News
Ad
Ad
Ad
Tag

Io

Browsing

Sotto la superficie di Io non c’è un oceano di magma liquido, ma un mantello solido

Un nuovo studio pubblicato su Nature, basato sui dati di gravità raccolti dalla sonda Juno della NASA durante dei sorvoli della luna Io di Giove esclude la presenza di un oceano di magma sotto la sua superficie

Sotto la superficie di Io, il satellite Galileiano più vicino a Giove, non c’è un oceano di magma liquido come si era pensato fino ad oggi, ma un mantello solido. A rivelarlo è uno studio pubblicato su Nature realizzato anche grazie al lavoro di diversi ricercatori della Sapienza Università di Roma e dell’Università di Bologna.

La ricerca, coordinata da Ryan Park del Jet Propulsion Laboratory dalla NASA, ha sfruttato i dati collezionati dalla sonda Juno della NASA durante due recenti sorvoli ravvicinati della luna insieme ai dati storici della missione Galileo, la sonda della NASA che tra il 1995 e il 2003 ha esplorato il sistema di Giove.

“La combinazione dei dati acquisiti da Juno con quelli collezionati dalla sonda Galileo oltre 20 anni fa – spiega Daniele Durante, ricercatore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – ha permesso di migliorare la stima della risposta mareale di Io, che fornisce indicazioni dirette della deformabilità della struttura interna della luna.”

Io è un satellite unico nel sistema di Giove grazie alla sua intensa attività vulcanica, che lo rende l’oggetto geologicamente più attivo del sistema solare. Per decenni si è creduto che l’enorme attrazione gravitazionale di Giove fosse sufficiente a creare un oceano di magma sotto la sua superficie, che alimentasse i suoi vulcani. Le misure di induzione magnetica condotte dalla sonda Galileo avevano infatti suggerito la presenza di un oceano di magma sotto la superficie di questa luna.

Questo scenario è stato però rivisto a seguito delle nuove osservazioni realizzate da Juno, la sonda che dal 2016 sta esplorando Giove e, più recentemente, le sue lune. Juno ha sorvolato per due volte Io a circa 1.500 chilometri di quota, raccogliendo dati del campo gravitazionale della luna molto accurati. I risultati dell’analisi mostrano una risposta gravitazionale della luna alle forze di marea piuttosto modesta.

“La risposta della luna alle forze di marea esercitate da Giove è risultata piuttosto bassa – afferma Luciano Iess, professore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – indicazione dell’assenza di un oceano di magma vicino alla superficie e, piuttosto, della presenza di un mantello solido profondo al suo interno”.

Lo studio è stato pubblicato su Nature con il titolo “Io’s tidal response precludes a shallow magma ocean”. Per Sapienza Università di Roma hanno partecipato Daniele Durante e Luciano Iess, in collaborazione con i colleghi dell’Università di Bologna, Luis Gomez Casajus, Marco Zannoni, Andrea Magnanini e Paolo Tortora. Le attività di ricerca sono state realizzate nell’ambito di un accordo finanziato dall’Agenzia Spaziale Italiana.

Struttura interna di Io. La nuova misura della deformazione mareale suggerisce che la luna non abbia un oceano globale di magma vicino la superficie ma è coerente con la presenza di un mantello più solido (sfumature di verde), con una quantità significativa di materiale fuso (in giallo e arancione) che ricopre un nucleo liquido (in rosso/nero). Illustrazione di Sofia Shen (JPL/Caltech).
Struttura interna di Io. La nuova misura della deformazione mareale suggerisce che la luna non abbia un oceano globale di magma vicino la superficie ma è coerente con la presenza di un mantello più solido (sfumature di verde), con una quantità significativa di materiale fuso (in giallo e arancione) che ricopre un nucleo liquido (in rosso/nero). Illustrazione di Sofia Shen (JPL/Caltech).

Riferimenti bibliografici:

Park, R.S., Jacobson, R.A., Gomez Casajus, L. et al. Io’s tidal response precludes a shallow magma ocean, Nature (2024), DOI: https://doi.org/10.1038/s41586-024-08442-5

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

LA PIÙ ACCURATA MAPPA VULCANICA DEL SATELLITE GIOVIANO IO

Grazie ai dati raccolti dallo stumento JIRAM a bordo della missione NASA Juno, un team di ricerca a guida INAF ha identificato 242 “hot spot”, ovvero zone calde che indicano la presenza di vulcani, di cui 23 non osservati precedentemente sul satellite più interno di Giove. I dati indicano una maggiore concentrazione di punti vulcanici caldi nelle regioni polari rispetto alle latitudini intermedie. Si tratta della mappatura migliore mai ottenuta da remoto.

La più accurata mappa vulcanica del satellite gioviano Io
La più accurata mappa vulcanica del satellite gioviano Io, grazie allo strumento JIRAM. Insieme di figure chiamate “super immagini”, ottenute calcolando la media di più osservazioni JIRAM acquisite in un lasso di tempo di pochi minuti. Questo approccio riduce la possibilità di falsi positivi. Le immagini ritraggono gli hot spot di Io nel corso degli anni. Crediti: F. Zambon et al. / Geophysical Research Letters

L’infernale luna Io (la più interna fra quelle regolari del sistema gioviano) è il corpo vulcanicamente più attivo dell’intero Sistema solare. Un recente articolo pubblicato sulla rivista Geophysical Research Letters (GRL) fa nuova luce sulle proprietà vulcaniche di questo satellite, in particolare grazie a nuovi dati raccolti da JIRAM (Jovian InfraRed Auroral Mapper), uno degli otto strumenti a bordo della sonda NASA Juno. Finanziato dall’Agenzia Spaziale Italiana (ASI) e realizzato da Leonardo, lo strumento vede la responsabilità scientifica dell’Istituto Nazionale di Astrofisica (INAF). L’articolo delinea la mappa più recente della distribuzione degli hot spot (punti vulcanici caldi) di Io prodotta con dati JIRAM da remoto alla migliore scala spaziale attualmente disponibile. I ricercatori, guidati dall’INAF, sono riusciti a ottenere, inoltre, una migliore copertura delle regioni di Io prossime ai poli rispetto al passato.

Francesca Zambon, membro del gruppo JIRAM, ricercatrice dell’INAF di Roma e prima autrice dell’articolo pubblicato su GRL, spiega:

“La mappa degli hot spot presentata nel nostro lavoro è la più aggiornata tra quelle basate su dati di telerilevamento spaziale. Analizzando le immagini infrarosse acquisite da JIRAM, abbiamo individuato 242 punti vulcanici caldi, di cui 23 non presenti in altri cataloghi e localizzati nella maggior parte dei casi nelle regioni polari, grazie alla peculiare orbita della sonda Juno”.

La ricercatrice sottolinea: “Il confronto tra il nostro studio e il catalogo più recente rivela che JIRAM ha osservato l’82% degli hot spot più potenti precedentemente individuati, e la metà degli hot spot di potenza intermedia, dimostrando quindi che questi sono ancora attivi. Tuttavia, JIRAM ha rilevato solo circa la metà degli hot spot più deboli precedentemente segnalati. Le spiegazioni sono due: o la risoluzione di JIRAM non è sufficiente per rilevare questi deboli punti caldi, oppure l’attività di questi centri effusivi potrebbe essersi sbiadita o interrotta”.

Quando la sonda spaziale NASA Voyager 1 avvicinò Io, il più interno dei satelliti galileiani di Giove, nel marzo 1979, le immagini inviate alla Terra rivelarono che la sua superficie appariva punteggiata da una moltitudine di centri vulcanici caldi, con imponenti colate laviche e pennacchi alti fino a qualche centinaio chilometri. In seguito, l’esplorazione condotta soprattutto dalla missione NASA Galileo chiarì che questi punti caldi sono moltissimi: alcune centinaia, molti dei quali con attività pressoché costante.

 

La luna Io mostra molti centri vulcanici, innescati principalmente dalle potenti forze mareali esercitate da Giove. Lo studio dell’attività vulcanica di questo satellite gioviano è la chiave per comprendere la natura dei suoi processi geologici e la sua evoluzione interna. La distribuzione degli hot spot e la loro variabilità spaziale e temporale sono importanti per definire le caratteristiche del riscaldamento delle maree e i meccanismi attraverso i quali il calore fuoriesce dall’interno.

 

Alessandro Mura, leader del gruppo JIRAM e ricercatore dell’INAF di Roma, prosegue:

“Uno dei maggiori punti aperti nella comprensione della struttura interna di Io è se l’attività vulcanica osservabile in superficie sia dovuta a un oceano di magma globale presente nel mantello, oppure a camere magmatiche che si insinuano nella crosta a minori profondità. Le osservazioni di JIRAM sono tuttora in corso, e le future immagini a maggiore definizione saranno fondamentali per meglio evidenziare i punti caldi deboli e per chiarire la struttura interna di Io”.

Giuseppe Sindoni, responsabile del progetto JIRAM per l’ASI, aggiunge:

“La superficie della luna gioviana Io è molto dinamica, con vulcani ed emissioni laviche in continua evoluzione, come dimostrato da questo importante risultato ottenuto dal nostro strumento JIRAM e dall’ottimo lavoro svolto dal team. L’estensione della missione Juno fino al 2025 ci permetterà di monitorare questa evoluzione e di comprendere meglio i processi fisici che guidano un corpo così complesso e dalle fattezze simili alla nostra Terra primordiale, anche in previsione di future missioni dedicate.”

La sonda Juno è stata lanciata ad agosto 2011 dalla base di Cape Canaveral ed è in orbita attorno a Giove dal luglio del 2016. Da allora ha percorso 235 milioni di chilometri. Juno è tuttora la sonda in orbita planetaria più distante della NASA, e continuerà le sue indagini sul pianeta più grande del Sistema solare fino a settembre 2025.

Alla fine dell’anno, il 30 dicembre 2023, durante la 57ma orbita attorno a Giove, la sonda Juno effettuerà il suo passaggio più ravvicinato in assoluto a Io, a una distanza minima di circa 4800 chilometri. Le missioni Europa Clipper della NASA e JUICE di ESA, che opereranno nel sistema di Giove negli anni 2030, non potranno mai avvicinarsi a simili distanze. Sarà quindi cruciale che Juno possa condurre osservazioni anche con JIRAM durante tutte le prossime opportunità previste nel 2023.


 

Per ulteriori informazioni:

L’articolo “Io hot spot distribution detected by Juno/JIRAM”, di F. Zambon, A. Mura, R. M. C. Lopes, J. Rathbun, F. Tosi, R. Sordini, R. Noschese, M. Ciarniello, A. Cicchetti, A. Adriani, L. Agostini, G. Filacchione, D. Grassi, G. Piccioni, C. Plainaki, G. Sindoni, D. Turrini, S. Brooks, C. Hansen-Koharcheck, S. Bolton, è stato pubblicato su Geophysical Research Letters.

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF sulla mappa vulcanica di Io prodotta dallo strumento JIRAM

Anche se sommassimo le masse di tutti i pianeti del sistema solare, non riusciremmo a formare quella di Giove. Gli antichi Romani lo associarono al dio più potente, il sovrano di tutti gli dei, il padrone del cielo, come ci ricorda il simbolo astronomico del pianeta, una rappresentazione del fulmine.

Per via della sua massa, la forza di gravità di Giove è pari a 2.6 volte quella terrestre, ciò significa che per calcolare il vostro peso su Giove dovete moltiplicare il vostro peso attuale per 2.6. Si, saremmo tutti “ingrassati”! La densità del pianeta, però, è di poco superiore a quella dell’acqua: Giove è un’immensa palla di gas.

La composizione è stratificata: al centro è (forse) presente un nucleo roccioso coperto da un mantello di idrogeno metallico liquido su cui grava un pesante strato di atmosfera. Partendo dalla superficie e addentrandoci verso il cuore del pianeta, temperatura e pressione vanno via via aumentando sino ad arrivare, nel nucleo, a valori di temperatura superiori a 35000° C e pressioni di circa 4 milioni di volte quella terrestre.

La Grande macchia rossa, tempesta dalla profondità “contenuta”

Caratteristica di Giove è il bandeggio: nubi di ammoniaca ghiacciata disposte in fasce orizzontali di vari colori che si muovono in direzioni opposte e, in alcuni punti, si invorticano, formando immensi cicloni. Nell’atmosfera gioviana si possono contare centinaia di queste masse gassose vorticanti che, come sulla Terra, si distinguono in cicloni (stesso verso di rotazione del pianeta) e anticicloni (verso di rotazione opposto). Si formano e disfano in tempi che vanno dal giorno alle centinaia di anni, come la grande macchia rossa. Osservata probabilmente per la prima volta da Cassini nel 1664, è la tempesta più longeva conosciuta, nonché la più violenta del sistema solare: come dimensioni potrebbe contenere quasi tre Terre e si innalza per circa 8 km dalla superficie del pianeta. La temperatura arriva a -160° C ed è solcata da venti tremendi che sfiorano i 600 km/h. Il diametro della grande macchia sta, però, diminuendo, mentre è in aumento l’estensione di un altro anticiclone, la cosiddetta piccola macchia rossa che si trova vicina, appena sotto la grande macchia. Formatasi nel 2000 dall’unione di tre tempeste distinte, nel 2008 aveva già raggiunto le dimensioni della Terra.

Foto NASA, ESA, and J. Nichols (University of Leicester), in pubblico dominio

Per via del core di idrogeno metallico liquido, il campo magnetico di Giove è il più intenso del sistema solare (centinaia di volte più intenso di quello terrestre) e, interagendo con i venti solari, forma una vastissima magnetosfera, un oggetto di studio estremamente interessante per gli astronomi. Un fenomeno spettacolare dovuto al campo magnetico è quello delle aurore polari di Giove: molto più energetiche ed estese delle terrestri e, per di più, perenni. La loro straordinaria potenza non è alimentata solo dalla nostra stella, ma anche da Io, uno dei quattro satelliti galileiani, nonché tra gli oggetti più attivi del sistema solare, che rifornisce il campo magnetico del pianeta di particelle provenienti dai suoi numerosi vulcani.

Giove
Giove e e la sua luna Io visti dalla sonda Cassini (2001). Foto NASA/JPL/University of Arizona, pubblico dominio

Come gli altri tre giganti gassosi, anche Giove possiede un sistema di anelli, sebbene meno vistoso di quello di Saturno, tanto che fu osservato per la prima volta solo nel 1979 dalle missioni Voyager della NASA.

Galileo e Juno sono altre due missioni dell’agenzia spaziale americana che hanno dato un importante contributo alla scoperta di Giove. Juno, partita nel 2011, è tuttora in corso, mentre Galileo è terminata nel 2003 con un impatto guidato sul pianeta. La sonda Galileo ha avuto l’occasione di osservare un altro e ben più significativo impatto su Giove, quello avvenuto nel 1994 con la cometa Shoemaker-Levy 9. L’impatto avvenne in 6 giorni, tra il 16 e il 22 Luglio, poiché la cometa si era sbriciolata in 21 frammenti, divenendo simile ad una “collana di perle” e sprigionò una potenza di 6 miliardi di kt (per confronto, la bomba che distrusse Hiroshima era di soli 16 kt). Fu un evento scientifico e mediatico molto significativo: diversi telescopi furono puntati sul gigante gassoso e tanti esperti e non seguirono con trepidazione la diretta. Sulla superficie di Giove rimasero le tracce del bombardamento: vaste macchie circolari, la più grossa del diametro di 12000 km (quello terrestre è di 12742 km), che, come ferite scure, perdurarono un paio di mesi per poi sparire definitivamente.

Il luogo dell’impatto del frammento G della cometa Shoemaker-Levy 9. Foto Hubble Space Telescope Jupiter Imaging Team, in pubblico dominio

Video a cura di Inter Nos: Silvia Giomi e Marco Merico