAF di Padova e rappresentante nel comitato esecutivo del team WEAVE Italia. E aggiunge:

“WEAVE è fondamentale per capire come si sono formate la nostra Galassia e le galassie esterne e per rispondere a domande rilevanti sulla materia oscura e l’energia oscura”.

WEAVE WHT Enhanced Area Velocity Explorer
Lo spettrografo WEAVE in laboratorio. Crediti: NOVA

Daniela Bettoni, associata dell’INAF di Padova e membro del team italiano WEAVE, spiega i risultati: “Le osservazioni con LIFU si sono concentrate sulla coppia di galassie in collisione, NGC 7318a e NGC 7318b, a una distanza di 280 milioni di anni luce dalla Terra nella costellazione di Pegaso. In questa modalità di osservazione, ben 547 fibre hanno registrato il colore della loro luce dall’ultravioletto al vicino infrarosso. Le fibre sono raggruppate in una area esagonale che copre una porzione di cielo delle dimensioni tipiche delle galassie più vicine a noi. Con questi spettri si possono studiare sia il moto delle stelle che quello del gas, la composizione chimica delle stelle come pure le temperature e densità delle nubi di gas di queste due galassie. Queste osservazioni offrono preziosi indizi su come queste interazioni estreme (vere e proprie collisioni) modificano e trasformano le galassie coinvolte”.

I dati in blu, verde e rosso, secondo le velocità derivate dagli spettri WEAVE, sono sovrapposti a un’immagine composita del “Quintetto di Stephan”, che presenta la luce stellare della galassie (CFHT telescope) e l’emissione di raggi X di gas caldo (banda verticale blu, Chandra X-ray observatory). Le velocità indicano che la galassia NGC 7318b (in blu, nella regione centro-sinistra) è entrata nel gruppo a 800 km/s attraverso il centro del gruppo di galassie. Questa collisione ad alta velocità crea scompiglio in NGC 7318b: nubi di idrogeno gassoso, il combustibile della formazione stellare, vengono strappate via dalla galassia. Si tratta di un fenomeno che probabilmente rallenterà notevolmente la formazione di nuove stelle nella galassia. Crediti: Raggi X (blu) – NASA/CXC/CfA/E. O’Sullivan, Dati ottici (marrone) – Canada-France-Hawaii-Telescope/Coelum, WEAVE’s LIFU: Marc Balcells

Analizzando i dati raccolti con WEAVE, gli esperti hanno notato la presenza di gas ionizzato a est e a sud di entrambe le galassie, ben oltre il disco di ognuna di esse. Nubi di idrogeno, il carburante per la formazione di nuove stelle, sono spinte fuori dalla loro orbita dall’arrivo ad alta velocità – stimata in 800 chilometri al secondo – della galassia NGC 7318b, che si sta muovendo verso la Terra attraversando il centro del “Quintetto di Stephan”. Confrontando le intensità delle linee dell’idrogeno e dell’azoto gli astronomi possono capire quale meccanismo ha ionizzato il gas: l’onda di shock legata alla collisione di nubi di gas oppure la formazione di nuove stelle. La qualità dei dati è eccezionale: WEAVE è riuscito a misurare differenze di velocità dell’ordine di 12,8 chilometri al secondo.

Vallenari sottolinea come sia “importante anche il contributo del Telescopio nazionale Galileo (TNG) dell’INAF, dove risiederà l’archivio pubblico che distribuisce I dati a tutta la comunità scientifica Internazionale”.

WEAVE WHT Enhanced Area Velocity Explorer
L’immagine del James Webb Space Telescope (JWST) con i dati dell’unità a campo integrale LIFU di WEAVE che punta al Quintetto di Stephan per l’osservazione della cosiddetta “prima luce”. Ogni cerchio nell’immagine indica una fibra ottica di 2,6 secondi d’arco di diametro. L’osservazione fornisce informazioni fisiche da ciascuna regione di ciascuna galassia e dal loro ambiente circostante, coprendo una zona di cielo pari a 120 mila anni luce dall’alto verso il basso. Crediti: NASA, ESA, CSA, STScI (immagine di sfondo); Aladin (sovrapposizione di fibre)

Il progetto prevede il completamento di otto progetti di ricerca (o survey in inglese), tre che studiano la nostra Galassia e cinque le galassie esterne, che vanno dallo studio dell’evoluzione stellare, alla comprensione della Via Lattea, fino allo studio della evoluzione delle galassie esterne e della cosmologia. Due survey sono a guida italiana e coinvolgono la struttura del disco della Via Lattea tramite i suoi ammassi stellari (coordinata da Antonella Vallenari) e uno studio dettagliato delle proprietà delle galassie a redshift intermedio (coordinata da Angela Iovino, sempre dell’INAF).

WEAVE è uno strumento molto versatile: oltre alla modalità di osservazione a campo integrale (LIFU), può utilizzare altre due modalità, ovvero il MOS, in grado di osservare contemporaneamente circa 960 stelle o galassie con un delicato sistema di fibre, e il miniIFU che permette di osservare a campo integrale fino a 20 oggetti contemporaneamente. Entrambi sono già montati al telescopio e a breve produrranno i primi dati scientifici.

Vallenari conclude dicendo che grazie “alle sue caratteristiche (grande campo, numero di fibre, risoluzione spettrale, posizione nell’emisfero Nord), lo spettrografo WEAVE non avrà rivali per i prossimi 10 anni. Si tratta di una macchina formidabile in grado di osservare 30 milioni di spettri per 10 milioni di oggetti in 5 anni di survey. Ci aspettiamo che i progetti di ricerca comincino nei primi mesi del prossimo anno. Ci attendiamo grandi scoperte scientifiche da questi nuovi dati”.

Scott Trager, Project scientist di WEAVE, conclude: “Queste osservazioni mostrano la potenza di WEAVE nell’esaminare i fenomeni complessi coinvolti nell’evoluzione delle galassie durante la storia dell’Universo. Sicuramente WEAVE offrirà al team scientifico e all’ampia comunità scientifica di ING l’opportunità di fare nuove grandi scoperte”.


 

Per maggiori informazioni:

Il progetto è una collaborazione tra diversi partner: Science and Technology Facilities Council (STFC, UK), Netherlands Research School for Astronomy (NOVA, NL), la Dutch Science Foundation (NWO, NL), the Isaac Newton Group of Telescope (ING, UK/NL/ES), Astrophysical Institute of the Canaries (IAC, ES), the Ministry of Economy and Competitiveness (MINECO, ES), Ministry of Science and Innovation (MCI), the European Regional Development Fund (ERDF), National Institute for Astrophysics (INAF,IT), French National Centre for Scientific Research (CNRS, FR), Paris Observatory – University of Paris Science and Letters (FR), Besançon Observatory (FR), Region île de France (F), Region Franche-Comté (FR), Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE, MX), National Council for Science and Technology (CONACYT, MX), Lund Observatory (SE), Uppsala University (SE), the Leibniz Institute AIP (DE), Max-Planck Institute for Astronomy (MPIA, DE), University of Pennsylvania (US), and Konkoly Observatory (HU).

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF)

Il segnale UV e ottico che sfida i modelli delle pulsar

Osservati, per la prima volta da una pulsar al millisecondo in fase “esplosiva”, lampi in banda ottica e ultravioletta oltre alle pulsazioni nei raggi X tipiche di questi corpi celesti. La scoperta, guidata da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica e basata anche su osservazioni effettuate con il Telescopio Nazionale Galileo, mette alla prova i modelli teorici che descrivono il comportamento delle pulsar in sistemi binari

Illustrazione di una pulsar in un sistema binario. Crediti: ESA

Si chiama SAX J1808.4-3658 ed è una pulsar, ovvero una stella di neutroni – quel che resta di stelle più massicce del Sole – che emette radiazione attraverso due coni di luce e ruota molto rapidamente, facendo sì che l’emissione appaia pulsante, come quella un faro. Ma non finisce qui. È una pulsar “al millisecondo”, cioè ruota ancora più veloce della maggior parte delle pulsar, completando ben 401 giri su sé stessa in un solo secondo, e per di più si trova in un sistema binario, orbitando insieme a un’altra stella alla quale sottrae regolarmente materia. Ma è anche un oggetto celeste decisamente incostante. Alterna infatti fasi di “quiescenza” a periodi più attivi o “esplosivi” ogni 3–4 anni: l’esplosione più recente, la nona dalla sua scoperta nel 1996, è stata registrata tra agosto e settembre 2019.

Durante la fase esplosiva, la luminosità di SAX J1808.4-3658 – ad oggi si conoscono una ventina di sistemi simili ad essa – aumenta significativamente sia in banda ottica e ultravioletta (UV) che nei raggi X, e inizia l’accrescimento: l’altra stella trasferisce materia e momento angolare alla pulsar attraverso un disco che si estende fino a pochi chilometri dalla sua superficie. Questo processo accelera la rotazione della pulsar e convoglia la materia in accrescimento sui suoi poli, dando origine a un segnale pulsato nei raggi X.

“Quando è stato annunciato l’inizio della nuova esplosione di SAX J1808.4-3658, ad agosto 2019, ci siamo chiesti se, oltre alle pulsazioni in banda X, il sistema potesse mostrare anche pulsazioni in banda ottica e ultravioletta”, spiega Arianna Miraval Zanon, dottoranda presso l’Università dell’Insubria e associata all’INAF di Milano, co-prima autrice insieme a Filippo Ambrosino, ricercatore all’INAF di Roma, dell’articolo pubblicato oggi sulla rivista Nature Astronomy. E la curiosità è stata premiata. “Per la prima volta abbiamo osservato nello stesso sistema, durante la fase esplosiva, pulsazioni con lo stesso periodo di rotazione della pulsar in tre bande diverse: X, UV e ottica”, aggiunge Ambrosino.

Fino ad allora, non erano mai state osservate pulsazioni in banda UV da pulsar in sistemi binari. In banda ottica, invece, le pulsazioni erano state viste soltanto in 5 pulsar isolate e in un solo sistema binario, PSR J1023+0038, quest’ultimo in un lavoro firmato dallo stesso Ambrosino e diversi co-autori del nuovo studio; si tratta però di un sistema diverso, che si trova in una fase intermedia, e che quindi somiglia a SAX J1808.4-3658 solo in parte.

UV ottico pulsar SAX J1808.4-3658
Lo strumento SiFAP2 installato al Telescopio Nazionale Galileo. Crediti: A. Ghedina

Lo studio si basa su osservazioni in banda UV effettuate con il telescopio spaziale Hubble e in banda ottica con il Telescopio Nazionale Galileo (TNG) dell’INAF a La Palma (Isole Canarie), equipaggiato con il fotometro ottico ad altissima risoluzione temporale e accuratezza assoluta SiFAP2, cruciale per la scoperta delle pulsazioni ottiche da questo sistema. Il primo prototipo dello strumento, SiFAP, era stato ideato e sviluppato da Franco Meddi insieme a Filippo Ambrosino, con l’ausilio di Paolo Cretaro al Dipartimento di Fisica della Sapienza Università di Roma, e già nel 2017 aveva permesso di rivelare le pulsazioni ottiche dall’altra pulsar menzionata, PSR J1023+0038. Grazie a successive collaborazioni con INAF, con lo stesso TNG e con l’Università di Catania (in particolare con Francesco Leone), lo strumento è stato migliorato prendendo il nome di SiFAP2, una nuova versione che consentirà di effettuare anche studi polarimetrici grazie ad un nuovo sistema di cubi polarizzatori.

Ma le nuove osservazioni pongono un dilemma: la luminosità delle pulsazioni misurate in banda ottica e UV è troppo elevata per essere spiegata, usando i modelli teorici esistenti, dall’accrescimento di materia sulla pulsar. “Il segnale ottico e UV pulsato potrebbe quindi essere prodotto nella magnetosfera della pulsar, o poco lontano da essa, ed essere alimentato dalla rotazione del dipolo magnetico della pulsar”, dice Miraval Zanon. “Se così fosse, potrebbero convivere o alternarsi molto rapidamente due meccanismi fisici diversi: da una parte l’accrescimento produrrebbe gli impulsi in banda X; dall’altra la pulsar, alimentata dalla sua stessa rotazione, riuscirebbe a generare impulsi in banda ottica e UV. Questo scenario sfida gli attuali modelli teorici secondo cui un meccanismo esclude l’altro”.

Un altro aspetto interessante sollevato dal nuovo studio è uno sfasamento significativo – pari a poco più di mezzo periodo di rotazione – osservato tra la pulsazione X e quella ottica. “Questo ha dato adito a diverse interpretazioni”, sottolinea Ambrosino, “la più suggestiva delle quali è senza dubbio la possibilità che l’emissione X pulsata provenga da uno dei due poli magnetici della pulsar, mentre la pulsazione ottica sia generata nel polo opposto. Questa è solo un’ipotesi, non possiamo dire nulla di veramente definitivo prima di avere una statistica più ampia sull’emissione ottica di queste sorgenti”.

In futuro, il gruppo ha in programma nuove osservazioni di questo sistema durante la fase quiescente con lo strumento SiFAP2, per indagare l’eventuale presenza di pulsazioni ottiche una volta diminuita la luminosità: questo aiuterà a comprendere meglio il meccanismo che le genera durante la fase esplosiva. Un piano sul più lungo termine, già approvato, prevede lo studio della prossima sorgente, tra le venti simili a questa, che entrerà in fase esplosiva, effettuando osservazioni simultanee nei raggi X con l’osservatorio dell’ESA XMM-Newton, in UV con Hubble e in ottico con il TNG.

Lo studio è stato pubblicato sulla rivista Nature Astronomy nell’articolo Optical and ultraviolet pulsed emission from an accreting millisecond pulsar di F. Ambrosino, A. Miraval Zanon, A. Papitto, F. Coti Zelati, S. Campana, P. D’Avanzo, L. Stella, T. Di Salvo, L. Burderi, P. Casella, A. Sanna, D. de Martino, M. Cadelano, A. Ghedina, F. Leone, F. Meddi, P. Cretaro, M. C. Baglio, E. Poretti, R. P. Mignani, D. F. Torres, G. L. Israel, M. Cecconi, D. M. Russell, M. D. Gonzalez Gomez, A. L. Riverol Rodriguez, H. Perez Ventura, M. Hernandez Diaz, J. J. San Juan, D. M. Bramich, F. Lewis

https://doi.org/10.1038/s41550-021-01308-0

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma