News
Ad
Ad
Ad
Tag

Hubble

Browsing

IL BUCO NERO DI MASSA INTERMEDIA DELL’AMMASSO STELLARE  OMEGA CENTAURI: L’ANELLO MANCANTE NELL’EVOLUZIONE DEI BUCHI NERI MASSICCI

Sette nuove stelle in rapido movimento identificate al centro dell’ammasso stellare Omega Centauri forniscono una solida prova dell’esistenza di un buco nero centrale nell’ammasso stesso. Con una massa di almeno 8200 masse solari, questo buco nero è il miglior candidato per appartenere alla classe di buchi neri chiamata di massa intermedia. Gli astronomi credono che questo tipo di buchi neri si formi nelle prime fasi dell’evoluzione delle galassie. Questa scoperta, a cui partecipa anche l’INAF, rafforza l’ipotesi che Omega Centauri sia la regione centrale di una galassia inglobata nella Via Lattea miliardi di anni fa. Spogliato delle sue stelle esterne, il nucleo galattico da allora è rimasto “congelato nel tempo”.

Osservando Omega Centauri con un piccolo telescopio, non appare diversa dagli altri cosiddetti ammassi globulari: una spettacolare collezione sferica di stelle, così densa verso il centro che diventa impossibile distinguere le singole stelle. Questo nuovo studio, guidato da Maximilian Häberle (Istituto Max Planck per l’astronomia di Heidelberg, MPIA) e a cui partecipa anche Mattia Libralato dell’INAF  – Istituto Nazionale di Astrofisica (e precedentemente in forza all’AURA per l’Agenzia Spaziale Europea presso lo Space Telescope Science Institute), porta nuova luce su questo oggetto celeste, confermando ciò che gli astronomi ipotizzavano da tempo: Omega Centauri ospita un buco nero centrale. Il buco nero sembra essere l'”anello mancante” tra i suoi simili di taglia stellare, che hanno masse comprese tra una e alcune decine di masse solari, e quelli supermassicci, con masse di milioni o miliardi di volte quelle del Sole, situati al centro delle galassie. Omega Centauri sembra essere il nucleo di una piccola galassia separata la cui evoluzione è stata interrotta quando è stata inglobata dalla Via Lattea.

This image presents three panels. The first image shows the global cluster Omega Centauri, appearing as a highly dense and numerous collection of shining stars. The second image shows the details of the central region of this cluster, with a closer view of the individual stars. The third image shows the location of the IMBH candidate in the cluster.
Una immagine che mostra, da sinistra, progressivi ingrandimenti  sull’ammasso stellare Omega Centauri. Nel pannello di destra, la zona circolare indica la regione dove dovrebbe essere situato il buco nero di massa intermedia. La barretta orizzontale in basso a destra del riquadro indica una lunghezza in scala di 0,1 anni luce. Crediti: ESA/Hubble & NASA, M. Häberle (MPIA)

Mattia Libralato, coautore dell’articolo appena pubblicato sulla rivista Nature che descrive la scoperta, commenta:

“L’esistenza di buchi neri di massa intermedia al centro degli ammassi globulari è un argomento molto controverso perché questi oggetti sono elusivi ed è difficile dedurre la loro presenza. In questa analisi sono state trovate sette stelle vicino al centro di Omega Centauri la cui velocità molto elevata e posizione sono compatibili con la presenza di un buco nero con una massa di almeno 8.200 volte quella del Sole al centro dell’ammasso. La scoperta di queste stelle è una delle prove più solide che sia stata raccolta dell’esistenza di un buco nero di massa intermedia”.

L’attuale teoria dell’evoluzione delle galassie ipotizza che le prime galassie dovessero avere buchi neri centrali di dimensioni intermedie, che sarebbero poi cresciuti nel tempo man mano che quelle galassie si evolvevano, inglobando galassie più piccole (come ha fatto la nostra Via Lattea) o fondendosi con galassie più grandi. Tali buchi neri di medie dimensioni sono notoriamente difficili da trovare: le galassie come la nostra Via Lattea hanno superato quella fase, contenendo ora buchi neri centrali molto più grandi, mentre le galassie nane invece sono difficili da osservare e rendono estremamente complicato rilevare i loro buchi neri centrali con la tecnologia attuale. Sebbene esistano candidati promettenti, fino ad ora non è mai stato rilevato un buco nero di massa intermedia.

Nadine Neumayer, capo gruppo al MPIA, e Anil Seth, dell’Università dello Utah, nel 2019 hanno dato vita ad un progetto di ricerca mirato a migliorare la comprensione della storia della formazione di Omega Centauri: identificare le stelle in rapido movimento attorno al buco nero centrale per poi misurarne la massa. Maximilian Häberle, uno studente di dottorato al MPIA, ha guidato il lavoro creando un enorme catalogo con i movimenti delle stelle in Omega Centauri e misurando le velocità di 1,4 milioni di stelle. Per questo lavoro, sono state utilizzate oltre 500 immagini di Hubble dell’ammasso, prodotte con lo scopo di calibrare gli strumenti del satellite, ma che con le loro visualizzazioni ripetute di Omega Centauri, si sono rivelate il set ideale di dati.

The central region of a globular cluster is shown, appearing as a highly dense and numerous collection of shining stars. Some stars show blue and orange glowing features around them.
Credit: ESA/Hubble & NASA, M. Häberle (MPIA)

“Cercare stelle in rapido movimento e documentarne il movimento era come cercare il proverbiale ago in un pagliaio”

 dice Häberle, che ha trovato ben sette stelle in rapido movimento in una piccola regione al centro di Omega Centauri dove non vi è nessun oggetto visibile. Tali stelle, con diverse velocità e direzioni di movimento, hanno permesso a Häberle e ai suoi colleghi di determinare la presenza di una massa centrale in Omega Centauri, di almeno 8.200 masse solari.

A una distanza di circa 18.000 anni luce, questo è l’esempio del più vicino buco nero massiccio ad oggi conosciuto. Infatti il buco nero supermassiccio nel centro della Via Lattea è a una distanza di circa 27.000 anni luce da noi. Questa rilevazione non solo promette di risolvere il dibattito decennale sul buco nero di massa intermedia in Omega Centauri, ma fornisce, in generale, anche il miglior candidato, fino ad ora, della rilevazione di un buco nero di massa intermedia.

“Negli ultimi 10 anni, l’astrometria, e in particolare lo studio della cinematica interna degli ammassi globulari, ha vissuto un vero e proprio “Rinascimento” grazie alla missione Gaia” ricorda Libralato. “Tuttavia, regioni affollate come il centro degli ammassi globulari sono difficili, e in alcuni casi impossibili, da studiare anche con Gaia, lasciando Hubble come unica risorsa. Il lavoro di Maximilian dimostra che anche dopo più di 30 anni dal suo lancio, il telescopio Hubble è uno dei migliori strumenti per ottenere astrometria di alta precisione in regioni estremamente affollate come il centro degli ammassi globulari”.

Neumayer, Häberle e i loro colleghi ora intendono studiare il centro di Omega Centauri con ancora maggiore dettaglio. Hanno già ottenuto l’approvazione per misurare il movimento delle stelle in rapido movimento utilizzando il Telescopio spaziale James Webb. L’utilizzo successivo di strumenti attualmente in costruzione, come GRAVITY+ al VLT dell’ESO e MICADO all’Extremely Large Telescope, potrebbe portare a misure più accurate delle posizioni delle stelle di quelle ottenute con le immagini di Hubble. L’obiettivo a lungo termine è determinare come le stelle accelerano e come curvano le loro orbite. Seguire le orbite intere delle stelle, come per le osservazioni del buco nero al centro della Via Lattea che hanno portato al premio Nobel, è un progetto per le future generazioni di astronomi. Infatti, la piccola massa del buco nero per Omega Centauri si traduce in tempi scala dieci volte più grandi rispetto a quelli utilizzati per lo studio del centro della Via Lattea, ovvero periodi orbitali di più di cento anni.

Per ulteriori informazioni:

L’articolo “Fast-moving stars around an intermediate-mass black hole in ω Centauri”, di Häberle M., Anil Seth, Andrea Bellini, Mattia Libralato, Holger Baumgardt, Matthew Whitaker, Mayte Alfaro Cuello, Jay Anderson, Nikolay Kacharov, Sebastian Kamann, Antonino Milone, Renuka Pechetti e Glenn van de Ven è stato pubblicato online sulla rivista Nature.

 

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza
Istituto Nazionale di Astrofisica – INAF.

NANE BIANCHE E PIANETI DISTRUTTI: GLI INDIZI TROVATI DAL JAMES WEBB SPACE TELESCOPE

Il telescopio spaziale James Webb (JWST) delle agenzie spaziali NASA, ESA e CSA ci regala nuove immagini mozzafiato del nostro vicinato galattico. Un gruppo di ricerca guidato dall’Istituto nazionale di astrofisica (INAF) ha sfruttato le enormi potenzialità di JWST per osservare, per la prima volta all’infrarosso, l’intera sequenza di raffreddamento delle nane bianche in un vicino ammasso globulare, rivelando un eccesso di emissione infrarossa, potenziale indizio di antichi sistemi planetari distrutti. L’articolo è stato pubblicato di recente nella rivista Astronomische Nachrichten (Astronomical Notes).

La maggior parte delle stelle, soprattutto quelle di massa simile al Sole (da 8 fino a 0.07-0.08 masse solari), terminano la loro evoluzione come nane bianche, cosa che alla nostra stella madre accadrà fra circa 5 miliardi di anni. Dopo aver esaurito il “combustibile” stellare (idrogeno ed elio), questi oggetti non sono in grado di innescare reazioni termonucleari e collassano sotto il proprio peso raffreddandosi fino al loro definitivo spegnimento, perdendo lo strato più esterno della loro atmosfera.

I dati utilizzati nella survey, estrapolati dall’archivio ventennale di Hubble e da recenti osservazioni con il telescopio spaziale Webb, hanno permesso al gruppo di ricerca di sondare le proprietà fondamentali delle nane bianche e di cercare indizi della possibile esistenza di antichi sistemi planetari attorno a esse. Luigi Bedin, ricercatore presso l’INAF di Padova e primo autore dello studio, spiega:

«Abbiamo scoperto che le osservazioni in infrarosso delle nane bianche ci hanno permesso di ricavare informazioni preziose sulle proprietà delle loro dense atmosfere di idrogeno. Dai dati si evince, inaspettatamente, un numero sorprendente di nane bianche con un relativo eccesso di emissione infrarossa. I risultati andranno confermati, ma lasciano intendere che queste nane bianche presentano le tracce di antichi sistemi planetari ormai estinti».

Il team di ricerca ha osservato, in diverse nane bianche, anomalie nella distribuzione spettrale dell’energia. Bedin si riferisce agli eccessi di emissioni nella banda di radiazione infrarossa:

«Questi possono essere dovuti a compagni di taglia sub-stellare o a residui di sistemi planetari distrutti durante l’evoluzione della stella da nane a gigante. Cosa accade? Durante la combustione dell’idrogeno dal nucleo, il guscio della stella si gonfia fino a inglobare i pianeti più interni del suo sistema».

Le osservazioni si riferiscono al vicino ammasso globulare Ngc 6397 (noto anche come C 86), un oggetto abbastanza luminoso e visibile anche a occhio nudo in direzione della costellazione dell’Altare, a 7200 anni luce dal Sole. La survey guidata da Bedin e colleghi con il JWST prevede l’osservazione di stelle intrinsecamente deboli e poco luminose, quindi la vicinanza alla sorgente è fondamentale anche se si utilizza lo strumento operativo nell’infrarosso attualmente più potente in orbita. «In questo ammasso abbiamo osservato circa il 20% di nane bianche con questo eccesso infrarosso, mentre nel campo galattico solo poche sorgenti mostrano un tal anomalo alto flusso nell’infrarosso», aggiunge Bedin.

Il gruppo di ricerca ha in programma una seconda campagna osservativa con la camera/spettrografo Miri del James Webb, uno strumento che – osservando nel medio infrarosso – riesce a caratterizzare l’energia emessa dalle nane bianche con eccesso di infrarosso, discriminando fra la presenza di compagni sub-stellari, dischi di sistemi planetari estinti, residui della fase di gigante rossa. «Queste nuove osservazioni che mapperanno lo spettro fra 2 e 20 micron ci permetteranno di risolvere il mistero», conclude il ricercatore.


immagine somma in tre colori del campo studiato con la camera NIRCam al fuoco del JWST. Crediti per l'immagine: NASA/ESA/CSA/JWST/INAF - L. R. Bedin et al. 2024
Nane bianche e pianeti distrutti: gli indizi trovati da Webb. Immagine somma in tre colori del campo studiato con la camera NIRCam al fuoco del JWST. Crediti per l’immagine: NASA/ESA/CSA/JWST/INAF – L. R. Bedin et al. 2024

Per altre informazioni:

L’articolo “JWST Imaging of the Closest Globular Clusters — I. Possible Infrared Excess Among White Dwarfs in NGC 6397”, di L. R. Bedin, D. Nardiello, M. Salaris, M. Libralato, P. Bergeron, A. J. Burgasser, D. Apai, M. Griggio, M. Scalco, J. Anderson, R. Gerasimov, A. Bellini, è stato pubblicato sulla rivista Astronomische Nachrichten.

 

 

Testo e immagine dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

NGC 1851E, NELLA COSTELLAZIONE DELLA COLOMBA, È IL BUCO NERO PIÙ LEGGERO O LA STELLA DI NEUTRONI PIÙ PESANTE?

Un articolo pubblicato oggi su Science ci svela la presenza di un oggetto dalla natura misteriosa all’interno dell’ammasso globulare NGC 1851, visibile nella costellazione della Colomba a oltre 39 mila anni luce dalla Terra. Di cosa si tratta? Un team internazionale di astronomi, guidato da ricercatori dell’Istituto Max Planck per la Radioastronomia di Bonn e a cui partecipano anche ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università di Bologna, ha sfruttato la sensibilità delle antenne del radiotelescopio sudafricano MeerKAT per scoprire un oggetto massiccio dalle caratteristiche uniche: è più pesante delle stelle di neutroni più pesanti conosciute e allo stesso tempo è più leggero dei buchi neri più leggeri trovati finora. Altro particolare non di poca rilevanza: l’indagato speciale è in orbita attorno a una pulsar al millisecondo in rapida rotazione. Questa potrebbe essere la prima scoperta del tanto ambito sistema binario radio pulsar – buco nero: una coppia stellare che consentirebbe nuovi test della teoria della relatività generale di Einstein.

Rappresentazione artistica del sistema NGC 1851 partendo dal presupposto che la stella compagna massiccia sia un buco nero. La stella sullo sfondo, la più luminosa, è la sua compagna orbitale, la radio pulsar NGC 1851E. Le due stelle sono separate da 8 milioni di km e ruotano l’una attorno all’altra ogni 7 giorni. Credit: Daniëlle Futselaar (artsource.nl)
Rappresentazione artistica del sistema NGC 1851 partendo dal presupposto che la stella compagna massiccia sia un buco nero. La stella sullo sfondo, la più luminosa, è la sua compagna orbitale, la radio pulsar NGC 1851E. Le due stelle sono separate da 8 milioni di km e ruotano l’una attorno all’altra ogni 7 giorni. Credit: Daniëlle Futselaar (artsource.nl)

Luminose e intermittenti come dei potenti fari cosmici puntati verso la Terra, le pulsar sono stelle di neutroni, ossia i resti compatti (una ventina di chilometri di diametro) ed estremamente densi, derivati da potenti esplosioni di supernova. La teoria mostra che deve esistere una massa massima per una stella di neutroni. Il valore di tale massa massima non è noto con precisione, ma esistono indicazioni sperimentali che almeno fino ad una massa totale pari a circa 2,2 volte la massa del Sole, la stella continua comunque ad essere una stella di neutroni.  D’altro canto, molteplici evidenze osservative indicano che i buchi neri (oggetti così densi e compatti per cui nemmeno la luce può allontanarsi da essi) si formano dal collasso che ha luogo alla fine della evoluzione di stelle molto più massicce di quelle che producono le stelle di neutroni. In questo caso la massa minima osservata finora per il nascente buco nero è circa 5 volte la massa del Sole. Bisogna allora domandarsi quale tipo di oggetto compatto si formi nell’intervallo di masse fra 2,2 e 5 volte la massa del Sole, in quello che i ricercatori chiamano “gap di massa per i buchi neri”: una stella di neutroni estremamente massiccia, un buco nero estremamente leggero o altro? Ad oggi non esiste una risposta chiara.

Nell’ambito delle due collaborazioni internazionali “Transients and Pulsars with MeerKAT” (TRAPUM) e “MeerTime”, gli esperti sono stati in grado prima di rilevare e poi di studiare ripetutamente i deboli impulsi provenienti da una delle stelle dell’ammasso, identificandola come una pulsar radio, un tipo di stella di neutroni che gira molto rapidamente ed emette onde radio nell’Universo come un faro cosmico. Questa pulsar, denominata NGC 1851E (ossia la quinta pulsar nell’ammasso globulare NGC 1851), ruota su se stessa più di 170 volte al secondo, e ogni rotazione produce un impulso ritmico, come il ticchettio di un orologio.

Spiega Ewan Barr, dell’Istituto Max Planck per la Radioastronomia di Bonn e primo autore (assieme alla dottoranda dello stesso istituto Arunima Dutta) dello studio:

“Il ticchettio di questi impulsi è incredibilmente regolare. Osservando come cambiano i tempi dei ticchettii, tramite una tecnica chiamata pulsar timing, siamo stati in grado di effettuare misurazioni estremamente precise del moto orbitale di questo oggetto”.

L’estrema regolarità degli impulsi osservati ha permesso anche una misurazione molto precisa della posizione del sistema, dimostrando – tramite osservazioni col telescopio spaziale Hubble – che l’oggetto in orbita attorno alla pulsar non era una normale stella, bensì un residuo estremamente denso di una stella collassata. Inoltre, il fatto che l’orbita stia progressivamente cambiando l’orientamento rispetto a noi (un effetto chiamato tecnicamente “precessione del periastro” e previsto dalla relatività generale) ha mostrato che la compagna ha una massa che era contemporaneamente più grande di quella di qualsiasi stella di neutroni conosciuta e tuttavia più piccola di quella di qualsiasi buco nero conosciuto, posizionandola esattamente nel gap di massa dei buchi neri.

Le antenne del radiotelescopio MeerKAT, in Sudafrica. Crediti: SARAO
Le antenne del radiotelescopio MeerKAT, in Sudafrica. Crediti: SARAO

Alessandro Ridolfi, primo autore della scoperta di NGC 1851E (conosciuta anche col nome alternativo PSR J0514-4002E), nel 2022, co-autore della pubblicazione su Science, nonché postdoc presso l’INAF di Cagliari, sottolinea:

“Sin dalle prime osservazioni successive alla scoperta, questo sistema binario mostrava caratteristiche peculiari, in particolare per quanto riguarda l’elevata massa della stella compagna. Ulteriori osservazioni hanno evidenziato che si trattava addirittura di un sistema unico, con una stella compagna avente una massa in quella che per ora è la “terra di nessuno” per gli oggetti compatti, ovverosia quell’intervallo di masse per le quali la teoria non è oggi in grado di stabilire se si abbia a che fare con un buco nero leggero o una stella di neutroni pesante”.

Ridolfi è uno dei vincitori del bando “Astrofit-INAF” e lavora alla ricerca di nuove pulsar esotiche ospitate in ammassi globulari.

Potenziale storia della formazione della radiopulsar NGC 1851E e della sua stella compagna. Crediti: Thomas Tauris (Aalborg University / MPIfR)
Potenziale storia della formazione della radiopulsar NGC 1851E e della sua stella compagna. Crediti: Thomas Tauris (Aalborg University / MPIfR)

Cristina Pallanca, ricercatrice al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna, prosegue:

“Se si rivelerà essere un buco nero, avremo individuato il primo sistema binario composto da una pulsar e un buco nero, una sorta di Santo Graal dell’astronomia. Grazie ad esso avremo un’opportunità senza precedenti per testare con altissima precisione la teoria della relatività generale di Albert Einstein e, di conseguenza, per comprendere meglio le proprietà fisiche dei buchi neri”.

E aggiunge Marta Burgay, un’altra ricercatrice di INAF-Cagliari coinvolta nel progetto:

“Se invece si trattasse di una stella di neutroni, la sua massa elevata imporrà nuovi vincoli alla natura delle forze nucleari, vincoli che non si possono ottenere con nessun esperimento di laboratorio”.

Il sistema si trova nell’ammasso globulare NGC 1851, un denso insieme di vecchie stelle molto più fitte rispetto alle stelle del resto della Galassia. Mario Cadelano, ricercatore al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna, lo descrive:

“Un sistema binario così non poteva che crearsi in un ambiente altrettanto straordinario: l’ammasso globulare NGC 1851 è un insieme di centinaia di migliaia di stelle mantenute unite dalla loro stessa forza di gravità, formatosi circa 13 miliardi di anni fa, quando l’universo aveva appena 800 mila anni e la nostra Galassia stava attraversando le prime fasi di formazione. All’interno degli ammassi globulari, le stelle interagiscono continuamente durante il corso della loro vita: si scambiano energia, collidono, si uniscono in nuovi sistemi binari e così via. Il nucleo di NGC 1851 è dinamicamente molto attivo, anche più rispetto a quello di altri ammassi globulari, e questo ha favorito la formazione del sistema binario unico nel suo genere che abbiamo scoperto”.

Le regioni centrali di NGC 1851 sono così affollate che le stelle possono interagire tra loro, sconvolgendo le loro orbite e nei casi più estremi scontrandosi. Si ritiene che sia stata una di queste collisioni tra due stelle di neutroni a creare l’oggetto massiccio che ora orbita attorno alla radio pulsar. Tuttavia, prima che venisse creata l’attuale binaria, la radio pulsar deve aver acquisito materiale da un’altra stella in una cosiddetta binaria a raggi X di piccola massa. Un tale processo di “riciclaggio” è necessario per riportare la pulsar alla velocità di rotazione attuale.

La scoperta di questo oggetto misterioso mette in luce le potenzialità degli strumenti utilizzati in questa survey e delle antenne che arriveranno nel futuro. Andrea Possenti, ricercatore anch’egli presso la sede sarda dell’INAF, commenta:

“Questa scoperta è l’apice degli studi finora condotti, grazie al sensibilissimo telescopio MeerKAT, sulle pulsar negli ammassi globulari, un campo di ricerca dove INAF, tramite il gruppo di Cagliari, ricopre dall’inizio un ruolo primario. Ruolo importante sia sul fronte della ricerca di nuove pulsar, 87 quelle scoperte fino ad oggi con il solo radiotelescopio sudafricano, sia ai fini dello studio di quelle note. Il bello è che c’è ancora tanto da scoprire in questi densi sistemi stellari, sia con le osservazioni a MeerKAT, sia, ancor più, con l’avvento del rivoluzionario radiotelescopio SKA. Senza contare – conclude Possenti – che collisioni fra stelle di neutroni come quella ipotizzata per spiegare l’origine di questo sistema potrebbero costituire ulteriori eventi, rari ma di grande interesse, per telescopi per onde gravitazionali, come Virgo, Ligo e il futuro Einstein Telescope”.


 

Per ulteriori informazioni:

L’articolo “A pulsar in a binary with a compact object in the mass gap between neutron stars and black holes”, di  E. Barr, Arunima Dutta, Paulo C. C. Freire, Mario Cadelano, Tasha Gautam, Michael Kramer, Cristina Pallanca, Scott M. Ransom, Alessandro Ridolfi, Benjamin W. Stappers, Thomas M. Tauris, Vivek Venkatraman Krishnan, Norbert Wex, Matthew Bailes, Jan Behrend, Sarah Buchner, Marta Burgay, Weiwei Chen, David J. Champion, C.-H. Rosie Chen, Alessandro Corongiu, Marisa Geyer, Y. P. Men, Prajwal V. Padmanabh, Andrea Possenti, è stato pubblicato sulla rivista Science.

 

 

Testo e immagini dagli Uffici Stampa INAF e Alma Mater Studiorum – Università di Bologna

GAIA E HST: INDIVIDUATO FORSE UN BUCO NERO INTERMEDIO AL CENTRO DELL’AMMASSO STELLARE MESSIER 4 (M4)?

In uno studio pubblicato oggi sulla rivista Monthly Notices of the Royal Astronomical Society, un gruppo di ricercatori guidati dallo Space Telescope Science Institute (STScI) ha sfruttato i dati raccolti dal satellite dell’ESA Gaia, nello specifico quelli della Data Release 3, e altri ottenuti dal telescopio spaziale Hubble (NASA ed ESA) per studiare qualcosa di insolito all’interno dell’antichissimo ammasso stellare Messier 4 (M4), il più vicino alla Terra. Cosa hanno notato? Un’enorme massa oscura al centro dell’ammasso, 800 volte più massiccio del nostro Sole, che potrebbe essere un buco nero di massa intermedia.

Eduardo Vitral, primo autore dell’articolo e ricercatore presso lo Space Telescope Science Institute, spiega:

“Utilizzando gli ultimi dati di Gaia e Hubble, era impossibile distinguere tra una popolazione di resti stellari e una singola sorgente puntiforme più grande. Quindi una delle possibili teorie è che invece di essere tanti piccoli oggetti separati, questa massa scura potrebbe essere un buco nero di medie dimensioni”.

Gli astronomi stanno cercando di risolvere il mistero dei buchi neri di massa intermedia da oltre due decenni. La maggior parte dei buchi neri che conosciamo sono i resti più piccoli di stelle giganti (fino a 100 volte la massa del Sole) o i “nuclei” supermassicci di grandi galassie, con masse che possono arrivare a miliardi di volte quella del Sole. Con un “peso” compreso tra 100 e 1 milione di soli, i buchi neri di massa intermedia sarebbero l’anello di congiunzione tra le due tipologie.

Timo Prusti, project scientist della missione Gaia, sottolinea:

“I dati Gaia della Data Release 3 sul moto proprio delle stelle nella Via Lattea sono stati essenziali in questo studio. I dati che verranno pubblicati in futuro e gli studi di follow-up dei telescopi spaziali Hubble e James Webb potrebbero fare ulteriore luce su questo mistero”.

Luigi Bedin, ricercatore presso l’INAF di Padova e co-autore dell’articolo, aggiunge che

“nel prossimo futuro, avremo modo di caratterizzare meglio questo eccesso di massa grazie a una analisi di 120 orbite di dati Hubble (GO-12911, PI: Bedin) e soprattutto grazie a nuove osservazioni del James Webb di M4 appena raccolte (lo scorso 9 aprile 2023, sotto il programma GO-1979, con PI: Bedin), dati specificamente disegnati per questo tipo di survey, ma non utilizzati in questo lavoro”.

Alla ricerca hanno partecipato anche Mattia Libralato e Andrea Bellini, due astronomi italiani ricercatori allo STScI.

Individuato un buco nero intermedio nell’ammasso Messier 4? Credits: ESA/Hubble & NASA

 

Per ulteriori informazioni:

L’articolo “An elusive dark central mass in the globular cluster M4”, di Eduardo Vitral, Mattia Libralato, Kyle Kremer, Gary A. Mamon, Andrea Bellini, Luigi R. Bedin e Jay Anderson, pubblicato su Monthly Notices of the Royal Astronomical Society.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF)

DA RIVEDERE L’EQUAZIONE DELLA “LEGGE DI REDDENING” SULLA MATERIA INTERSTELLARE 

 Pubblicato su Monthly Notices of the Royal Astronomical Society lo studio di un team di ricercatori dell’Università di Padova in cui è emerso che “legge di reddening”, l’equazione matematica in grado di predire come la materia interstellare modifichi la luminosità e il colore dei corpi celesti, sia molto diversa da quella che fino ad oggi era ritenuta valida.

Sulla base della nuova ricerca, un gran numero di studi basati sull’equazione tradizionale dovrebbe essere rivisto.

Equazione legge di reddening materia interstellare
Forma della materia interstellare

Prima del XX secolo l’umanità riteneva che lo spazio che separa gli astri celesti fosse vuoto. Il famoso astronomo americano Edward Emerson Barnard (1857-1923) fu il primo a comprendere che le regioni di cielo apparentemente vuote di materia non lo erano affatto. Lo spazio tra le stelle, detto interstellare, è permeato da una miriade di particelle che interagiscono con la luce delle stelle situate al di là di esse.

La materia interstellare si trova ovunque nella Via Lattea, persino in quei remoti pezzetti di cielo che, pur osservati con i più grandi telescopi, ci appaiono completamente oscuri. Queste microscopiche particelle di polveri e gas rarefatti che permeano le galassie danno origine a nubi oscure e informi. Sebbene intangibile, la materia interstellare interagisce con la luce emessa dai corpi celesti e ne cambia drammaticamente le proprietà: li rende meno luminosi e ne altera i colori. Di conseguenza queste nubi interstellari influenzano la nostra comprensione di una vasta gamma di fenomeni astrofisici che va dallo studio dei pianeti extrasolari, alle reazioni termonucleari che avvengono nelle stelle, fino alle proprietà dell’Universo su larga scala e al suo destino finale.

È essenziale, infatti, capire quanta luce sia stata assorbita dalle nubi interstellari per poter studiare qualsiasi corpo celeste. Tracciare con precisione la distribuzione della materia interstellare nella via Lattea e comprenderne le proprietà rappresenta, quindi, una delle sfide più avvincenti dell’astrofisica. Ma anche tra le più impegnative, proprio per il fatto che le nubi sono invisibili all’occhio dell’uomo e ai suoi telescopi.

Recentemente, una ricerca pubblicata sulla rivista «Monthly Notices of the Royal Astronomical Society» dal titolo “Differential reddening in the direction of 56 Galactic globular clusters” ha permesso di compiere un grosso balzo in avanti in questo settore. Si tratta del lavoro condotto da oltre due anni da un gruppo di ricerca guidato da Maria Vittoria Legnardi, una giovane dottoranda al dipartimento di Fisica e Astronomia dell’Università di Padova. Il team di Legnardi ha messo a punto una tecnica innovativa che sfrutta le straordinarie capacità del telescopio spaziale Hubble per ricavare delle mappe ad altissima risoluzione delle nubi interstellari.

Maria Vittoria Legnardi e Sohee Jang
Maria Vittoria Legnardi e Sohee Jang

«Le immagini di Hubble che usiamo – dice Maria Vittoria Legnardi – riprendono un gran numero di ammassi stellari, ovvero agglomerati di decine di migliaia di stelle gemelle, che si trovano oltre le nubi. Le nubi interstellari non sono affatto visibili nelle immagini, ma siamo riusciti a ricostruirle grazie a una lunga e laboriosa analisi della luce proveniente dalle stelle che le attraversa».

«La materia interstellare può assumere delle forme molto bizzarre – continua Sohee Jang, astronoma dell’Università di Seoul che ha trascorso gli ultimi due anni a Padova per studiare gli ammassi stellari e la materia interstellare –.  È un po’ come sdraiarsi su un prato a sognare e guardare le nuvole: animali, volti di persone, o persino un grande cuore che batte possono apparire ai nostri occhi».

«Il risultato più sorprendente – commenta Emanuele Dondoglio, coautore dell’articolo e anche lui dottorando a Padova – riguarda però la cosiddetta “legge di reddening”, ovvero l’equazione matematica in grado di predire come la materia interstellare modifichi la luminosità e il colore dei corpi celesti».

Un risultato emozionante riguarda questa legge matematica. Infatti dallo studio del gruppo di Legnardi è emerso che tale legge, ricavata dalle loro mappe ad alta risoluzione, sia molto diversa dall’equazione che fino ad oggi era ritenuta valida.

«Alla luce di questa nuova scoperta – conclude Maria Vittoria Legnardi – un gran numero di studi basati sull’equazione tradizionale dovrà essere rivisto. È possibile dunque che alcune nozioni sull’Universo locale e a larga scala potrebbero subire importanti cambiamenti nei prossimi mesi o anni».

Link alla ricerca: https://academic.oup.com/mnras/article/522/1/367/7111343

Titolo: “Differential reddening in the direction of 56 Galactic globular clusters” – «Monthly Notices of the Royal Astronomical Society» 2023

Autori: M. V. Legnardi, A. P. Milone, G. Cordoni, E. P. Lagioia, E. Dondoglio, A. F. Marino, S. Jang, A. Mohandasan, T. Ziliotto.

 

Testo e immagini (ove non indicato diversamente) dall’Ufficio Stampa dell’Università di Padova

IL PROTOAMMASSO PIÙ ANTICO E LONTANO DELL’UNIVERSO, A2744-z7p9OD, L’HA TROVATO WEBB. LO STUDIO PUBBLICATO SU THE ASTROPHYSICAL JOURNAL LETTERS

Avvistato da Hubble e confermato da Webb, con la preziosa collaborazione dell’ammasso Pandora che ha agito come lente gravitazionale, il protoammasso di galassie più antico e più lontano conta, ad oggi, sette galassie. Si stava assemblando già circa 650 milioni di anni dopo il Big Bang, un periodo in cui stavano cominciando a formarsi le prime strutture cosmiche. Nel team che ha realizzato lo studio partecipano anche ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica.

Il protoammasso più antico e lontano dell'universo, A2744-z7p9OD
Le sette galassie evidenziate in questa immagine del James Webb Space telescope sono state confermate avere un redshift di 7,9 che le colloca a un’epoca di 650 milioni di anni dopo il Big Bang. Queste sono le più antiche galassie ad essere confermate spettroscopicamente come costituenti di un ammasso in formazione. Crediti: NASA, ESA, CSA, Takahiro Morishita (IPAC), image processing: Alyssa Pagan (STScI)

Ogni gigante è stato un tempo un bambino, ma riuscire a immaginarlo senza averlo mai visto può essere difficile. Un esercizio che hanno dovuto fare per anni, gli astronomi, dovendo ricostruire come si sono formate le strutture cosmiche più grandi, come gli ammassi di galassie, senza poterne vedere direttamente i progenitori. Fino ad oggi. Grazie al telescopio spaziale James Webb di NASA ed ESA, e grazie all’aiuto della lente gravitazionale di un ammasso di galassie vicino, l’inaccessibile è diventato accessibile. In un articolo pubblicato su The Astrophysical Journal Letters arriva la conferma dell’osservazione del protoammasso più antico e più lontano di sempre, in un’epoca in cui la formazione e l’assemblaggio delle galassie era cominciato da poco. Redshift 7,9, o 650 milioni di anni dopo il Big bang, a tanto si è spinto lo specchio dorato di Webb. In quel momento cominciava a formarsi questa struttura destinata – secondo i calcoli – a diventare un enorme ammasso di galassie. Grazie alle osservazioni di spettroscopia infrarossa di Webb, un gruppo di astronomi, fra cui alcuni dell’istituto Nazionale di Astrofisica (INAF), ha confermato che si possono contare almeno sette galassie legate gravitazionalmente all’interno del protoammasso, e molte altre sono destinate a finirci dentro.

«Questo è un sito molto speciale e unico in cui le galassie evolvono in maniera accelerata, e Webb ci ha dato la possibilità senza precedenti di misurare le velocità di queste sette galassie e di confermare con sicurezza che sono legate insieme in un protoammasso», dice Takahiro Morishita, ricercatore all’IPAC-California Institute of Technology e primo autore dello studio.

Gli ammassi di galassie sono le più grandi concentrazioni di massa dell’universo conosciuto e possono ospitare migliaia di galassie legate gravitazionalmente all’interno di un’unica culla (o alone) di materia oscura. Sono talmente massicci da deformare visibilmente il tessuto dello spaziotempo, in un effetto di relatività generale noto come lensing gravitazionale. Proprio come una classica lente ottica, un ammasso di galassie produce un ingrandimento degli oggetti che si trovano, in proiezione, dietro di esso, rendendoli così visibili nonostante la distanza. L’ammasso che è stato utilizzato come lente in questo studio è l’ammasso di Pandora, o Abell 2744, che si trova a poco più di 3,5 miliardi di anni luce da noi.

“È sorprendente che solo 650 milioni di anni dopo il Big Bang ci fosse già una sovradensità di questo tipo formata, nell’universo”, commenta Benedetta Vulcani, ricercatrice dell’INAF di Padova e coautrice dell’articolo. “Il protoammasso ha un raggio di 195.000 anni luce, che è circa la distanza tra noi e la Grande nube di Magellano. È quindi abbastanza compatto, visto che il raggio di un ammasso nell’universo locale può essere 20 volte tanto. Stimare la massa è molto difficile, abbiamo seguito diversi approcci e abbiamo trovato un valore – che riteniamo conservativo – di circa 400 miliardi di masse solari. È un valore che può sembrare molto piccolo a noi addetti ai lavori che siamo abituati a pensare ai grandi ammassi moderni, ma con l’aiuto delle simulazioni abbiamo potuto vedere che questa struttura, evolvendo nel tempo, potrebbe raggiungere una massa simile all’ammasso di Coma, il più grande ammasso noto”.

La pulce nell’orecchio a Morishita e collaboratori, nel caso di A2744-z7p9OD – questo il nome del protoammasso – l’ha messa Hubble. Le sette galassie erano infatti già state individuate nel programma Frontier Fields del telescopio spaziale ottico e ultravioletto, attraverso osservazioni che sfruttavano proprio l’effetto di lente gravitazionale di alcuni ammassi di galassie vicini per vedere oggetti lontani. Per vedere i dettagli di queste strutture, però, non basta ingrandirle: occorre disporre di strumenti in grado di lavorare a lunghezze d’onda infrarosse, alle quali la luce ottica emessa da questi oggetti è stata portata a causa dell’espansione dell’Universo. Ma non potendo osservare a queste lunghezze d’onda, il telescopio Hubble non era stato in grado di dire molto sulla struttura e aveva lasciato aperta la porta della curiosità.

Curiosità che il telescopio spaziale Webb, grazie al suo spettrografo nel vicino infrarosso NIRSpec, è riuscito a soddisfare. Per prima cosa, infatti, è riuscito a confermare la distanza delle sette galassie finora confermate come parte della struttura, a misurare la velocità con la quale si muovono all’interno dell’alone di materia oscura dell’ammasso, e le principali proprietà fisiche. E in secondo luogo, ha consentito di modellare e costruire la storia futura del protoammasso, scoprendo che somiglierà molto all’ammasso di Coma – uno degli ammassi più densi e popolosi dell’universo moderno.

Per crescere, una struttura come questa finirà per acquisire diverse centinaia e migliaia di altre galassie, delle quali gli astronomi hanno già trovato alcune tracce. Nella stessa regione di cielo ci sono infatti altre galassie che hanno un redshift fotometrico – stimato cioè con un metodo meno sicuro di quello utilizzato da Webb – simile a quello del protoammasso. Si trovano però ancora abbastanza lontane da questo, fino a un milione di anni luce di distanza dal centro della struttura, cinque volte più in là del suo raggio.

“Tutte le sette candidate che abbiamo osservato si sono rivelate parte della struttura, con un successo del 100%”, continua Vulcani. “In futuro di certo cercheremo di confermare anche gli altri candidati, per riuscire ad avere una stima più accurata delle dimensioni del protoammasso. Molto probabilmente finora ne abbiamo osservato solo il cuore, o una zona densa, ma pensiamo che ci siano altre galassie che non abbiamo individuato e che appartengono alla stessa struttura”.

Secondo la teoria della formazione e accrescimento delle strutture comiche, nel corso di miliardi di anni nuove galassie “cadranno” in questo protoammasso e contribuiranno alla sua crescita.

“La crescita delle strutture è simile a quella dei corsi d’acqua: torrenti che nascono da montagne diverse possono poi confluire in fiumi più grandi fino a formare i grandi fiumi. Così galassie inizialmente lontane con il passare del tempo si agglomerano in uno stesso spazio” commenta Vulcani, e conclude: “Quello che è sorprendente è che il nostro risultato supporta l’idea secondo cui galassie ad alto redshift che sono fisicamente lontane e magari non ancora parte di una struttura formata, in qualche modo sono già consapevoli del loro destino che le porterà a confluire in un ammasso. Queste galassie, infatti, formano stelle in maniera e quantità molto simili nel corso degli anni e hanno tutte un’evoluzione accelerata rispetto alle altre galassie che vivono la stessa epoca cosmica ma sono isolate. Come se, tornando all’immagine del fiume, le gocce d’acqua che nascono da sorgenti diverse in qualche modo sapessero che prima o poi si incontreranno”.

L’articolo Early results from GLASS-JWST. XVIII:A spectroscopically confirmed protocluster 650 million years after the Big Bang di Takahiro Morishita, Guido Roberts-Borsani, Tommaso Treu, Gabriel Brammer, Charlotte A. Mason, Michele Trenti, Benedetta Vulcani, Xin Wang, Ana Acebron, Yannick Bah´e, Pietro Bergamini, Kristan Boyett, Marusa Bradac, Antonello Calabrò, Marco Castellano, Wenlei Chen, Gabriella De Lucia, Alexei V.Filippenko, Adriano Fontana, Karl Glazebrook, Claudio Grillo, Alaina Henry, Tucker Jones, Patrick L. Kelly, Anton M. Koekemoer, Nicha Leethochawalit, Ting-Yi Lu, Danilo Marchesini, Sara Mascia, Amata Mercurio, Emiliano Merlin, Benjamin Metha, Themiya Nanayakkara, Mario Nonino, Diego Paris, Laura Pentericci, Piero Rosati, Paola Santini, Victoria Strait, Eros Vanzella, Rogier A.Windhorst e Lizhi Xie è stato pubblicato sul sito web della rivista The Astrophysical Journal Letters. DOI: 10.3847/2041-8213/acb99e

 Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza
Istituto Nazionale di Astrofisica (INAF)

Gaia l’investigatrice, così stana le coppie di buchi neri supermassicci

Un team di astrofisici guidato da Filippo Mannucci dell’Istituto nazionale di astrofisica ha ideato un nuovo metodo per individuare rapidamente e sull’intero cielo coppie di buchi neri supermassicci destinati a fondersi insieme alle rispettive galassie. La tecnica si avvale dei dati raccolti dal telescopio spaziale Gaia dell’ESA ed è stata confermata da osservazioni con Hubble, LBT e altri grandi telescopi da terra. I risultati sono descritti in un articolo pubblicato oggi su Nature Astronomy.

È una verità universalmente riconosciuta che un buco nero in possesso di una buona massa debba necessariamente cercare un compagno. Lo abbiamo appurato, da qualche anno, per buchi neri relativamente piccoli – decine di masse solari – grazie alla rivelazione delle onde gravitazionali che generano quando si fondono. E lo stesso sembra valere anche per quelli supermassicci – centinaia di milioni, se non miliardi, di masse solari – che albergano nel cuore delle galassie. Quando due galassie si scontrano, e lo fanno spesso, si uniscono e i due buchi neri supermassicci iniziano a spiraleggiare l’uno attorno all’altro, in quella danza gravitazionale che prima o poi li condurrà inevitabilmente a fondersi.

Di coppie di questo genere – in grado di produrre due nuclei galattici attivi (AGN, dall’inglese active galactic nucleus) all’interno dell’unica galassia risultante dalla fusione – l’universo dev’essere pieno: è quanto prevedono i modelli cosmologici basati sul cosiddetto merging gerarchico. Ma è una previsione ancora in attesa di verifica osservativa, a causa dell’enorme difficoltà che individuare queste coppie comporta. Ora però, grazie all’intuizione di un team d’astrofisici guidato da Filippo Mannucci dell’Istituto nazionale di astrofisica (INAF), è stato messo a punto un metodo originale che consente di ottenere campioni estesi e affidabili di “candidati AGN doppi” – vale a dire, appunto, possibili coppie di buchi neri supermassicci. La nuova tecnica, descritta in un articolo pubblicato oggi su Nature Astronomy, sfrutta i dati raccolti da uno strumento progettato per tutt’altro scopo: il satellite Gaia dell’Agenzia Spaziale Europea (ESA), nato per compilare la mappa multidimensionale più precisa e completa della Via Lattea. E si avvale, per la verifica dei risultati, delle capacità straordinarie di eseguire osservazioni ad alta risoluzione consentite, dallo spazio, dal telescopio Hubble, e da terra – grazie al sistema di ottiche adattive che annulla le distorsioni introdotte dalla turbolenza atmosferica – dal Large Binocular Telescope (LBT).

immagini ad alta risoluzione, ottenute dal Large Binocular Telescope (LBT) grazie al sistema di ottiche adattive SOUL realizzato dall’INAF, di cinque coppie di buchi neri supermassicci selezionate nell’archivio di Gaia tramite la tecnica dei picchi multipli. Crediti: F. Mannucci et al., Nature Astronomy, 2022

«Abbiamo scavato nello sconfinato archivio del telescopio spaziale Gaia dell’ESA e utilizzato per la prima volta una proprietà misurata ma mai usata. Questo parametro», spiega Filippo Mannucci, dirigente di ricerca all’INAF di Arcetri,

«si è rivelato utilissimo per il nostro problema, aprendo un campo tutto nuovo. È stato emozionante vedere come i telescopi specializzati per ottenere immagini di alta risoluzione – il telescopio spaziale Hubble e, ancora meglio, LBT, grazie al sistema di ottiche adattive SOUL realizzato dall’INAF – abbiano confermato il nuovo metodo: un ottimo esempio di uso sincronizzato di vari telescopi, spaziali e da terra. Dopo la scrittura dell’articolo abbiamo ottenuto altre conferme e iniziato un grande studio statistico usando anche i telescopi del Keck, alle Hawaii, e il Very Large Telescope dell’ESO, in Cile. E stiamo usando altri telescopi da terra, come TNG, NTT e Asiago, per allargare il campione».

«Il nuovo parametro pubblicato nell’ultima release del catalogo Gaia», aggiunge Elena Pancino dell’INAF di Arcetri, coautrice dello studio, riferendosi alla “proprietà misurata ma mai usata” citata da Mannucci, «indica la presenza di picchi multipli nei profili di luce unidimensionali prodotti dal satellite ESA, e si sta rivelando utile soprattutto alla comunità stellare galattica per identificare binarie visuali o fisiche, per cui abbiamo pensato di testarlo sugli AGN».

Volendo fare un’analogia, pensiamo a una fotocellula piazzata all’ingresso di un’attrazione – un museo, uno stadio, un supermercato – per contare le persone che entrano: una persona, un picco di segnale. Se entro un intervallo di tempo molto breve – un secondo, per esempio – vengono prodotti due picchi, significa che sono entrate due persone a distanza molto ravvicinata. Forse una coppia? È possibile. Per capirlo, occorre anzitutto stabilire sotto a quale soglia di distanza fra due picchi possa aver senso ipotizzare che si tratti di una coppia.

Fuor di metafora: quanto devono essere vicini fra loro, due buchi neri, per poter essere considerati una coppia?

«Sono una coppia quando fanno parte della stessa galassia, ma questo non riusciamo a determinarlo direttamente. Assumiamo quindi una distanza massima di circa 20mila anni luce», dice un altro dei coautori dello studio, Alessandro Marconi dell’Università di Firenze. «È una distanza inferiore a quella fra il Sole e il centro della Via Lattea, che ad un redshift superiore a 0.5 corrisponde a meno di 1 secondo d’arco».

Assumendo tale soglia, le coppie di buchi neri supermassicci attualmente note sono soltanto quattro. Ma con il metodo del gruppo di astronomi fiorentini questo numero potrebbe esplodere, arrivando potenzialmente a molte centinaia. Questo grazie al fatto che Gaia, pur realizzato per studi stellari, è l’unico strumento che abbia osservato l’intero cielo in alta risoluzione, ed è dunque anche l’unico in grado di trovare ­– evidenziandole con i suoi picchi multipli – queste coppie molto vicine, e molto rare, di buchi neri supermassicci.

«Certo, una volta individuate, queste potenziali coppie vanno poi confermate una a una, ed è un processo lento», sottolinea Mannucci, «che richiede il ricorso a misure di spettroscopia. Per ora siamo riusciti a confermarne due, ma già abbiamo ottenuto dall’ESO la possibilità di usare lo strumento MUSE del Very Large Telescope per osservarne altre trenta nel prossimo semestre».

Allo studio pubblicato oggi su Nature Astronomy, intitolato “Unveiling the population of dual- and lensed- AGNs at sub-arcsec separations with Gaia”, hanno preso parte numerosi astrofisici dell’INAF di Arcetri (oltre ai già citati Filippo Mannucci ed Elena Pancino, Francesco Belfiore, Giovanni Cresci, Antonino Marasco, Emanuele Nardini, Enrico Pinna), dell’Università di Firenze (oltre ad Alessandro Marconi, Elisabetta Lusso e Giulia Tozzi), dell’INAF di Brera (Paola Severgnini, Paolo Saracco) e di alcuni istituti esteri (Claudia Cicone dell’Università di Oslo, Anna Ciurlo di Ucla e Sherry Yeh del W. M. Keck Observatory).

rappresentazione artistica di una coppia di buchi neri supermassicci durante una fusione galattica. Crediti: ESA

Testo e foto dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

Un gruppo di ricerca internazionale rileva il precursore di un buco nero supermassiccio nei dati di archivio del telescopio Hubble

Una collaborazione internazionale, che ha visto la partecipazione di astrofisici della Sapienza e dell’Istituto nazionale di astrofisica – Inaf, ha scoperto un oggetto distante circa 13 miliardi di anni luce dalla Terra, estremamente compatto e arrossato dalla polvere stellare. La rilevazione, effettuata grazie all’utilizzo del telescopio spaziale Hubble, farà luce sul mistero della crescita dei buchi neri supermassicci nell’universo primordiale. I risultati del lavoro sono stati pubblicati su Nature.

il precursore di un buco nero supermassiccio
Il precursore di un buco nero supermassiccio nei dati di archivio di Hubble. Figura 1: GNz7q, un oggetto scoperto a circa 13,1 miliardi di anni luce dalla Terra che mostra segni di un buco nero in rapida crescita all’interno di una galassia in forte formazione stellare e ricca di polvere interstellare (starburst polverosa), colorato nell’immagine combinando i dati di tre osservazioni a colori del telescopio spaziale Hubble. Trovato nella regione GOODS-North[1], una delle regioni del cielo più studiate fino ad oggi, GNz7q è l’oggetto rosso al centro dell’immagine ingrandita (Credito: ESA/Hubble/Fujimoto et al.)

La scoperta di buchi neri supermassicci nell’universo primordiale, con masse fino a diverse centinaia di milioni di volte quella del sole, ha sollevato il problema di capire come oggetti di questa taglia siano stati in grado di formarsi e crescere nel breve periodo di tempo successivo alla nascita dell’Universo (meno di un miliardo di anni). Teoricamente, un buco nero inizia dapprima ad aumentare la sua massa accrescendo gas e polvere nel nucleo di una galassia ricca di polvere e caratterizzata da elevati tassi di formazione stellare (una cosiddetta galassia starburst polverosa). L’energia generata nel processo spazza via i materiali circostanti, trasformando il sistema in un quasar, una sorgente astrofisica molto luminosa e compatta.

Fino a oggi sono state scoperte galassie starburst polverose e quasar luminosi post-transizione ad appena 700-800 milioni di anni dopo il Big Bang, ma non è mai stato trovato un “giovane” quasar nella fase di transizione, la cui scoperta deterrebbe la chiave per la comprensione dei meccanismi di formazione dei buchi neri supermassicci nell’Universo primordiale.

Un gruppo di ricerca internazionale, coordinato dall’astronomo Seiji Fujimoto dell’Università di Copenaghen, con la partecipazione, fra gli altri, di ricercatori del Dipartimento di Fisica della Sapienza e dell’Istituto nazionale di astrofisica – Inaf, ha rianalizzato una grande quantità di dati d’archivio estratti dal telescopio spaziale Hubble e ha scoperto un oggetto, denominato poi GNz7q, che è proprio l’anello mancante tra le galassie starburst e i quasar luminosi nell’universo primordiale. I risultati del lavoro sono stati pubblicati sulla rivista Nature.

Le osservazioni spettroscopiche con i radiotelescopi hanno mostrato che il giovane quasar è nato solo 750 milioni di anni dopo il Big Bang. Tali osservazioni, sono state poi confrontate con i modelli teorici. Questa importante fase del lavoro è stata svolta da Rosa Valiante dell’Inaf e Raffaella Schneider della Sapienza e ha mostrato come le caratteristiche dello spettro elettromagnetico di questo oggetto, dai raggi X alle onde radio, non si discostano dalle previsioni delle simulazioni teoriche.

“Questo suggerisce che GNz7q sia il primo esempio di buco nero in rapida crescita nel centro di una galassia starburst polverosa – commentano Schneider e Valiante. “Pensiamo che GNz7q sia un precursore dei buchi neri supermassicci trovati nell’universo primordiale”.

La scoperta di GNz7q non solo rappresenta un elemento importante per comprendere l’origine dei buchi neri supermassicci, ma anche un motivo di sorpresa per i ricercatori: la rilevazione infatti è stata fatta in una delle regioni più osservate nel cielo notturno – denominata GOODS, Great Observatories Origins Deep Survey, oggetto d’indagine astronomica dei telescopi più potenti mai costruiti (ovvero quelli operativi nello spazio come Hubble, Herschel e XMM-Newton dell’ESA, il telescopio Spitzer della NASA e l’Osservatorio a raggi X Chandra, oltre a potenti telescopi terrestri, compreso il telescopio Subaru) – suggerendo quindi che sorgenti di questo tipo possano essere più frequenti di quanto si pensasse in precedenza.

Il gruppo di ricerca si propone di condurre una ricerca sistematica di sorgenti simili utilizzando campagne osservative ad alta risoluzione e di sfruttare gli strumenti spettroscopici del telescopio spaziale James Webb della NASA/ESA/CSA, una volta che sarà in regolare funzionamento, per studiare oggetti come GNz7q con una ricchezza di dettagli senza precedenti.

il precursore di un buco nero supermassiccio
Il precursore di un buco nero supermassiccio nei dati di archivio di Hubble. Figura 2: un’impressione artistica di un giovane buco nero in crescita che emerge dal centro di una galassia starburst polverosa, mentre i materiali densi circostanti di gas e polvere vengono spazzati via dalla potente energia generata quando il buco nero evolve rapidamente accrescendo la materia circostante. (Credito: ESA/Hubble)

Riferimenti:

A dusty compact object bridging galaxies and quasars at cosmic dawn – S. Fujimoto, G. B. Brammer, D. Watson, G. E. Magdis, V. Kokorev, T. R. Greve, S. Toft, F. Walter, R. Valiante, M. Ginolfi, R. Schneider, F. Valentino, L. Colina, M. Vestergaard, R. Marques-Chaves, J. P. U. Fynbo, M. Krips, C. L. Steinhardt, I. Cortzen, F. Rizzo & P. A. Oesch – Nature https://doi.org/10.1038/s41586-022-04454-1 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Il segnale UV e ottico che sfida i modelli delle pulsar

Osservati, per la prima volta da una pulsar al millisecondo in fase “esplosiva”, lampi in banda ottica e ultravioletta oltre alle pulsazioni nei raggi X tipiche di questi corpi celesti. La scoperta, guidata da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica e basata anche su osservazioni effettuate con il Telescopio Nazionale Galileo, mette alla prova i modelli teorici che descrivono il comportamento delle pulsar in sistemi binari

Illustrazione di una pulsar in un sistema binario. Crediti: ESA

Si chiama SAX J1808.4-3658 ed è una pulsar, ovvero una stella di neutroni – quel che resta di stelle più massicce del Sole – che emette radiazione attraverso due coni di luce e ruota molto rapidamente, facendo sì che l’emissione appaia pulsante, come quella un faro. Ma non finisce qui. È una pulsar “al millisecondo”, cioè ruota ancora più veloce della maggior parte delle pulsar, completando ben 401 giri su sé stessa in un solo secondo, e per di più si trova in un sistema binario, orbitando insieme a un’altra stella alla quale sottrae regolarmente materia. Ma è anche un oggetto celeste decisamente incostante. Alterna infatti fasi di “quiescenza” a periodi più attivi o “esplosivi” ogni 3–4 anni: l’esplosione più recente, la nona dalla sua scoperta nel 1996, è stata registrata tra agosto e settembre 2019.

Durante la fase esplosiva, la luminosità di SAX J1808.4-3658 – ad oggi si conoscono una ventina di sistemi simili ad essa – aumenta significativamente sia in banda ottica e ultravioletta (UV) che nei raggi X, e inizia l’accrescimento: l’altra stella trasferisce materia e momento angolare alla pulsar attraverso un disco che si estende fino a pochi chilometri dalla sua superficie. Questo processo accelera la rotazione della pulsar e convoglia la materia in accrescimento sui suoi poli, dando origine a un segnale pulsato nei raggi X.

“Quando è stato annunciato l’inizio della nuova esplosione di SAX J1808.4-3658, ad agosto 2019, ci siamo chiesti se, oltre alle pulsazioni in banda X, il sistema potesse mostrare anche pulsazioni in banda ottica e ultravioletta”, spiega Arianna Miraval Zanon, dottoranda presso l’Università dell’Insubria e associata all’INAF di Milano, co-prima autrice insieme a Filippo Ambrosino, ricercatore all’INAF di Roma, dell’articolo pubblicato oggi sulla rivista Nature Astronomy. E la curiosità è stata premiata. “Per la prima volta abbiamo osservato nello stesso sistema, durante la fase esplosiva, pulsazioni con lo stesso periodo di rotazione della pulsar in tre bande diverse: X, UV e ottica”, aggiunge Ambrosino.

Fino ad allora, non erano mai state osservate pulsazioni in banda UV da pulsar in sistemi binari. In banda ottica, invece, le pulsazioni erano state viste soltanto in 5 pulsar isolate e in un solo sistema binario, PSR J1023+0038, quest’ultimo in un lavoro firmato dallo stesso Ambrosino e diversi co-autori del nuovo studio; si tratta però di un sistema diverso, che si trova in una fase intermedia, e che quindi somiglia a SAX J1808.4-3658 solo in parte.

UV ottico pulsar SAX J1808.4-3658
Lo strumento SiFAP2 installato al Telescopio Nazionale Galileo. Crediti: A. Ghedina

Lo studio si basa su osservazioni in banda UV effettuate con il telescopio spaziale Hubble e in banda ottica con il Telescopio Nazionale Galileo (TNG) dell’INAF a La Palma (Isole Canarie), equipaggiato con il fotometro ottico ad altissima risoluzione temporale e accuratezza assoluta SiFAP2, cruciale per la scoperta delle pulsazioni ottiche da questo sistema. Il primo prototipo dello strumento, SiFAP, era stato ideato e sviluppato da Franco Meddi insieme a Filippo Ambrosino, con l’ausilio di Paolo Cretaro al Dipartimento di Fisica della Sapienza Università di Roma, e già nel 2017 aveva permesso di rivelare le pulsazioni ottiche dall’altra pulsar menzionata, PSR J1023+0038. Grazie a successive collaborazioni con INAF, con lo stesso TNG e con l’Università di Catania (in particolare con Francesco Leone), lo strumento è stato migliorato prendendo il nome di SiFAP2, una nuova versione che consentirà di effettuare anche studi polarimetrici grazie ad un nuovo sistema di cubi polarizzatori.

Ma le nuove osservazioni pongono un dilemma: la luminosità delle pulsazioni misurate in banda ottica e UV è troppo elevata per essere spiegata, usando i modelli teorici esistenti, dall’accrescimento di materia sulla pulsar. “Il segnale ottico e UV pulsato potrebbe quindi essere prodotto nella magnetosfera della pulsar, o poco lontano da essa, ed essere alimentato dalla rotazione del dipolo magnetico della pulsar”, dice Miraval Zanon. “Se così fosse, potrebbero convivere o alternarsi molto rapidamente due meccanismi fisici diversi: da una parte l’accrescimento produrrebbe gli impulsi in banda X; dall’altra la pulsar, alimentata dalla sua stessa rotazione, riuscirebbe a generare impulsi in banda ottica e UV. Questo scenario sfida gli attuali modelli teorici secondo cui un meccanismo esclude l’altro”.

Un altro aspetto interessante sollevato dal nuovo studio è uno sfasamento significativo – pari a poco più di mezzo periodo di rotazione – osservato tra la pulsazione X e quella ottica. “Questo ha dato adito a diverse interpretazioni”, sottolinea Ambrosino, “la più suggestiva delle quali è senza dubbio la possibilità che l’emissione X pulsata provenga da uno dei due poli magnetici della pulsar, mentre la pulsazione ottica sia generata nel polo opposto. Questa è solo un’ipotesi, non possiamo dire nulla di veramente definitivo prima di avere una statistica più ampia sull’emissione ottica di queste sorgenti”.

In futuro, il gruppo ha in programma nuove osservazioni di questo sistema durante la fase quiescente con lo strumento SiFAP2, per indagare l’eventuale presenza di pulsazioni ottiche una volta diminuita la luminosità: questo aiuterà a comprendere meglio il meccanismo che le genera durante la fase esplosiva. Un piano sul più lungo termine, già approvato, prevede lo studio della prossima sorgente, tra le venti simili a questa, che entrerà in fase esplosiva, effettuando osservazioni simultanee nei raggi X con l’osservatorio dell’ESA XMM-Newton, in UV con Hubble e in ottico con il TNG.

Lo studio è stato pubblicato sulla rivista Nature Astronomy nell’articolo Optical and ultraviolet pulsed emission from an accreting millisecond pulsar di F. Ambrosino, A. Miraval Zanon, A. Papitto, F. Coti Zelati, S. Campana, P. D’Avanzo, L. Stella, T. Di Salvo, L. Burderi, P. Casella, A. Sanna, D. de Martino, M. Cadelano, A. Ghedina, F. Leone, F. Meddi, P. Cretaro, M. C. Baglio, E. Poretti, R. P. Mignani, D. F. Torres, G. L. Israel, M. Cecconi, D. M. Russell, M. D. Gonzalez Gomez, A. L. Riverol Rodriguez, H. Perez Ventura, M. Hernandez Diaz, J. J. San Juan, D. M. Bramich, F. Lewis

https://doi.org/10.1038/s41550-021-01308-0

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

WFIRST (Wide Field InfraRed Survey Telescope) – da poco ribattezzato Roman Telescope in onore dell’astronoma statunitense Nancy Grace Roman, affettuosamente chiamata “la mamma di Hubble” – è un progetto NASA designato ad indagare su alcuni grandi misteri dell’Universo come la materia e l’energia oscura e per cercare nuovi mondi in orbita attorno ad altre stelle della nostra galassia.

ScientifiCult ha l’onore di poter intervistare il dott. Valerio Bozza, ricercatore presso l’Università degli Studi di Salerno e attualmente impegnato a collaborare con la NASA per la realizzazione del Telescopio Roman.

Valerio Bozza
Il dott. Valerio Bozza

Può raccontarci i momenti della Sua carriera professionale che ricorda con più piacere?

In vent’anni di ricerca ho avuto la fortuna di vivere tante soddisfazioni e di lavorare con le persone che hanno scritto i libri su cui ho studiato. Certamente, partecipare alle discussioni nello studio di Gabriele Veneziano al CERN con i cosmologi più importanti del mondo e poter assistere alla nascita di idee geniali su quella lavagna è stata un’esperienza formativa fondamentale. Quando ho avuto il mio primo invito a relazionare ad un workshop all’American Institute of Mathematics sul gravitational lensing di buchi neri e ho ricevuto i complimenti di Ezra T. Newman, ho capito che potevo davvero dire la mia anche io.

Ricordo ancora le notti di osservazioni allo European Southern Observatory a La Silla in Cile, sotto il cielo più bello del pianeta. Ricordo l’invito al Collège de France a Parigi da parte di Antoine Layberie per un seminario, che poi ho scoperto di dover tenere in francese! Poi non ci dimentichiamo la notizia della vittoria al concorso da ricercatore, che mi ha raggiunto mentre ero in Brasile per un altro workshop sulle perturbazioni cosmologiche. Infine, ricordo con una certa malinconia le notti e i giorni di lavoro all’Osservatorio Astronomico UNISA per mettere su un programma di ricerca competitivo. Tutto è finito con la copertina di Nature sulla scoperta del pianeta KELT-9b, il più caldo mai visto, e la distruzione dell’Osservatorio nel febbraio 2019, una ferita ancora aperta.

Adesso, però, è ora di concentrarsi sullo sviluppo del nuovo telescopio spaziale WFIRST della NASA, che il 20 maggio scorso è stato rinominato Nancy Grace Roman Space Telescope (o semplicemente “Roman”, in breve), in onore della astronoma che ha contribuito alla nascita dei primi telescopi spaziali della NASA.

Infine, ricordo con una certa malinconia le notti e i giorni di lavoro all’Osservatorio Astronomico UNISA con il Prof. Gaetano Scarpetta, per mettere su un programma di ricerca competitivo.

Ci sono degli aggiornamenti sulla data del lancio di Roman?

Il lancio del telescopio Roman era programmato per il 2025, ma diverse vicende hanno giocato contro in questi ultimi anni: il ritardo nel lancio del JWST, lo shutdown del governo americano ad inizio 2019 e soprattutto l’epidemia di COVID-19, che sta provocando ritardi su tutte le scadenze nella tabella di marcia. A questo punto, direi che uno slittamento all’anno successivo possa essere plausibile. Tuttavia, l’interesse verso questa missione sta continuando a crescere sia dentro che fuori l’ambito accademico, mettendola al riparo da eventuali tagli di budget.


Roman viene spesso paragonato al telescopio spaziale Hubble. Quali sono le differenze e le somiglianze? E con il JWST?

Si tratta di tre telescopi spaziali che spesso vengono citati insieme, ma sono tutti e tre profondamente diversi: Hubble opera nella banda del visibile e nell’ultravioletto, mentre non è molto sensibile all’infrarosso. Al contrario, sia JWST che Roman opereranno nel vicino infrarosso. JWST avrà un campo di vista molto più piccolo anche di Hubble, perché il suo scopo è fornirci immagini con dettagli mai visti prima di sistemi stellari e planetari in formazione. Roman, invece, avrà un campo di vista cento volte più grande di Hubble, perché il suo scopo è quello di scandagliare aree di cielo molto grandi alla ricerca di galassie o fenomeni transienti. La grande novità è che Roman condurrà queste survey a grande campo con una risoluzione di 0.1 secondi d’arco, simile a quella di Hubble! Quindi, avremo la possibilità di condurre la scienza di Hubble su enormi aree di cielo contemporaneamente. JWST, invece, condurrà osservazioni con un dettaglio molto migliore di Hubble e di Roman, ma su un singolo oggetto in un’area molto limitata.

Roman telescope Valerio Bozza
Immagine 3D del veicolo spaziale Roman (luglio 2018). Immagine NASA (WFIRST Project and Dominic Benford), adattata, in pubblico dominio


Quali sono i target scientifici della missione e come vengono raggiunti?

A differenza di Hubble e JWST, Roman avrà poco spazio per richieste estemporanee di osservazioni. Sarà un telescopio essenzialmente dedicato a due programmi principali: una survey delle galassie lontane e una survey del centro della nostra Galassia. La prima survey effettuerà delle immagini di tutto il cielo alla ricerca di galassie deboli e lontane. Queste immagini consentiranno di capire meglio la distribuzione della materia nel nostro Universo, fissare le tappe dell’espansione cosmologica e chiarire i meccanismi alla base dell’espansione accelerata, scoperta venti anni fa attraverso lo studio delle supernovae Ia. I cosmologi si aspettano che Roman possa fornirci risposte fondamentali sulla natura della cosiddetta Dark Energy, che è stata ipotizzata per spiegare l’accelerazione del nostro Universo, ma la cui natura è del tutto sconosciuta.

Il secondo programma osservativo è una survey delle affollatissime regioni centrali della nostra galassia. Monitorando miliardi di stelle, ci aspettiamo che, almeno per una frazione di queste, la loro luce verrà amplificata da effetti temporanei di microlensing dovuti a stelle che attraversano la linea di vista. Il microlensing è un’amplificazione dovuta al ben noto effetto “lente gravitazionale” previsto dalla relatività generale di Einstein. Se la stella che fa da lente è anche accompagnata da un pianeta, l’amplificazione riporterà delle “anomalie” che potranno essere utilizzate per studiare e censire i sistemi planetari nella nostra galassia. Roman sarà così sensibile da rivelare anche pianeti piccoli come Marte o Mercurio!

microlensing
Il fenomeno del microlensing: la sorgente (in alto) appare più brillante quando una stella lente passa lungo la linea di vista. Se la lente è accompagnata da un pianeta, la luminosità mostra anche una breve anomalia. Credits: © ESA


Quali differenze tra le caratteristiche dei pianeti extrasolari che andrà a scoprire
Roman e quelle dei pianeti che ha osservato Kepler e che osserva TESS?

Il metodo del microlensing, utilizzato da Roman, è in grado di scoprire pianeti in orbite medio-larghe intorno alle rispettive stelle. Al contrario, sia Kepler che TESS, utilizzano il metodo dei transiti, in cui si misura l’eclisse parziale prodotta dal pianeta che oscura parte della sua stella. Questi due satelliti, quindi, hanno scoperto tipicamente pianeti molto vicini alle rispettive stelle.

Ipotizzando di osservare una copia del Sistema Solare, Kepler e TESS potrebbero vedere Mercurio o Venere, nel caso di un buon allineamento. Roman, invece, avrebbe ottime probabilità di rivelare tutti i pianeti da Marte a Nettuno.

Un’altra differenza è che Roman scoprirà pianeti distribuiti lungo tutta la linea di vista fino al centro della Galassia, consentendo un’indagine molto più ampia della distribuzione dei pianeti di quanto si possa fare con altri metodi, tipicamente limitati al vicinato del Sole. Purtroppo, però, i pianeti scoperti col microlensing non si prestano ad indagini approfondite, poiché, una volta terminato l’effetto di amplificazione, i pianeti tornano ad essere inosservabili e sono perduti per sempre.

In definitiva, la conoscenza dei pianeti nella nostra Galassia passa per il confronto tra diversi metodi di indagine complementari. Ognuno ci aiuta a comprendere una parte di un puzzle che si rivela sempre più complesso, mano mano che scopriamo mondi sempre più sorprendenti.

 

Nancy Grace Roman, in una foto NASA del 2015, in pubblico dominio