News
Ad
Ad
Ad
Tag

Istituto Nazionale di Astrofisica

Browsing

TOI-5800 b, TOI-5817 b E TOI-5795 b: TRE ESOPIANETI NETTUNIANI CALDI RIVELANO NUOVI INDIZI SULLA FORMAZIONE DEI SISTEMI PLANETARI

Un team internazionale guidato da ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università di Roma Tor Vergata ha confermato e caratterizzato tre nuovi esopianeti della categoria “Nettuniani caldi” — pianeti extrasolari con dimensioni e masse simili a quelle di Urano e Nettuno ma che si muovono intorno alle loro stelle su orbite molto più strette (pochi giorni invece di un centinaio di anni). Le scoperte sono state rese possibili grazie al programma Hot Neptune Initiative (HONEI) e alle misure di alta precisione effettuate con gli spettrografi HARPS all’Osservatorio La Silla dell’ESO in Cile e HARPS-N installato sul Telescopio Nazionale Galileo dell’INAF nelle Canarie, in Spagna, integrando i dati raccolti dal telescopio spaziale TESS della NASA.

Rappresentazione artistica di TOI-5800 b, l’esopianeta più eccentrico mai osservato all’interno del cosiddetto “deserto dei Nettuniani caldi”. Crediti: INAF
Rappresentazione artistica di TOI-5800 b, l’esopianeta più eccentrico mai osservato all’interno del cosiddetto “deserto dei Nettuniani caldi”. Crediti: INAF

Tra i tre pianeti spicca TOI-5800 b, il nettuniano più eccentrico mai osservato all’interno del cosiddetto “deserto dei Nettuniani caldi” — una regione dello spazio dove si riscontra una marcata scarsità di pianeti di dimensioni simili a quelle di Nettuno ma su orbite molto vicine alle proprie stelle, scarsità che può essere causata da diversi fenomeni, come la “migrazione planetaria”, in cui l’orbita dei pianeti viene modificata, l’evaporazione atmosferica che porta a una diminuzione delle loro dimensioni o l’interazione gravitazionale con altri corpi relativamente vicini. In particolare, questa “zona desertica” comprende pianeti con raggi da circa 3 a 7 volte quelli terrestri e periodi orbitali inferiori a pochi giorni.

Nato da una collaborazione tra ricercatori italiani e statunitensi, il programma HONEI ha come obiettivo quello di scoprire e misurare con grande precisione le masse e le altre proprietà fisiche e orbitali dei candidati “Nettuniani caldi” identificati dal satellite TESS. Tali misure permettono di selezionare i migliori target da puntare con i telescopi di nuova generazione come il James Webb Space Telescope, per determinare la composizione chimica delle atmosfere di questi pianeti. La capacità di misurare le masse con strumenti di alta precisione consente di confermare la natura planetaria di questi corpi e di valutare la loro evoluzione dinamica e strutturale. I primi risultati del programma HONEI sono stati presentati per la prima volta in due articoli scientifici appena accettati per la pubblicazione sulla rivista Astronomy & Astrophysics.

Rappresentazione artistica di TOI-5800 b, l’esopianeta più eccentrico mai osservato all’interno del cosiddetto “deserto dei Nettuniani caldi”. Crediti: INAF
Rappresentazione artistica di TOI-5800 b, l’esopianeta più eccentrico mai osservato all’interno del cosiddetto “deserto dei Nettuniani caldi”. Crediti: INAF

Come spiega Luca Naponiello, primo autore del primo articolo, ex studente di dottorato all’università di Roma Tor Vergata, ora post-doc INAF e fondatore del programma HONEI,

“TOI-5800 b è un sub-Nettuno molto vicino alla propria stella, con un periodo orbitale di soli 2,6 giorni. Ha un raggio di circa 2,5 volte quello terrestre e una massa di circa 9,5 volte quella terrestre. Ciò che ne testimonia l’unicità è l’elevata eccentricità orbitale, inusuale per pianeti con orbite così strette che, per effetto delle forze mareali, di norma si ‘circolarizzano’ rapidamente. Questa eccentricità lascia ipotizzare che il pianeta sia ancora in fase di migrazione orbitale o influenzato gravitazionalmente da un altro corpo celeste nel sistema, ancora da individuare. Inoltre, TOI-5800 b si sta progressivamente avvicinando alla sua stella, perdendo momento angolare, e in futuro potrebbe stabilizzarsi in una regione ancora più interna del deserto dei Nettuniani caldi”.

Rappresentazione artistica di un nettuniano caldo e della sua stella realizzata con software d’intelligenza artificiale. Crediti: INAF
TOI-5800 b, TOI-5817 b e TOI-5795 b: tre esopianeti nettuniani caldi rivelano nuovi indizi sulla formazione dei sistemi planetari. Rappresentazione artistica di un nettuniano caldo e della sua stella realizzata con software d’intelligenza artificiale. Crediti: INAF

Il secondo pianeta, classificato come TOI-5817 b, ha un’orbita più ampia di circa 15,6 giorni ed è ideale per studi atmosferici grazie alla luminosità della sua stella ospite.

In un secondo articolo del programma HONEI, con prima autrice Francesca Manni, dottoranda presso il dipartimento di Fisica dell’università di Roma Tor Vergata sotto la supervisione del professor Luigi Mancini, viene presentata la scoperta di TOI-5795 b, un “super-Nettuno caldo” in orbita con un periodo di 6,14 giorni attorno a una stella povera di metalli (ovvero di elementi più pesanti dell’idrogeno e dell’elio).

Francesca Manni spiega: “L’esopianeta è stato scoperto dal satellite TESS intorno alla stella TOI-5795, a circa 162 parsec (ossia circa 528 anni luce) dalla Terra. È stato poi osservato anche con lo spettrografo HARPS, per misurare le variazioni di velocità radiale e quindi stimare la massa del pianeta. La stella è un po’ più grande del Sole ma più povera di metalli. Il pianeta ha un’orbita molto stretta e circolare, e caratteristiche da ‘super-Nettuno caldo’, ovvero massa e raggio superiori a quelli di Nettuno, ma temperature elevate”.

E aggiunge: “Questo pianeta si inserisce al confine del deserto dei Nettuniani caldi e la sua orbita quasi circolare e la composizione stellare pongono sfide ai modelli di formazione planetaria attuali, suggerendo che dinamiche successive alla formazione abbiano modellato la sua configurazione attuale”.

Naponiello sottolinea: “Dopo la scoperta del pianeta ultra-denso TOI-1853 b, confermiamo l’interesse cruciale della comunità scientifica per il deserto dei Nettuniani caldi. Questi risultati gettano nuova luce sui processi di migrazione e perdita atmosferica, fondamentali per capire la formazione di questo tipo di mondi”.

Tali risultati, ottenuti mediante l’impiego di spettrografi di eccellenza gestiti con il coinvolgimento rilevante di INAF, pongono solide basi per il futuro studio delle atmosfere planetarie con il telescopio spaziale James Webb e con telescopi terrestri di nuova generazione come l’Extremely Large Telescope (ELT), e saranno fondamentali per comprendere la diversità dei sistemi planetari e la storia evolutiva del nostro stesso Sistema solare.

Riferimenti bibliografici:

L’articolo “The Hot-Neptune Initiative (HONEI). I. Two hot sub-Neptunes on a close-in eccentric orbit (TOI-5800b) and a farther-out circular orbit (TOI-5817b)”, di L. Naponiello et al., è stato accettato per la pubblicazione online sulla rivista Astronomy & Astrophysics.

L’articolo “The Hot Neptune Initiative (HONEI) II. TOI-5795 b: A hot super-Neptune orbiting a metal-poor star”, di F. Manni et al., è stato accettato per la pubblicazione online sulla rivista Astronomy & Astrophysics.

Testi e immagini dagli Uffici Stampa dell’Università degli Studi di Roma Tor Vergata  e dell’Istituto Nazionale di Astrofisica – INAF

LA VERA ETÀ DI GIOVE RIVELATA DA GOCCE DI ROCCIA FUSA – Uno studio INAF e Università di Nagoya svela come la nascita del gigante gassoso abbia innescato la formazione delle condrule nei meteoriti, permettendo di datare con precisione la nascita di Giove, avvenuta 1,8 milioni di anni dopo l’inizio del Sistema solare.

Un nuovo studio guidato da ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università di Nagoya ha dimostrato che la nascita del pianeta Giove ha innescato la formazione delle condrule nei meteoriti, permettendo di stabilire che il corpo celeste si è formato 1,8 milioni di anni dopo l’inizio del Sistema solare.

Schema che mostra come la gravità di Giove ha causato collisioni tra planetesimi che hanno poi fuso la roccia in goccioline, disperse dal vapore acqueo in espansione. Crediti: Diego Turrini e Sin-iti Sirono
Uno studio chiarisce in dettaglio il processo di formazione delle condrule e, grazie a ciò, riusce a datare con precisione la nascita di Giove: lo studio è pubblicato su Scientific Reports. Schema che mostra come la gravità di Giove ha causato collisioni tra planetesimi che hanno poi fuso la roccia in goccioline, disperse dal vapore acqueo in espansione. Crediti: Diego Turrini e Sin-iti Sirono

Quattro miliardi e mezzo di anni fa, Giove crebbe rapidamente fino a raggiungere la sua enorme massa, quella che oggi gli conferisce il primato di pianeta più grande del Sistema solare. La sua potente forza di attrazione gravitazionale sconvolse le orbite di piccoli corpi rocciosi e ghiacciati, simili agli odierni asteroidi e comete e noti come planetesimi. Queste perturbazioni provocarono collisioni a velocità dell’ordine di diversi chilometri al secondo, capaci di fondere le rocce e le polveri contenute in questi “piccoli” oggetti celesti. Il materiale fuso si frammentò in goccioline incandescenti di silicato – le condrule (o condri) – che oggi troviamo conservate nei meteoriti e chiamate, appunto, condriti.

Ora, due ricercatori hanno per la prima volta chiarito in dettaglio il processo di formazione di queste goccioline e, grazie a ciò, sono riusciti a datare con precisione la nascita di Giove. Lo studio, pubblicato oggi su Scientific Reports, mostra che le caratteristiche delle condrule – in particolare le loro dimensioni e le velocità di raffreddamento – sono spiegabili grazie all’acqua contenuta nei planetesimi impattanti. Questo risultato risolve un enigma di lunga data e dimostra che la formazione delle condrule è stata una conseguenza diretta della nascita dei pianeti.

“Il legame genetico tra la formazione di Giove e delle condrule determina che il pianeta si sia formato 1,8 milioni di anni dopo l’epoca delle cosiddette inclusioni ricche di calcio e alluminio (ossia l’inizio della storia del nostro sistema planetario, ndr), anticipando di 1-3 milioni di anni la formazione del pianeta gigante rispetto alle datazioni precedenti”, afferma Diego Turrini, coautore dell’articolo e primo ricercatore INAF.

Le condrule sono piccole sfere, di dimensioni tra 0,1 e 2 millimetri, che si sono formate durante le prime fasi del Sistema solare e sono state incorporate negli asteroidi in formazione. Nel corso del tempo, frammenti di questi asteroidi sono caduti sulla Terra come meteoriti. La loro forma tondeggiante ha costituito un mistero per decenni.

“Una delle principali teorie per la loro formazione è la fusione di rocce durante impatti e la successiva solidificazione di gocce di materiale fuso nella nebulosa solare”, spiega Turrini. “I modelli precedenti o non erano in grado di spiegare caratteristiche delle condrule come il rapido raffreddamento o le piccole dimensioni, oppure richiedevano condizioni molto particolari durante la formazione del Sistema solare”.

“Quando questi antichi planetesimi si scontravano, l’acqua contenuta al loro interno vaporizzava istantaneamente generando espansioni di vapore simili a piccole esplosioni. Questo processo frantumava e raffreddava la roccia silicatica fusa in gocce molto piccole, dando origine alle condrule che oggi osserviamo nei meteoriti”, spiega Sin-iti Sirono, coautore dello studio e docente presso la Graduate School of Earth and Environmental Sciences dell’Università di Nagoya in Giappone. “ll modello descritto nel nostro lavoro riesce a spiegare l’esistenza e le caratteristiche delle condrule grazie a un processo naturale, ossia l’evaporazione ed espansione dei ghiacci cometari, in risposta a fenomeni altrettanto naturali avvenuti in concomitanza con la formazione di Giove nella nebulosa solare, senza richiedere condizioni speciali”.

I due ricercatori sono arrivati a queste conclusioni grazie alla combinazione di simulazioni dinamiche e collisionali dettagliate, studiando come la rapida crescita della forza di gravità di Giove durante la sua formazione abbia causato impatti ad alta velocità tra planetesimi rocciosi e ricchi d’acqua e come l’interazione tra il materiale roccioso fuso e il ghiaccio evaporato formatisi in seguito a questi impatti abbia generato le condrule.

“I risultati sono sorprendenti”, commenta ancora Turrini. “Le caratteristiche e la quantità di condrule generate in queste simulazioni sono in accordo con i dati provenienti dai meteoriti. Inoltre, la produzione massima di condrule coincide con la fase di rapida acquisizione di gas da parte di Giove, che ha portato alla sua enorme massa. Poiché i dati dei meteoriti indicano che la formazione di condrule ebbe il picco 1,8 milioni di anni dopo l’inizio del Sistema solare, possiamo affermare di aver riconosciuto con precisione anche il momento della nascita di Giove”.

Lo studio getta luce sul processo di formazione del nostro sistema planetario, ma la durata limitata della produzione di condrule causata da Giove spiega anche perché nei meteoriti si trovano condrule di età diverse. Probabilmente pianeti giganti come Saturno hanno innescato eventi simili alla loro nascita. Analizzando i condriti di differenti epoche si potrà dunque ricostruire la sequenza di nascita dei pianeti e la storia evolutiva del Sistema solare.

Riferimenti bibliografici:

Sirono, Si., Turrini, D. Chondrule formation by collisions of planetesimals containing volatiles triggered by Jupiter’s formation, Sci Rep 15, 30919 (2025), DOI: https://doi.org/10.1038/s41598-025-12643-x

Articoli correlati:

Giove, il pianeta più grande del sistema solare

 

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF.

Da Pantelleria a Marte: in un lago siciliano si sperimenta l’origine della vita

Nell’isola siciliana, un team di ricercatori italiani ha identificato un ambiente naturale con analogie geologiche con Marte e che potrebbe simulare anche le condizioni della Terra primordiale. Lo studio, pubblicato sull’International Journal of Molecular Sciences, è frutto della collaborazione tra Consiglio nazionale delle ricerche (CNR), Istituto nazionale di astrofisica (INAF) e le Università della Tuscia e Sapienza di Roma, finanziato dall’Agenzia Spaziale Italiana (ASI).
In una lettera del 1871 al suo amico Joseph Dalton Hooker, Charles Darwin ipotizzava che la vita potesse essere nata in ‘un piccolo stagno caldo’. Oggi, a oltre 150 anni di distanza, quell’ipotesi trova maggiori conferme grazie allo studio che un team interdisciplinare di scienziati italiani ha effettuato sull’isola di Pantelleria, in particolare presso il piccolo lago termale chiamato ‘Bagno dell’Acqua’: Questo luogo si è rivelato un laboratorio naturale ideale per simulare ambienti simili a quelli che potrebbero essere esistiti miliardi di anni fa sia sulla Terra che su Marte, offrendo preziosi indizi sui meccanismi universali dell’origine della vita.
Immagine satellitare con esperimenti
Immagine satellitare con esperimenti

La ricerca, pubblicata sull’International Journal of Molecular Sciences, è stata condotta da ricercatori e ricercatrici del Consiglio nazionale delle ricerche (CNR), dell’Università della Tuscia, dell’Istituto nazionale di astrofisica (INAF), dell’Università Sapienza di Roma, con la collaborazione dell’Ente Parco nazionale Isola di Pantelleria e finanziata dall’Agenzia spaziale italiana (ASI)  con i progetti ‘ExoMars’ e ‘Migliora’.

“Il lago ‘Bagno dell’Acqua’ si distingue per la combinazione unica di alta alcalinità, attività idrotermale, diversità mineralogica e attività microbica. Utilizzando l’acqua del lago, ricca di minerali, siamo riusciti a sintetizzare molecole di RNA (una delle due molecole, assieme al DNA, fondamentali per la vita) a partire da alcuni suoi precursori: i nucleotidi contenenti la guanina, una delle quattro famose basi azotate”,
spiega Giovanna Costanzo, biologa molecolare dell’Istituto di biologia e patologia molecolari del CNR (CNR-IBPM).
“A Pantelleria, in un’ambiente esterno al laboratorio, dove solitamente si svolgono le nostre attività, abbiamo verificato la possibilità di condurre esperimenti di astrobiologia, sfruttando le proprietà chimiche e fisiche di un lago con caratteristiche simili sia a quelle ipotizzate per la Terra primitiva, ovvero il nostro pianeta circa 4,5 miliardi di anni fa, che a quelle rilevate in aree marziane di grande interesse astrobiologico, come il cratere Jezero e la regione di Oxia Planum, attualmente considerati prioritari per la ricerca di antiche forme di vita”.
I ricercatori sono riusciti a sintetizzare non solo l’RNA, ma anche tutte le basi azotate presenti sia nel DNA che nell’RNA.
“Inoltre, sono stati ottenuti anche componenti del PNA (Acido Peptidico Nucleico), un potenziale precursore degli attuali acidi nucleici, che potrebbe aver rappresentato un ponte tra genetica e metabolismo” spiega il chimico organico Raffaele Saladino dell’Università della Tuscia di Viterbo. “La vita, pertanto, avrebbe potuto avere una modalità di origine chimica comune sia nel lontano passato di Marte che sulla Terra primitiva”.
Il progetto Migliora (‘Modeling Chemical Complexity: all’Origine di questa e di altre Vite per una visione aggiornata delle missioni spaziali’) si inserisce all’interno di un programma nazionale di astrobiologia che Asi sta coordinando già dal 2020.
“I risultati di questo progetto costituiscono un tassello fondamentale nella conoscenza dell’origine della vita sulla Terra” sottolinea Claudia Pacelli, Responsabile Scientifico del progetto per Asi. “Riteniamo che queste ricerche contribuiranno inoltre a rafforzare il ruolo della comunità scientifica italiana nel contesto della ricerca astrobiologica internazionale”.
microbialite Pantelleria
microbialite Pantelleria
Riferimenti bibliografici:
Valentina Ubertini, Eleonora Mancin, Enrico Bruschini, Marco Ferrari, Agnese Piacentini, Stefano Fazi, Cristina Mazzoni, Bruno Mattia Bizzarri, Raffaele Saladino, Giovanna Costanzo, “The “Bagno dell’Acqua” Lake as a Novel Mars-like Analogue: Prebiotic Syntheses of PNA and RNA Building Blocks and Oligomers”, International Journal of Molecular Sciences, 2025, 26, 6952. https://doi.org/10.3390/ijms26146952
Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma
L’Italia al centro della rivoluzione tecnologica, con l’Alleanza Quantistica Italiana

L’intesa nazionale, che coinvolge otto atenei e centri di ricerca, nasce per promuovere le eccellenze italiane nel campo delle tecnologie quantistiche, grazie a un ecosistema coeso, capace di competere a livello internazionale, in linea con la nuova Strategia Italiana per le Scienze e Tecnologie Quantistiche.

 

L’Italia protagonista della rivoluzione quantistica. È la visione da cui prende vita l’Alleanza Quantistica Italiana (AQI), un’intesa nazionale che riunisce università e istituti di ricerca, industrie e istituzioni pubbliche per creare un ecosistema unitario e coeso, capace di competere a livello internazionale e promuovere l’eccellenza italiana nel campo delle tecnologie quantistiche.
L’Alleanza, che si muove in linea con la nuova Strategia Italiana per le Scienze e Tecnologie Quantistiche, coinvolge al momento otto partner: Università di Bologna, CINECA, INRIM – Istituto Nazionale di Ricerca Metrologica, Università di Padova, INAF – Istituto Nazionale di Astrofisica, INFN – Istituto Nazionale di Fisica Nucleare, Università di Pavia e Politecnico di Milano.
Altri soggetti hanno manifestato interesse per l’iniziativa e l’Associazione sta già raccogliendo nuove adesioni da tutte le istituzioni rilevanti, in modo da ampliare l’Alleanza e avere una voce comune nel costruire l’ecosistema futuro.
Quello della quantistica è un settore di frontiera e in rapido sviluppo, che promette di dare vita a nuove tecnologie strategiche, con impatti potenzialmente rivoluzionari in campo industriale ed economico, nel settore della formazione e per lo sviluppo sociale. Si parla di innovazioni come computer quantistici, comunicazioni quantistiche sicure e sensoristica quantistica di precisione, reti quantistiche e applicazioni nel mondo quantistico dell’intelligenza artificiale.
In questa prospettiva, l’Alleanza Quantistica Italiana nasce per promuovere le eccellenze nazionali nel campo delle tecnologie quantistiche, integrando mondo accademico, scientifico, industriale e istituzionale in un’unica visione strategica. L’obiettivo è evitare la frammentazione delle risorse, superare le inefficienze operative e garantire che l’Italia possa contribuire come attore di primo piano alla nascita delle tecnologie quantistiche più avanzate al mondo.
A pochi giorni dall’annuncio della nuova Strategia Europea e della prima Strategia Italiana per le Scienze e Tecnologie Quantistiche, l’Alleanza Quantistica Italiana si posiziona come attore centrale. Un soggetto aperto al contributo di tutte le accademie, enti di ricerca e attori del settore privato che, con le loro competenze ed eccellenze, vogliano contribuire al panorama italiano in maniera integrata, creando sinergie strategiche per lo sviluppo di progetti, la formazione delle competenze e la promozione del trasferimento tecnologico.
Testo dall’Ufficio Stampa Istituto Nazionale di Astrofisica –  INAF

PSR J1023+0038, TRA GLI ALTI E BASSI DI UNA PULSAR: IL SEGRETO È NELLA SUA POLARIZZAZIONE

Un team internazionale guidato dall’Istituto Nazionale di Astrofisica ha misurato per la prima volta la polarizzazione della luce emessa da una pulsar al millisecondo transizionale in tre diverse bande dello spettro elettromagnetico. Lo studio, pubblicato su The Astrophysical Journal Letters, indica che l’emissione è dominata dal vento di particelle prodotto della pulsar e non dalla materia che la pulsar stessa sta risucchiando alla sua stella compagna.

Rappresentazione artistica delle regioni centrali del sistema PSR J1023+0038, che mostra la pulsar, il disco di accrescimento interno e il vento della pulsar. Crediti: Marco Maria Messa (Università di Milano e INAF) e Maria Cristina Baglio (INAF)
Rappresentazione artistica delle regioni centrali del sistema PSR J1023+0038, che mostra la pulsar, il disco di accrescimento interno e il vento della pulsar. Crediti: Marco Maria Messa (Università di Milano e INAF) e Maria Cristina Baglio (INAF)

Un team internazionale, guidato dall’Istituto Nazionale di Astrofisica (INAF), ha individuato nuove prove su come le pulsar al millisecondo transizionali, una particolare classe di resti stellari, interagiscono con la materia circostante. Il risultato, pubblicato su The Astrophysical Journal Letters, è stato ottenuto grazie a osservazioni effettuate con l’Imaging X-ray Polarimetry Explorer (IXPE) della NASA, il Very Large Telescope (VLT) dell’European Southern Observatory (ESO) in Cile e il Karl G. Jansky Very Large Array (VLA) nel New Mexico: si tratta di una delle prime campagne osservative di polarimetria multi-banda mai realizzate su una sorgente binaria a raggi X, coprendo simultaneamente le bande X, ottica e radio.

La missione spaziale IXPE in preparazione prima del lancio. Crediti: NASA
La missione spaziale IXPE in preparazione prima del lancio. Crediti: NASA

La sorgente analizzata è PSR J1023+0038, una cosiddetta pulsar al millisecondo transizionale. Questi oggetti sono particolarmente interessanti perché alternano fasi in cui si comportano come pulsar “canoniche” – ovvero stelle di neutroni isolate che ruotano su sé stesse centinaia di volte in un secondo, emettendo fasci di luce pulsata – a fasi in cui attraggono e accumulano materia da una stella compagna vicina, formando un disco di accrescimento visibile nei raggi X.

“Le pulsar al millisecondo transizionali sono laboratori cosmici che ci aiutano a capire come le stelle di neutroni evolvono nei sistemi binari”, spiega Maria Cristina Baglio, ricercatrice INAF e prima autrice dello studio. “J1023 è una sorgente particolarmente preziosa di dati perché transita chiaramente tra il suo stato attivo, in cui si nutre della stella compagna, e uno stato più dormiente, in cui si comporta come una pulsar standard emettendo onde radio rilevabili. Durante le osservazioni, la pulsar era in una fase attiva a bassa luminosità, caratterizzata da rapidi cambiamenti tra diversi livelli di luminosità in raggi X”.

Maria Cristina Baglio
Maria Cristina Baglio

In questo studio, per la prima volta, si è misurata simultaneamente la polarizzazione della luce emessa da questa sorgente in tre bande dello spettro elettromagnetico: raggi X (con IXPE), luce visibile (con il VLT) e onde radio (con il VLA). In particolare, IXPE ha rilevato un livello di polarizzazione nei raggi X di circa il 12%, il più elevato mai osservato finora in un sistema binario come quello di J1023. Nella banda ottica, la sorgente mostra una polarizzazione più bassa (circa 1%), ma con un angolo perfettamente allineato a quello della radiazione X, suggerendo una comune origine fisica. Nelle onde radio, invece, è stato fissato un limite massimo di polarizzazione di circa il 2%.

“Questa osservazione, data la bassa intensità del flusso X, è stata estremamente impegnativa, ma la sensibilità di IXPE ci ha permesso di rilevare e misurare con sicurezza questo notevole allineamento tra la polarizzazione ottica e quella nei raggi X”, afferma Alessandro Di Marco, ricercatore INAF e co-autore del lavoro. “Questo studio rappresenta un modo ingegnoso per testare scenari teorici grazie a osservazioni polarimetriche su più lunghezze d’onda”.

I risultati confermano una previsione teorica pubblicata nel 2023 da Maria Cristina Baglio e Francesco Coti Zelati, ricercatore presso l’Istituto di scienze spaziali di Barcellona, Spagna e co-autore dello studio, secondo cui l’emissione polarizzata osservata sarebbe generata dall’interazione tra il vento della pulsar e la materia del disco di accrescimento. La forte polarizzazione nei raggi X prevista, tra il 10 e il 15%, è stata effettivamente rilevata, confermando il modello teorico. Si tratta di un’indicazione chiara che le pulsar al millisecondo transizionali sono alimentate principalmente dalla rotazione e dal vento relativistico della pulsar, piuttosto che dal solo accrescimento di materia dalla stella compagna.

Capire cosa alimenta davvero queste stelle ultra-compatte, che alternano due nature profondamente diverse, rappresenta un passo fondamentale per decifrare il comportamento della materia e dell’energia in condizioni estreme. Questo studio porta la comunità scientifica un passo più vicino a comprendere meccanismi universali che regolano fenomeni come i getti dei buchi neri e le nebulose da vento di pulsar.

Riferimenti bibliografici:

L’articolo “Polarized multiwavelength emission from pulsar wind – accretion disk interaction in a transitional millisecond pulsar”, di M. C. Baglio, F. C. Zelati, A. Di Marco, F. La Monaca, A. Papitto, A. K. Hughes, S. Campana, D. M. Russell, D. F. Torres, F. Carotenuto, S. Covino, D. De Martino, S. Giarratana, S. E. Motta, K. Alabarta, P. D’Avanzo, G. Illiano, M. M. Messa, A. M. Zanon e N. Rea, è stato pubblicato online sulla rivista Astrophysical Journal Letters.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF.

KiDS J0842+0059: SCOPERTA GALASSIA FOSSILE A TRE MILIARDI DI ANNI LUCE

Grazie a osservazioni ad altissima risoluzione con il Large Binocular Telescope in Arizona, un team guidato dall’Istituto Nazionale di Astrofisica (INAF) ha confermato l’esistenza di una galassia rimasta praticamente immutata per circa sette miliardi di anni: un autentico fossile cosmico che permette di studiare la formazione delle prime galassie nella storia dell’universo.

Nel corso della storia del cosmo, le galassie tendono a crescere ed evolvere attraverso la fusione con altre galassie. Ma esistono dei rari esemplari che si comportano come una capsula del tempo: queste galassie, dette fossili o relitti (in inglese, relic), si sono formate molto rapidamente nelle primissime fasi dell’universo, producendo la quasi totalità delle loro stelle in meno di tre miliardi di anni dopo il Big Bang, e da allora sono rimaste praticamente intatte. Alle osservazioni si presentano con un aspetto denso e compatto, popolate da stelle ricche di elementi pesanti, e senza alcun segno di formazione stellare in corso.

Un nuovo studio ha ora osservato la galassia relic più lontana mai scoperta: un fossile cosmico, rimasto immutato per circa 7 miliardi di anni. Si chiama KiDS J0842+0059 ed è la prima galassia fossile massiccia confermata al di fuori dell’universo locale, attraverso osservazioni spettroscopiche e immagini ad alta risoluzione.

La scoperta, realizzata da un team internazionale di ricercatori e ricercatrici guidato dall’Istituto Nazionale di Astrofisica (INAF), è stata resa possibile grazie al Large Binocular Telescope (LBT), telescopio gestito da Italia, Germania e Stati Uniti sulla sommità del Monte Graham, in Arizona. I risultati sono pubblicati nell’edizione di luglio della rivista Monthly Notices of the Royal Astronomical Society.

“Abbiamo scoperto una galassia ‘perfettamente conservata’ da miliardi di anni, un vero reperto archeologico che ci racconta come nascevano le prime galassie e ci aiuta a capire come si è evoluto l’universo fino a oggi”, spiega Crescenzo Tortora, ricercatore INAF e primo autore del lavoro. “Le galassie fossili sono come i dinosauri dell’universo: studiarle ci permette di comprendere in quali condizioni ambientali si sono formate e come si sono evolute le galassie più massicce che vediamo oggi”.

La galassia, che osserviamo com’era circa tre miliardi di anni fa, era stata inizialmente identificata nel 2018 all’interno del progetto KiDS (Kilo Degree Survey), una survey pubblica dello European Southern Observatory (ESO) realizzata dal telescopio italiano VST (VLT Survey Telescope) che si trova all’Osservatorio di Paranal, in Cile. Le immagini KiDS hanno fornito una stima della massa e delle dimensioni della galassia, le cui proprietà sono state ulteriormente caratterizzate mediante osservazioni con lo strumento X-Shooter sul Very Large Telescope dell’ESO, anch’esso in Cile. Tutte le sue caratteristiche sembravano indicare che si trattasse di una galassia fossile: dalla massa stellare, pari a circa cento miliardi di masse solari, alla formazione stellare, assente per gran parte della vita della galassia, fino alle dimensioni, più compatte rispetto a quelle di galassie con pari massa stellare.

Sulle dimensioni e la struttura della galassia, tuttavia, restavano alcune incertezze. Per confermare la compattezza della galassia, sono state cruciali nuove osservazioni realizzate con il Large Binocular Telescope (LBT), in grado di ottenere immagini molto più nitide grazie al sistema SOUL di ottica adattiva, che compensa in tempo reale gli effetti della turbolenza atmosferica. Le osservazioni della galassia KiDS J0842+0059 raccolte con LBT hanno un grado di dettaglio dieci volte superiore rispetto ai dati della survey KiDS: sono le immagini più dettagliate di una galassia relic a questa distanza e consentono di studiarne forma e dimensioni come mai prima d’ora.

“I dati del Large Binocular Telescope ci hanno permesso di confermare che KiDS J0842+0059 è effettivamente compatta e quindi una vera galassia relic, con una forma simile a NGC 1277 e alle galassie compatte che osserviamo nelle prime fasi dell’universo”, spiega la coautrice Chiara Spiniello, ricercatrice all’Università di Oxford, associata INAF e principal investigator del progetto INSPIRE, che ha contribuito alla caratterizzazione delle proprietà di questa galassia. Fino ad oggi, NGC 1277 era uno dei pochi prototipi confermati di questa rara classe di galassie. “È la prima volta che riusciamo a farlo con dati di così alta risoluzione per una galassia relic così distante”.

L’esistenza di galassie relic massicce come KiDS J0842+0059 oppure NGC 1277 dimostra che alcune galassie possono formarsi rapidamente, restare compatte, e poi rimanere inerti per miliardi di anni, sfuggendo alla crescita che ha interessato la maggior parte delle loro controparti attraverso fusioni con altre galassie.

“Studiare questi fossili cosmici ci aiuta a ricostruire la storia di formazione dei nuclei delle galassie massicce odierne, che — a differenza delle galassie relic — hanno subito processi di fusione, accrescendo materia proprio attorno a quelle prime galassie (compatte) dalle quali si sono originate”, conclude Tortora. “Con tecnologie all’avanguardia come l’ottica adattiva e il supporto di telescopi come LBT, possiamo migliorare la nostra comprensione di questo tipo di galassie. Nel futuro prossimo, inoltre, faremo un passo in avanti, puntando a cercare, confermare e studiare nuove galassie relic attraverso i dati di qualità e risoluzione unica del telescopio spaziale Euclid”.

 La galassia relic KiDS J0842+0059, osservata con il VST nell’ambito della survey KiDS (a sinistra) e con il Large Binocular Telescope (a destra). Crediti: C. Tortora/INSPIRE/VST/ESO/LBT
La galassia relic KiDS J0842+0059, osservata con il VST nell’ambito della survey KiDS (a sinistra) e con il Large Binocular Telescope (a destra). Crediti: C. Tortora/INSPIRE/VST/ESO/LBT

Per ulteriori informazioni:

L’articolo “INSPIRE: INvestigating Stellar Populations In RElics – IX. KiDS J0842 + 0059: the first fully confirmed relic beyond the local Universe”, di C. Tortora, G. Tozzi, G. Agapito, F. La Barbera, C. Spiniello, R. Li, G. Carlà, G. D’Ago, E. Ghose, F. Mannucci, N. R. Napolitano, E. Pinna, M. Arnaboldi, D. Bevacqua, A. Ferrè-Mateu, A. Gallazzi, J. Hartke, L. K. Hunt, M. Maksymowicz-Maciata, C. Pulsoni, P. Saracco, D. Scognamiglio e M. Spavone, è stato pubblicato sulla rivista Monthly Notices of the Royal Astronomical Society.

Testo, video e immagine dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF.

INTEGRAL E IL MISTERO DELL’ORIGINE DEL LITIO: SCOPERTA LA TRACCIA DEL BERILLIO NELL’ESPLOSIONE DI UNA NOVA, QUELLA RELATIVA A V1369 CENTAURI

Per la prima volta, un team internazionale guidato dall’Istituto Nazionale di Astrofisica (INAF) ha rilevato direttamente, nei raggi gamma, la firma del Berillio-7 prodotta durante un’esplosione di nova. Poiché questo isotopo decade in Litio, la scoperta conferma il ruolo delle Novae come principale sorgente di Litio nella Via Lattea. Il risultato, ottenuto grazie ai dati del satellite INTEGRAL e pubblicato sulla rivista Astronomy & Astrophysics, contribuisce a risolvere un mistero astrofisico decennale.

Un team internazionale di astronomi a guida dell’Istituto Nazionale di Astrofisica (INAF) ha osservato direttamente per la prima volta la produzione di berillio-7 durante l’esplosione di una nova (dal latino stella nova, a indicare un nuovo astro apparso all’improvviso nel cielo). Il berillio-7 è un isotopo instabile che decade nel corso di circa 53 giorni, trasformandosi in un altro elemento, il litio: la sua identificazione rappresenta un passo decisivo verso la comprensione della genesi del litio nell’universo. La scoperta, basata su osservazioni del satellite INTEGRAL dell’Agenzia Spaziale Europea (ESA) e pubblicata sulla rivista Astronomy & Astrophysics, fornisce una prova diretta e indipendente del ruolo cruciale delle nove come “fabbriche di litio”, il terzo elemento più leggero della tavola periodica.

Il segnale osservato nei raggi gamma è associato all’esplosione della stella V1369 Centauri, registrata nel dicembre 2013. Grazie all’analisi dettagliata dei dati raccolti dallo spettrometro SPI, a bordo del satellite europeo, il gruppo di ricerca ha identificato una debole ma significativa emissione gamma con energia di 478 KeV, emessa dal berillio-7 prima del suo decadimento, e considerata la firma inequivocabile della presenza di questo elemento tra i prodotti dell’esplosione. Una volta terminato il processo di decadimento, tutto il berillio prodotto si trasformerà in litio, con un’abbondanza calcolata perfettamente compatibile con quella stimata dalle osservazioni ottiche della stessa nova effettuate nel 2015.

Una nova è un sistema binario in cui una nana bianca – il prodotto finale della vita di una stella come il Sole – sottrae idrogeno alla propria compagna, un’altra stella di piccola massa. Quando l’idrogeno si accumula sulla superficie della nana bianca, innesca una serie di  reazioni termonucleari, provocando un’esplosione in grado di aumentare la luminosità del sistema fino a 100mila volte. Nonostante tempi evolutivi brevi, dell’ordine di giorni o settimane, questi eventi, che si verificano circa 30 volte l’anno nella Via Lattea, espellono quantità significative di gas, contribuendo all’evoluzione chimica della nostra galassia. L’origine del litio rappresenta da decenni un problema aperto dell’astrofisica. Sebbene sia noto che una piccola parte del litio presente nell’universo odierno si sia formata nei primi minuti dopo il Big Bang, l’abbondanza osservata nelle stelle più antiche della Via Lattea è molto più bassa di quanto previsto dai modelli cosmologici (enigma noto come il “problema del litio primordiale”), mentre quella nelle stelle giovani è sorprendentemente più alta (“problema del litio galattico”).

“Osservazioni ottiche precedenti avevano stimato la quantità tipica di berillio-7 prodotta dalle esplosioni di novae”, commenta Luca Izzo, primo autore dell’articolo e ricercatore INAF. “Inizialmente, la distanza stimata di V1369 Centauri rendeva improbabile la rilevazione della riga a 478 keV. Ma grazie al satellite Gaia, abbiamo scoperto che la nova era molto più vicina (circa 3200 anni luce) di quanto stimato in precedenza, rendendo possibile la rilevazione da parte di INTEGRAL. Analizzando i dati di INTEGRAL, raccolti circa 25 giorni dopo l’esplosione, abbiamo trovato un eccesso alla frequenza di 478 keV. Misure accurate dell’intensità di questa riga indicano una quantità di berillio-7 che, una volta decaduto in litio, risulta perfettamente coerente con l’abbondanza di litio misurata tramite osservazioni spettroscopiche nell’ottico e nel vicino ultravioletto, sia in questa nova che, più in generale, in altre novae in cui è stato rilevato litio”.

“Il problema dell’origine del litio ha sfidato gli astrofisici per decenni. Già cinquant’anni fa, teorici come Arnould, Norgaard e Starrfield ipotizzarono che le novae potessero essere la sua sorgente principale”, afferma Massimo della Valle, tra gli autori del lavoro e associato INAF. “Francesca D’Antona e Francesca Matteucci recepirono per prime questa intuizione nei loro modelli di evoluzione chimica della Via Lattea, mostrando che il contributo delle novae era essenziale. L’osservazione della riga a 478 keV è la prova dell’esistenza del berillio-7 negli inviluppi delle novae. Sebbene il rapporto segnale/rumore sia modesto, il fatto che l’emissione sia stata osservata in coincidenza temporale con l’esplosione della nova, esattamente all’energia prevista e con l’intensità attesa, rende altamente improbabile una coincidenza casuale, portando la significatività statistica ben oltre i 3 sigma”.

Rappresentazione artistica di un sistema binario, progenitore di una nova classica, dove la componente primaria, una nana bianca, accresce materia da una compagna evoluta. Crediti: Nasa / ESA L. Hustak (STScI)
Grazie al satellite Integral, novità circa l’origine del litio: scoperta firma del berillio-7 nell’esplosione della nova di V1369 Centauri. Rappresentazione artistica di un sistema binario, progenitore di una nova classica, dove la componente primaria, una nana bianca, accresce materia da una compagna evoluta. Crediti: Nasa / ESA L. Hustak (STScI)

Per ulteriori informazioni:

L’articolo “Possible evidence for the 478 keV emission line from 7Be decay during the outburst phases of V1369 Cen”, di Izzo L., Siegert T., Jean P., Molaro P., Bonifacio P., Della Valle M. e Parsotan T., è stato pubblicato online sulla rivista Astronomy & Astrophysics.

Testo, video e immagine dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF.

LE PRIME IMMAGINI DALL’OSSERVATORIO VERA C. RUBIN (VERA C. RUBIN OBSERVATORY)

Dalle Ande cilene questo telescopio di nuova generazione è pronto a scrutare tutto il cielo australe. Nuove viste mozzafiato delle nebulose Laguna e Trifida, dell’ammasso di galassie della Vergine e molto altro nelle prime quattro immagini rilasciate dal Rubin Observatory, che rappresentano una piccola anteprima della missione scientifica finalizzata a esplorare e comprendere alcuni dei più grandi misteri dell’universo. Inizia ufficialmente il programma osservativo LSST (Legacy Survey of Space and Time).

L’Osservatorio Vera C. Rubin, situato a oltre 2.600 metri di altitudine sul Cerro Pachón, in Cile, è pronto a rivoluzionare l’astronomia moderna. A dimostrarlo, le nuove immagini che verranno svelate oggi al mondo e che mostrano le regioni di formazione stellare Laguna e Trifida, rispettivamente a 4000 e 5000 anni luce da noi, nella costellazione del Sagittario, le galassie dell’ammasso della Vergine, a circa 60 milioni di anni luce e molto altro ancora. In meno di dieci ore di osservazioni, il potente telescopio ha già catturato una moltitudine  di galassie e stelle nella nostra galassia, la Via Lattea, nonché moltissimi asteroidi nel nostro “vicinato cosmico”, il Sistema solare. Queste immagini e video, che verranno presentate in Italia durante il Watch Party nella Sala Piersanti Mattarella del Palazzo dei Normanni a Palermo, sono solo un assaggio delle straordinarie scoperte che questo osservatorio all’avanguardia potrà realizzare.

Frutto di una vasta collaborazione scientifica internazionale, l’Osservatorio Vera C. Rubin è stato progettato per realizzare la più estesa mappatura continua del cielo australe mai tentata grazie alla Legacy Survey of Space and Time (LSST), una campagna osservativa che, ogni notte per i prossimi dieci anni, raccoglierà una quantità di dati sull’universo senza precedenti (nello specifico circa 20 terabyte a notte).

Dal 2017 l’Italia partecipa attivamente al progetto attraverso l’Istituto Nazionale di Astrofisica (INAF), che rappresenta il nostro Paese nella comunità scientifica internazionale dell’Osservatorio Vera C. Rubin e coordina il contributo italiano all’analisi scientifica dei dati. L’INAF svolge un ruolo fondamentale anche nella gestione e nell’analisi di questa enorme mole di dati, garantendo alla comunità scientifica italiana l’accesso a questa straordinaria risorsa, promuovendo il contributo nazionale all’analisi e all’interpretazione dei dati, alla formazione di giovani ricercatori e ricercatrici, al raggiungimento di importanti risultati scientifici che apriranno nuove sfide, e allo sviluppo di tecnologie avanzate.

“L’Osservatorio Vera C. Rubin ci consentirà di aggiungere profondità e dinamismo all’osservazione dell’Universo”, afferma Roberto Ragazzoni, presidente INAF. “Con questo telescopio di classe 8 metri in grado di mappare continuamente il cielo australe ogni tre giorni, entriamo nell’epoca dell’’astro-cinematografia’, esplorando una nuova dimensione: quella del tempo, con la quale ci aspettiamo di studiare il cosmo con una nuova prospettiva, che oggi è possibile grazie anche all’uso di nuove tecnologie informatiche per trattare una mole di dati altrimenti imperscrutabile. L’Istituto Nazionale di Astrofisica, con le sue ricercatrici e ricercatori, anche in questa occasione coglie l’opportunità di partecipare a questo nuovo importante progetto”.

Al centro del progetto c’è la fotocamera astronomica più grande mai costruita: 3.200 megapixel, capace di riprendere ogni notte enormi porzioni del cielo australe con sensibilità e risoluzione eccezionali. Ogni immagine copre un’area del cielo grande come 45 volte la luna piena e per ammirarla in tutta la sua risoluzione servirebbero 400 monitor televisivi da 4K. Grazie a un design innovativo, l’Osservatorio Rubin sarà in grado di puntare una nuova porzione di cielo in meno di cinque secondi, osservando l’intero cielo australe in circa 3-4 notti. Nel corso del prossimo decennio, l’osservatorio sarà dunque in grado di riprendere ogni regione del cielo circa 800 volte, creando così un vero e proprio “film” del cosmo ad altissima risoluzione.

“Il Vera C. Rubin Observatory e il suo primo progetto LSST sono un’opportunità unica per la nuova generazione”, commenta Sara (Rosaria) Bonito, la quale rappresenta l’INAF nel Board of Directors della LSST Discovery Alliance del Vera C. Rubin Observatory ed è co-chair della Transients and Variable Stars Science Collaboration (TVSSC). “È una grande eredità per chiunque voglia avvicinarsi alle discipline scientifiche, offrendo uno strumento rivoluzionario per l’astrofisica e le nuove tecnologie per l’interpretazione  dei dati. L’astrofisica che si potrà fare con Rubin è estremamente diversificata: una singola campagna osservativa ci permetterà di rispondere a temi scientifici molto vasti, che riguardano la nostra Galassia ma anche la materia oscura, il nostro Sistema solare e anche i fenomeni più imprevedibili che si verificano nel cielo. Differenti gruppi di ricerca da tutto il mondo con differenti competenze hanno contribuito all’ottimizzazione della strategia osservativa e allo sviluppo di metodologie di analisi dati interdisciplinari. Il progetto coinvolge modelli teorici, big data e data science per indagare ambiti che vanno dalle esplosioni di supernove ai nuclei galattici attivi, fino alle stelle in formazione”, aggiunge.

La survey LSST, che avrà inizio nei prossimi mesi, permetterà di rilevare oggetti estremamente deboli fino a oggi difficili da osservare, ma fondamentali per affrontare questioni chiave della cosmologia e dell’astrofisica moderna: la natura della materia e dell’energia oscura, la struttura a grande scala del cosmo, l’evoluzione delle galassie, l’archeologia galattica, la formazione stellare, i fenomeni transienti e la sorveglianza di oggetti potenzialmente pericolosi. L’osservatorio porta il nome di Vera C. Rubin, astrofisica statunitense i cui studi sulla rotazione delle galassie rappresentano una delle prime prove a favore dell’esistenza della misteriosa materia oscura.

Uno degli ambiti di ricerca che beneficerà maggiormente di questa impresa è lo studio delle stelle variabili, oggetti che cambiano luminosità nel tempo. L’osservatorio sarà in grado di osservare oltre 100 milioni di stelle variabili permettendo studi senza precedenti sui meccanismi che regolano queste variazioni. Questi fenomeni possono derivare da processi interni alle stelle stesse – come pulsazioni dovute a instabilità termiche – oppure da fattori esterni, come eclissi da parte di stelle o pianeti compagni. Grazie alla sua precisione fotometrica, l’Osservatorio Rubin permetterà di esplorare la struttura interna delle stelle.

Non solo: l’osservatorio sarà anche testimone di milioni di esplosioni stellari, eventi catastrofici legati alla morte delle stelle. Analizzando la luce proveniente da alcune di queste esplosioni, le supernove di tipo Ia, sarà inoltre possibile stimare le distanze di galassie lontanissime, esplorando la storia di espansione dell’universo e la sua accelerazione, che si pensa sia causata dalla misteriosa energia oscura.

Bonito sottolinea: “Rubin è dotato della camera digitale più grande mai costruita per l’astronomia, che ha già ottenuto un altro record mondiale, quello della sua lente ottica più grande al mondo. Nonostante le sue dimensioni, è un telescopio molto veloce. Se qualcosa nel cielo si muove o cambia, Rubin lo rileverà e distribuirà l’informazione in tempo reale a tutto il mondo. Questo significa che potremo osservare fenomeni transienti in azione, rendendo possibili nuove scoperte astrofisiche, spesso inaspettate”.

E conclude: “Rubin produrrà un vero e proprio film multicolore del cielo, lungo un’intera decade. Un film che ci permetterà di vedere l’Universo come mai prima: non solo attraverso immagini statiche, ma in evoluzione dinamica”.

Capofila di questa imponente impresa sono il National Science Foundation (NSF) e il Dipartimento dell’Energia degli Stati Uniti (DOE), in collaborazione con il NOIRLab e lo SLAC National Accelerator Laboratory.

Testi, video e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

LOFAR SVELA FILAMENTI RADIO DI ORIGINE INCERTA: L’IMMAGINE PIÙ PROFONDA E AD ALTA RISOLUZIONE DELL’AMMASSO DI GALASSIE ABELL 2255

Un team internazionale di astrofisici guidato dall’Istituto Nazionale di Astrofisica (INAF) ha ottenuto l’immagine più profonda e ad alta risoluzione mai realizzata dell’ammasso di galassie Abell 2255, situato a circa 800 milioni di anni luce dalla Terra e caratterizzato da complesse strutture radio su molteplici scale. Lo studio, pubblicato su Astronomy & Astrophysics, ha permesso di osservare con dettaglio senza precedenti le principali radiogalassie dell’ammasso, generate da getti di particelle che viaggiano a velocità prossime a quella della luce ed espulsi da enormi buchi neri centrali, rivelando per la prima volta una rete intricata di filamenti sottili, emittenti radiazione non termica, la cui origine è ancora sconosciuta.

L'emissione radio della Original Tailed Radio Galaxy, osservata alla frequenza 144 MHz con una risoluzione angolare di 0,34 × 0,24 arcosecondi, mostra una struttura complessa e ricca di filamenti. Nell’angolo in alto a destra è mostrato un ingrandimento della regione centrata sulla galassia ospite, il cui nucleo è indicato con una croce rossa. Crediti: E. De Rubeis (Università di Bologna - INAF) et al. / A&A 2025
L’emissione radio della Original Tailed Radio Galaxy, osservata alla frequenza 144 MHz con una risoluzione angolare di 0,34 × 0,24 arcosecondi, mostra una struttura complessa e ricca di filamenti. Nell’angolo in alto a destra è mostrato un ingrandimento della regione centrata sulla galassia ospite, il cui nucleo è indicato con una croce rossa. Crediti: E. De Rubeis (Università di Bologna – INAF) et al. / A&A 2025

Le nuove immagini sono state ottenute in modalità di interferometria a lunghissima base VLBI (o VLBI dall’inglese Very Long Baseline Interferometry) dalle stazioni internazionali del radiotelescopio europeo Low Frequency Array (LOFAR), la più estesa rete al mondo, attualmente operativa, per osservazioni radioastronomiche a bassa frequenza. Si tratta delle osservazioni più profonde mai realizzate con questa tecnica su un ammasso di galassie e hanno permesso di ricostruire la storia evolutiva delle radiogalassie, dalle prime fasi fino al loro spegnimento. Un risultato che apre nuove prospettive sullo studio dell’evoluzione di questi oggetti e delle complesse interazioni con il mezzo intergalattico turbolento in ambienti dinamici come Abell 2255.

Mappa LOFAR-VLBI della Original Tailed Radio Galaxy, con evidenziate in diversi colori le regioni utilizzate per analizzarne le principali caratteristiche morfologiche.  Crediti: E. De Rubeis (Università di Bologna - INAF) et al. / A&A 2025
Mappa LOFAR-VLBI della Original Tailed Radio Galaxy, con evidenziate in diversi colori le regioni utilizzate per analizzarne le principali caratteristiche morfologiche. Crediti: E. De Rubeis (Università di Bologna – INAF) et al. / A&A 2025

Grazie a 56 ore di osservazioni alla frequenza radio di 144 MHz, i ricercatori e le ricercatrici hanno ottenuto immagini profonde e con una risoluzione angolare fino a 0,3 arcosecondi: una combinazione eccezionale a queste frequenze, resa possibile dalla lunga esposizione e da tecniche interferometriche avanzate. Questo ha permesso di rivelare strutture filamentose estremamente allungate, con lunghezze comprese tra 260 mila e 360 mila anni luce — ovvero tre o quattro volte il diametro della Via Lattea — e spessori oltre dieci volte inferiori.  Secondo i ricercatori questi filamenti potrebbero originarsi all’interno delle radiogalassie, per poi essere trascinati via da moti turbolenti fino a mescolarsi con il mezzo esterno.

L’attenzione si è concentrata in particolare sulla cosiddetta Original Tailed Radio Galaxy, una galassia radio dalla coda intricata e ricca di filamenti, mai osservata prima con un tale livello di dettaglio. Le nuove immagini rivelano inoltre dettagli inediti di altre radiogalassie all’interno dell’ammasso, come la Goldfish, la Beaver e l’Embryo, caratterizzate da morfologie distorte e lunghe code radio che si estendono per oltre 200 mila anni luce.

“Il nostro obiettivo principale era utilizzare LOFAR-VLBI per individuare eventuali filamenti nelle code delle radiogalassie di Abell 2255, al fine di studiarne le caratteristiche morfologiche e comprenderne l’origine”, spiega Emanuele De Rubeis, primo autore dello studio e dottorando al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna e l’INAF nella sede bolognese.

“Fenomeni di questo tipo emergono sempre più frequentemente grazie ai moderni interferometri, come i precursori del progetto SKA, e offrono preziose opportunità per indagare le proprietà magnetiche del gas caldo che permea l’ammasso e i meccanismi di accelerazione delle particelle”.

Questo lavoro è stato possibile grazie ai recenti sviluppi delle tecniche di calibrazione dei dati LOFAR-VLBI, in cui la comunità INAF gioca un ruolo di primo piano. Dal 2018 l’INAF è infatti parte integrante del consorzio LOFAR e il contributo dei suoi team di ricerca è stato determinante sia nell’analisi che nell’interpretazione dei dati. L’intera fase di analisi è stata condotta presso l’Istituto di Radioastronomia di Bologna, grazie alle ingenti risorse computazionali messe a disposizione dalle macchine dei cluster LOFAR e del sistema di calcolo ad alte prestazioni INAF-Pleiadi nel Centro di Calcolo dell’istituto bolognese.

De Rubeis aggiunge: “Abbiamo calibrato 56 ore di osservazioni, suddivise in sessioni notturne da circa 8 ore ciascuna. I dati grezzi di ogni notte pesano circa 4 terabyte, ma dopo la calibrazione il  loro volume sale a 18–20 terabyte per un totale di circa 140 terabyte complessivi”.

È una mole di dati enorme per una osservazione di un campo singolo, tra le più vicine per scala a quelle previste per il progetto SKA.

“Ovviamente, calibrare i dati e ottenere immagini di qualità ha richiesto molti tentativi. Per elaborare completamente una singola notte e produrre le immagini di tutte le sorgenti, abbiamo impiegato in media circa un mese”.

“Questi risultati aprono la strada a nuove prospettive per lo studio non solo delle radiogalassie ma anche delle proprietà del gas che permea gli ammassi di galassie” conclude Marco Bondi primo ricercatore INAF a Bologna e secondo autore dello studio.

Questo lavoro rappresenta un primo passo verso un’indagine più ampia: un secondo articolo, già in preparazione, combinerà i dati di LOFAR con osservazioni a frequenze più elevate, ottenute con il Giant Metrewave Radio Telescope (GMRT) in India e il Very Large Array (VLA) negli Stati Uniti, per analizzare l’indice spettrale e la polarizzazione delle strutture appena scoperte.


 

 

Per ulteriori informazioni:

Con oltre 25 mila antenne raggruppate in 51 stazioni distribuite in numerosi stati europei e concepito per catturare le onde radio alle frequenze più basse captabili da Terra, LOFAR è la più estesa rete per osservazioni radioastronomiche in bassa frequenza attualmente operativa. Alla fine del 2023 LOFAR è ufficialmente diventato una European Research Infrastructure Consortium (ERIC), di cui l’Italia – tramite l’INAF – è uno dei membri fondatori. Questo nuovo assetto rafforza il coordinamento scientifico e tecnico su scala europea, promuovendo una maggiore interoperabilità tra i nodi della rete e creando sinergie con altre grandi infrastrutture astronomiche di ricerca. L’INAF guida un consorzio nazionale e sta partecipando allo sviluppo della nuova generazione di dispositivi elettronici che equipaggeranno questo radiotelescopio diffuso sul territorio europeo. Il consorzio ha l’obiettivo di fornire agli scienziati italiani le condizioni per l’accesso e l’analisi dei dati di LOFAR, massimizzando l’impatto scientifico della ricerca. L’INAF gestisce, inoltre, l’infrastruttura computazionale nazionale per l’analisi dei dati LOFAR, distribuita in tre siti: Bologna, Trieste e Catania.

 

L’articolo “Revealing the intricacies of radio galaxies and filaments in the merging galaxy cluster Abell 2255. I. Insights from deep LOFAR-VLBI sub-arcsecond resolution images”, di E. De Rubeis, M. Bondi, A. Botteon, R. J. van Weeren, J. M. G. H. J. de Jong, L. Rudnick, G. Brunetti, K. Rajpurohit, C. Gheller, H. J. A. Röttgering, è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

YSES-1 B E YSES-1 C: PIOVE SABBIA SUGLI ESOPIANETI

Osservate per la prima volta nubi di silicati nell’atmosfera di un esopianeta, il gigante gassoso YSES-1 c, a 300 anni luce da noi. Lo studio, reso possibile dal telescopio spaziale James Webb (JWST), ha osservato anche il suo pianeta gemello, svelando intorno a esso un disco di polveri da cui potrebbero formarsi delle lune. Alla scoperta, pubblicata su Nature, ha partecipato Valentina D’Orazi, ricercatrice presso l’Istituto Nazionale di Astrofisica (INAF) e l’Università di Roma Tor Vergata.

Spesso si invoca l’enorme numero di granelli di sabbia che coprono le spiagge del nostro pianeta per provare a immaginare l’altrettanto vasta moltitudine di stelle che popolano l’universo. E se qualcuno dei pianeti intorno a queste stelle fosse coperto – o circondato – di sabbia? È l’interessante scenario che emerge da un nuovo studio basato sulle osservazioni di due pianeti extrasolari realizzate con il telescopio spaziale James Webb (JWST), i cui risultati sono stati pubblicati oggi sulla rivista Nature.

Illustrazione artistica del sistema planetario YSES-1. La stella è visibile al centro, il pianeta YSES-1 b con il disco di polvere circumplanetario si trova a destra mentre a sinistra si vede l’altro pianeta, YSES-1 c, con l’atmosfera contenente nubi di silicati. Crediti: Ellis Bogat
Illustrazione artistica del sistema planetario YSES-1. La stella è visibile al centro, il pianeta YSES-1 b con il disco di polvere circumplanetario si trova a destra mentre a sinistra si vede l’altro pianeta, YSES-1 c, con l’atmosfera contenente nubi di silicati. Crediti: Ellis Bogat

I pianeti in questione orbitano attorno alla stella YSES-1, un giovane sole con un’età di appena 16,7 milioni di anni, che si trova a circa 300 anni luce dal nostro Sistema solare. Osservando direttamente la luce di questi esopianeti, un gruppo di ricerca internazionale guidato dall’astrofisica Kielan Hoch dello Space Telescope Science Institute di Baltimora, negli Stati Uniti, ha scoperto che l’atmosfera di uno dei due pianeti contiene nubi di silicati, composte da minerali che le conferiscono un colore rossiccio. L’altro pianeta del sistema, invece, appare circondato da un disco circumplanetario, anch’esso formato da silicati, dal quale potrebbero in futuro prendere forma corpi più piccoli, come ad esempio delle lune.

La scoperta, che sarà presentata oggi durante il 246° meeting dell’American Astronomical Society in corso ad Anchorage, in Alaska, offre nuove prospettive sulle fasi iniziali della formazione dei sistemi planetari come il nostro, fornendo a ricercatrici e ricercatori l’opportunità di studiare in tempo quasi reale come nasce e si evolve un pianeta simile a Giove.

“Osservare le nubi di silicati, che sono praticamente delle nuvole di sabbia, nelle atmosfere dei pianeti extrasolari è importante perché ci aiuta a capire meglio come funzionano i processi atmosferici e come si formano  i pianeti, un tema ancora in discussione poiché non c’è accordo sui diversi modelli”, spiega la coautrice Valentina D’Orazi, ricercatrice presso l’Istituto Nazionale di Astrofisica (INAF) e l’Università di Roma Tor Vergata, attualmente visiting research scholar all’Università del Texas a Austin nell’ambito del programma Fulbright. “La scoperta di queste nuvole di sabbia, che restano in alto grazie a un ciclo di sublimazione e condensazione simile a quello dell’acqua sulla Terra, ci svela meccanismi complessi di trasporto e formazione nell’atmosfera. Questo ci permette di migliorare i nostri modelli sui processi climatici e chimici in ambienti molto diversi da quelli del Sistema solare, ampliando così la nostra conoscenza di questi sistemi”.

Si tratta di due pianeti giganti gassosi, con masse pari a 14 volte quella di Giove per YSES-1 c e a 6 volte quella di Giove per YSES-1 b. Entrambi i pianeti si trovano molto lontano dalla loro stella, a distanze circa 5 e 10 volte superiori rispetto alla distanza tra il Sole e Nettuno, il pianeta più esterno del Sistema solare. È proprio la loro orbita molto estesa che ha permesso al team di osservare i due pianeti con JWST attraverso la tecnica dell’imaging diretto, la cui applicazione è ancora oggi limitata a un piccolo numero di pianeti con caratteristiche molto particolari. Lo studio dimostra la capacità del potente telescopio spaziale di fornire dati spettrali di alta qualità per esopianeti osservati attraverso questa tecnica, aprendo nuove strade per lo studio delle atmosfere e degli ambienti circumstellari.

La presenza di nubi di silicati nelle atmosfere degli esopianeti era già stata prevista teoricamente e dedotta indirettamente da osservazioni precedenti, ma questa ricerca fornisce la prima osservazione diretta e spettroscopica di nubi di silicati in un esopianeta specifico, YSES-1 c. Questo permette di comprendere meglio la composizione atmosferica di un giovane gigante gassoso, confermando la presenza di nuvole di silicati ad alta quota, contenenti pirosseno ricco di ferro oppure una combinazione di bridgmanite (MgSiO3) e forsterite (Mg2SiO4).

Per quanto riguarda il pianeta gemello YSES-1 b, questo lavoro presenta la prima rilevazione di emissione di silicati da un disco circumplanetario, una specie di “mini-Sistema solare” in formazione. Solo due simili dischi circumplanetari sono stati osservati in precedenza, e la nuova ricerca fornisce informazioni dirette sulla composizione e sui processi fisici in questi ambienti: la presenza di granelli di olivina con dimensioni inferiori al micron, infatti, suggerisce un meccanismo di formazione attraverso collisioni di piccoli corpi, detti planetesimi, all’interno del disco.

“Studiando questi pianeti riusciamo a capire meglio come si formano i pianeti in generale, un po’ come sbirciare nel passato del nostro Sistema solare”, conclude D’Orazi. “I risultati supportano l’idea che la composizione delle nubi negli esopianeti giovani e i dischi circumplanetari svolgano un ruolo cruciale nel determinare la composizione chimica atmosferica. Inoltre, questo studio sottolinea la necessità di modelli atmosferici dettagliati per interpretare i dati osservativi di alta qualità ottenuti con telescopi come JWST”.

 

Riferimenti bibliografici:

L’articolo “Silicate clouds and a circumplanetary disk in the YSES-1 exoplanet system”, di K. Hoch, M. Rowland, S. Petrus, E. Nasedkin, C. Ingebretsen, J. Kammerer, M. Perrin, V. D’Orazi, W. O. Balmer, T. Barman, M. Bonnefoy, G. Chauvin, C. Chen, R. J. De Rosa, J. Girard, E. Gonzales, M. Kenworthy, Q. M. Konopacky, B. Macintosh, S. E. Moran, C. V. Morley, P. Palma-Bifani, L. Pueyo, B. Ren, E. Rickman, J.-B. Ruffio, C. A. Theissen, K. Ward-Duong, Y. Zhang, è stato pubblicato sulla rivista Nature.

Testo e immagine dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF