News
Ad
Ad
Ad
Tag

KaT

Browsing

La Grande macchia rossa di Giove: una tempesta anticiclonica dalla profondità “contenuta”

I nuovi risultati delle misurazioni di gravità del pianeta ottenute dalla sonda Juno rivelano, in uno studio pubblicato su Science, che la grande macchia rossa, pur molto estesa, non è profonda come si immaginava. Questa scoperta potrebbe spiegare i motivi della sua evoluzione e forse della possibile scomparsa.

grande macchia rossa Giove
L’animazione simula il moto delle nuvole della Grande Macchia Rossa di Giove. E’ stata creata applicando il modello del movimento dei venti ad un mosaico di immagini scattate dallo strumento. Credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt/Justin Cowart

Giove è il più grande pianeta del sistema solare, con un raggio equatoriale di 71.492 km, ed è composto principalmente da idrogeno ed elio e per questo viene definito “gigante gassoso”.

La caratteristica forse più iconica del pianeta è la Grande macchia rossa, una tempesta anticiclonica scoperta probabilmente da Giandomenico Cassini nel 1665. Oggi questa assomiglia a un ovale di dimensioni approssimativamente pari a 16000 x 12000 km, che ne fanno la più grande tempesta del sistema solare, seppur negli ultimi 100 anni, per cause ancora ignote, si sia ridotta considerevolmente. La Grande macchia rossa porta con sé ancora molti interrogativi: uno di questi riguarda la profondità con cui questa tempesta si inabissa dentro Giove.

A questo come ad altri quesiti sulla dimensione del nucleo ha risposto la sonda Juno, realizzata dalla NASA con un importante contributo italiano.

Rappresentazione artistica di Juno in orbita attorno a Giove. Crediti: Nasa/JPL-Caltech

Durante due sorvoli ravvicinati di Giove (febbraio e luglio 2019), la missione Juno della NASA (in orbita intorno a Giove dal 5 luglio 2016 per studiare i meccanismi di formazione, la struttura interna, la magnetosfera e l’atmosfera del gigante gassoso) ha osservato per la prima volta da vicino la Grande macchia rossa. Poiché l’interno del pianeta non è direttamente osservabile, per comprenderne la struttura più intima si ricorre a misurazioni accurate del campo gravitazionale, che è espressione della distribuzione della massa all’interno del pianeta.

grande macchia rossa Giove
Geometria delle osservazioni di Juno della Grande Macchia Rossa (GRS). Il campo di velocità della Grande Macchia Rossa (frecce nere) e le tracce a terra di Juno durante PJ18 e PJ21 (linee colorate) sono sovrimposte a una immagine della Grande Macchia Rossa effettuata da JunoCam durante PJ21. La quota della sonda durante il passaggio ravvicinato con la Grande Macchia Rossa (latitudine 20°S) era, rispettivamente per PJ18 e PJ21, di 13,000 km e 19,000 km, con scostamenti longitudinali di 11° e 2° 

Le misure del campo gravitazionale del pianeta avevano mostrato che i forti venti est-ovest (con velocità fino a 360 km/h), visibili tracciando il moto delle nubi, si spingono alla profondità di circa 3000 km.

Gli strati inferiori della Grande Macchia Rossa di Giove sono stati osservati da Juno anche usando i dati del radiometro a microonde (MWR). Ognuno dei sei canali dello strumento osserva diverse profondità sotto le nuvole

Oggi, una nuova ricerca, finanziata in parte dall’Agenzia Spaziale Italiana (ASI) e coordinata da Marzia Parisi, ex-dottoranda della Sapienza, ora post-doc al California Institute of Technology/Jet Propulsion Laboratory, insieme a un gruppo internazionale di cui fanno parte Daniele Durante e Luciano Iess del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, mostra come invece i venti della Grande macchina rossa abbiano una profondità di penetrazione verticale piuttosto contenuta, pari a circa 300 km, assai inferiore a quella dei venti che soffiano nelle bande visibili del pianeta. I risultati del lavoro sono stati pubblicati sulla rivista Science.

“I risultati del nostro studio – spiega Daniele Durante del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza – attestano una massa della tempesta pari a circa la metà dell’intera atmosfera terrestre e poco meno di quella di tutta l’acqua del Mar Mediterraneo, e rappresentano la Grande macchia rossa come un oggetto molto simile a un disco assai esteso (la sua dimensione minore è pari all’incirca al diametro della Terra) ma piuttosto sottile, con caratteristiche che ricordano quelle delle più grandi tempeste terrestri”.

grande macchia rossa Giove
Le dimensioni della Grande macchia rossa a confronto con la Terra. La profondità determinata dalle misure di gravità è di soli 300 km.

Con un’orbita molto eccentrica, la sonda Juno è riuscita ad avvicinarsi molto al gigante gassoso, fino a 4-5000 km al di sopra delle nubi: a queste distanze è possibile avere una elevata sensibilità all’accelerazione gravitazionale esercitata principalmente dalle strutture dell’atmosfera del pianeta. La sonda ha utilizzato lo strumento di radioscienza KaT (Ka-Band Translator, realizzato da Thales Alenia Space-I e finanziato dall’Agenzia spaziale italiana), il cuore dell’esperimento che ha permesso di determinare l’estensione verticale della Grande macchia rossa.

La Grande macchia rossa ha perturbato impercettibilmente l’orbita di Juno, ma l’estrema accuratezza della misura (fino a 0.01 mm/s) ha permesso di catturarne il debolissimo segnale gravitazionale e di stimare così la profondità a circa 300 km.

“Le misure di Juno – conclude Luciano Iess dello stesso Dipartimento – hanno fornito la terza dimensione a quel fenomeno dell’atmosfera di Giove che ha attratto l’attenzione di molti di noi, come anche quella degli astronomi da più di trecento anni, mostrando come sia una tempesta superficiale certamente molto estesa, ma ben poco profonda. Questa nuova misura contribuirà a capirne la natura, l’evoluzione e, forse, la sua possibile scomparsa”.

Riferimenti:

The depth of Jupiter’s Great Red Spot constrained by the Juno gravity overflights – Authors: M. Parisi, Y. Kaspi, E. Galanti, D. Durante, S. J. Bolton, S. M. Levin, D. R. Buccino, L. N. Fletcher, W. M. Folkner, T. Guillot, R. Helled, L. Iess, C. Li, K. Oudrhiri, M. H. Wong. Science 2021 DOI: 10.1126/science.abf1396

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Giove, il pianeta più grande del sistema solare

 

L’anima irrequieta dei pianeti

Il primo sorvolo di Mercurio della missione BepiColombo

Il 2 ottobre all’1.35 ora italiana la sonda spaziale passerà a 200 km dalla superficie del pianeta. A bordo un esperimento, il Mercury Orbiter Radioscience Experiment (MORE), sviluppato dal team guidato da Luciano Iess della Sapienza, che permetterà di determinare la gravità e l’orbita del corpo celeste più vicino al sole.

La sonda spaziale BepiColombo, lanciata il 20 ottobre 2018 dal Centro spaziale di Kourou nella Guyana francese, è in viaggio verso Mercurio, la sua destinazione finale. Il primo dei sei sorvoli del pianeta più vicino al Sole avverrà il 2 ottobre 2021 all’1.35 ora italiana (23.15 del primo ottobre, ora di Greenwich), quando la sonda passerà a 200 km dalla superficie.

BepiColombo ha già effettuato con successo un sorvolo della Terra, il 10 aprile 2020, e due sorvoli di Venere, il 20 ottobre 2020 e il 10 agosto 2021. Questi incontri ravvicinati hanno lo scopo primario di modificare la traiettoria della sonda, facendole acquistare velocità sufficiente per la cattura finale da parte della gravità di Mercurio, prevista per la fine del 2025. Ma allo stesso tempo sono anche un primo assaggio di quanto verrà poi osservato con assai maggiore dettaglio nella missione primaria, quando BepiColombo orbiterà attorno al pianeta per due anni.

Mercurio BepiColombo

BepiColombo nasce dalla collaborazione tra l’ESA (Agenzia Spaziale Europea) e la JAXA (Agenzia Spaziale Giapponese). Prende il nome dallo scienziato italiano Giuseppe (da cui Bepi) Colombo, che diede un contributo fondamentale allo studio di Mercurio. La sonda è composta da tre moduli principali: il modulo MPO (Mercury Planetary Orbiter) e il modulo MTM (Mercury Transfer Module) sviluppati dall’ESA, il terzo modulo MMO (Mercury Magnetospheric Orbiter) sviluppato dalla JAXA. Con la sofisticata strumentazione scientifica di bordo, BepiColombo vuole rispondere ad alcune domande fondamentali per comprendere la formazione e l’evoluzione del pianeta: qual è la sua struttura interna, dal nucleo alla superficie? Quali sono gli elementi e i minerali di cui è composto? Qual è l’origine del campo magnetico e come interagisce con il vento solare, un flusso di particelle alla velocità di 400 km/s?

Mercurio BepiColombo

Quattro dei sedici esperimenti scientifici di BepiColombo sono italiani. Tra questi, l’esperimento di radioscienza, MORE (Mercury Orbiter Radioscience Experiment), è guidato dal professor Luciano Iess del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, coadiuvato da un gruppo internazionale di scienziati e ingegneri. In Italia, collaborano le Università di Pisa e Bologna, l’Istituto Nazionale di Astrofisica (INAF) e l’Università d’Annunzio. Gli obiettivi scientifici di MORE sono la determinazione della struttura interna di Mercurio attraverso misure di precisione della gravità del pianeta, la ricerca di violazioni della teoria della relatività generale di Einstein e la dimostrazione in volo di un nuovo e avanzato sistema di navigazione spaziale.

Il primo sorvolo di Mercurio della missione BepiColombo. Immagine ESA

Mercurio è il pianeta più vicino al Sole, dove la curvatura dello spazio-tempo, prevista da Einstein nel 1915, è più accentuata. Tale curvatura produce “anomalie” nell’orbita del pianeta (tra cui la famosa precessione del perielio) e nella propagazione della luce e dei segnali radio (compresa la deflessione osservata durante l’eclisse solare del 1919). Circa un secolo dopo, MORE consentirà di verificare a un livello di precisione mai raggiunto finora se la relatività einsteniana rimane una teoria valida della gravità. I primi esperimenti di fisica fondamentale sono già cominciati nel marzo 2021 e proseguiranno fino alla fine della missione, nel 2027.

Mercurio BepiColombo

MORE si prefigge di raggiungere tali obiettivi scientifici tramite l’utilizzo di segnali radio scambiati tra grandi antenne di terra (34 m di diametro) ubicate in Argentina e California, e uno strumento di bordo, il KaT (Ka-band Transponder), realizzato da Thales Alenia Space Italia con la collaborazione del team di Sapienza e finanziato dall’Agenzia spaziale italiana. L’avanzato sistema radio renderà possibile misurare la distanza della sonda con precisione di pochi centimetri e la sua velocità a livello di alcuni millesimi di millimetro al secondo. I dati di un altro strumento italiano (Italian Spring Accelerometer – ISA) saranno utilizzati per misurare tutte quelle accelerazioni della sonda non riconducibili alla gravità, permettendo di ottenere una determinazione più precisa del moto della sonda.

Il ruolo fondamentale che svolge l’esperimento MORE all’interno della missione BepiColombo conferma Sapienza come un polo centrale della ricerca per le tematiche di struttura ed evoluzione planetaria, fisica fondamentale e sistemi di navigazione interplanetaria.

 

Testo, foto e video dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma