News
Ad
Ad
Ad
Tag

Glia

Browsing

Scoperto un nuovo tipo di astrociti, definiti astrociti glutammatergici: si tratta di cellule cerebrali essenziali per la memoria, l’apprendimento e il controllo del movimento

Uno studio pubblicato da Nature che ha tra i suoi protagonisti l’Università di Roma Tor Vergata e la Fondazione Santa Lucia IRCCS di Roma evidenzia l’esistenza di un terzo tipo di cellule cerebrali essenziali, finora sconosciute, che si pongono a metà tra i neuroni e la glia.

Ada Ledonne
Ada Ledonne. Crediti Foto: Fondazione Santa Lucia IRCCS

Roma, 12 settembre 2023 – Uno studio, svolto presso l’Università di Losanna (UNIL) in Svizzera e presso la Fondazione Santa Lucia IRCCS di Roma con il contributo in tutte le sue fasi della ricercatrice Ada Ledonne – seconda autrice del lavoro – ha scoperto una terza tipologia di cellule cerebrali essenziali che agiscono sui circuiti cerebrali legati alla memoria, all’attenzione e al controllo del movimento.

Lo studio, pubblicato da Nature, ha individuato una particolare tipologia di astrociti, cellule tra i componenti della “glia” ossia la parte non-neuronale del cervello che fornisce struttura, nutrimento e regola l’ambiente all’interno dell’encefalo. Gli astrociti scoperti dal gruppo di ricerca sono però differenti perché presentano caratteristiche neuronali e sono in grado di mettere in circolo il glutammato, un neurotrasmettitore. Questa caratteristica, mai osservata prima di questo studio, pone questi astrociti a metà tra le cellule gliali e le cellule neuronali ed evidenzia l’esistenza di una terza categoria di cellule, finora sconosciuta, necessaria al buon funzionamento del cervello.

Ada Ledonne e Nicola Biagio Mercuri
Ada Ledonne e Nicola Biagio Mercuri. Crediti Foto: Fondazione Santa Lucia IRCCS

Lo studio è stato diretto dal prof. Andrea Volterra, professore emerito presso l’Università di Losanna e visiting faculty presso il Wyss Center for Bio and Neuroengineering di Ginevra, in passato anche visiting scientist presso la Fondazione Santa Lucia IRCCS di Roma. Lo studio è stato condotto da un team internazionale di ricercatori che ha avuto tra i suoi protagonisti, sia in Italia sia in Svizzera, la farmacologa e neuroscienziata Ada Ledonne, attualmente ricercatrice presso l’Università di Roma Tor Vergata e anche presso la Fondazione Santa Lucia IRCCS, nel laboratorio di Neurologia Sperimentale diretto dal neurologo prof. Nicola Biagio Mercuri, professore di Neurologia presso l’Università di Roma Tor Vergata, il quale ha contribuito a questo studio.

“I risultati ottenuti” spiega la dott.ssa Ledonne “dimostrano che gli astrociti glutammatergici influenzano l’attività neuronale, la neurotrasmissione e la plasticità sinaptica in importanti circuiti cerebrali, quali il circuito cortico-ippocampale e il sistema dopaminergico nigrostriatale, con implicazioni nella regolazione di processi di apprendimento e memoria, controllo del movimento, e insorgenza di crisi epilettiche”.

Le cellule scoperte sono coinvolte anche nei meccanismi di plasticità sinaptica neuronale, ossia nei meccanismi che regolano la forza della comunicazione tra i neuroni. In particolare lo studio pubblicato su Nature dimostra che gli astrociti glutammatergici sono essenziali per una forma di plasticità (chiamata potenziamento a lungo termine) che è alla base dei processi di apprendimento. Infatti, interferendo con la funzione di questo nuovo tipo di astrociti nei modelli sperimentali si ha un danneggiamento della memoria.

L’identificazione di questa nuova tipologia di cellule cerebrali con caratteristiche intermedie tra astrociti e neuroni risolve le precedenti controversie sulla capacità degli astrociti di effettuare rilascio vescicolare di trasmettitori. In questo modo costituisce un notevole avanzamento della conoscenza dei meccanismi di funzionamento del cervello.

“Nello studio pubblicato su Nature è stato anche evidenziato un ruolo importante degli astrociti glutammatergici nel controllo del circuito cerebrale che regola il movimento – il sistema dopaminergico nigrostriatale – la cui alterazione funzionale è alla base della malattia di Parkinson” commenta la dott.ssa Ada Ledonne.

I risultati ottenuti sono pertanto estremamente utili alla comprensione dei meccanismi che portano allo sviluppo di diverse patologie neurologiche e la creazione di nuove terapie che, agendo su questo meccanismo appena scoperto, possano influenzare il decorso di varie malattie cerebrali.

——————————————————————————————————————————–

Una nuova cellula “ibrida” per consolidare la memoria e regolare i circuiti cerebrali

Un nuovo studio internazionale, realizzato in collaborazione con la Sapienza Università di Roma, ha scoperto una sottopopolazione di cellule neuronali, fondamentali nel controllo delle attività cerebrali. I risultati dello studio, pubblicati sulla rivista Nature, aprono nuove strade per il trattamento di malattie neurologiche come l’epilessia o il Parkinson.

Il cervello funziona grazie ai neuroni e alla loro capacità di elaborare e trasmettere informazioni. Per supportarli in questo compito le cellule gliali svolgono una serie di funzioni strutturali, energetiche e immunitarie. Alcune di queste, conosciute come astrociti, circondano le sinapsi, ovvero i punti di contatto in cui i neurotrasmettitori vengono rilasciati per diffondere le informazioni tra i neuroni.

Per questo motivo, i neuroscienziati suggeriscono da tempo che gli astrociti potrebbero avere un ruolo attivo nella trasmissione sinaptica e partecipare alla elaborazione delle informazioni.

Una ricerca internazionale, coordinata da Andrea Volterra dell’Università di Losanna  in collaborazione con un gruppo di neuroscienziati della Sapienza e del Wyss Center di Ginevra, ha portato alla scoperta di una nuova sottopopolazione di astrociti, un ibrido per composizione e funzione tra i due tipi di cellule cerebrali finora conosciute, i neuroni e le cellule gliali, che sono in grado di controllare il livello di comunicazione e di eccitazione dei neuroni.

“Lo studio – afferma Maria Amalia Di Castro del Dipartimento di Fisiologia e Farmacologia della Sapienza – dimostra che il sottogruppo risponde a stimolazioni selettive con rapido rilascio di glutammato in aree spazialmente delimitate che ricordano le sinapsi. Il rilascio di glutammato da parte di queste cellule specializzate esercita un’influenza sulla trasmissione sinaptica e regola i circuiti neuronali”.

I ricercatori hanno osservato a livello sperimentale che, senza questo meccanismo funzionale, il  processo neurale coinvolto nella memorizzazione a lungo termine, risulta compromesso.

Le implicazioni di questa scoperta si estendono anche ai disturbi cerebrali come l’epilessia o il Parkinson. Interrompendo specificamente gli astrociti glutammatergici, il gruppo di ricerca ha dimostrato che risulta compromesso sia il consolidamento della memoria, che gli effetti negativi di alcune patologie come l’epilessia, con un aumento delle crisi da parte dei pazienti.

Infine, lo studio dimostra che gli astrociti glutamatergici hanno anche un ruolo nella regolazione dei circuiti cerebrali coinvolti nel controllo del movimento e potrebbero offrire bersagli terapeutici per la malattia di Parkinson.

 

 

Riferimenti bibliografici:

Specialized astrocytes mediate glutamatergic gliotransmission in the CNS – Roberta de Ceglia, Ada Ledonne, David Gregory Litvin, Barbara Lykke Lind, Giovanni Carriero, Emanuele Claudio Latagliata, Erika Bindocci, Maria Amalia Di Castro, Iaroslav Savtchouk, Ilaria Vitali, Anurag Ranjak, Mauro Congiu, Tara Canonica, William Wisden, Kenneth Harris, Manuel Mameli, Nicola Mercuri, Ludovic Telley & Andrea Volterra – Nature 2023. https://www.nature.com/articles/s41586-023-06502-w

 

Crediti Foto: Fondazione Santa Lucia IRCCS. Testi e immagini dall’Ufficio Stampa di Ateneo Università di Roma Tor Vergata e dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma. Aggiornato il 28 Settembre 2023.

Ciclo sonno-veglia: a regolarlo anche le cellule immunitarie
Un team internazionale di ricercatori coordinati dal Dipartimento di Fisiologia e farmacologia della Sapienza, ha identificato in alcune cellule coinvolte nel sistema immunitario del cervello un ruolo centrale anche nella regolazione del ciclo sonno-veglia. I risultati dello studio, pubblicato sulla rivista Glia, aprono a nuove prospettive di studio sul funzionamento del cervello.

sonno veglia cellule immunitarie ciclo sonno-veglia
Ciclo sonno-veglia: a regolarlo anche le cellule immunitarie. Foto di Free-Photos

Il sonno è un fenomeno universale nel regno animale che da un lato ha una funzione ristorativa, permettendo il recupero delle energie spese durante la veglia e la rimozione dei prodotti di rifiuto, e dall’altro ha un ruolo fondamentale nei processi cognitivi e nell’elaborazione delle informazioni. Durante il sonno, infatti, si verificano processi computazionali come la formazione e il consolidamento della memoria relativa a eventi avvenuti durante la veglia, così come le alterazioni o la deprivazione di sonno possono comportare disturbi cognitivi.

Sebbene sia stato dimostrato che l’alternanza del ciclo sonno-veglia è regolata sia da stimoli interni (orologio biologico principale, localizzato nel nucleo soprachiasmatico dell’ipotalamo) e da stimoli esterni (come il ciclo buio-luce, l’attività lavorativa o i pasti), i meccanismi cellulari alla base del ciclo sonno-veglia sono in parte ancora sconosciuti.

In questa cornice di ricerca si inserisce un nuovo studio coordinato da ricercatori del Dipartimento di Fisiologia e farmacologia della Sapienza, in collaborazione con il Dipartimento di Medicina molecolare dell’Ateneo, il Consiglio nazionale delle ricerche e altre università e centri di ricerca internazionali, nel quale viene dimostrato per la per la prima volta il ruolo delle cellule della microglia nella regolazione del ciclo sonno-veglia.

Queste cellule si occupano della difesa immunitaria attiva nel sistema nervoso centrale e, secondo il lavoro pubblicato sulla rivista Glia, contribuiscono anche a regolare la durata del sonno, grazie alla loro interazione con le cellule nervose.

“La microglia – spiega Cristina Limatola di Sapienza, coordinatrice dello studio – regola la durata della fase di sonno nei topi anche attraverso il recettore per chemochine CX3CR1, altamente espresso in queste cellule dove svolge importanti ruoli durante sviluppo e maturazione del sistema nervoso centrale”.

“I modelli animali in cui la microglia è stata eliminata attraverso il trattamento con un antagonista del recettore CSF1R, oppure che manchino del recettore CX3CR1 sulla microglia – aggiunge Limatola – mostrano un aumento della fase non-rapid eye movement (NREM) del sonno, durante le ore di veglia associata ad alterazioni della trasmissione sinaptica a livello dell’ippocampo, regione fondamentale per la formazione della memoria a lungo termine”.

Questo lavoro aiuta a svelare i meccanismi alla base della regolazione del ciclo sonno-veglia e apre a nuove prospettive sul ruolo delle cellule della glia nel funzionamento del cervello.

Riferimenti: 

Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle – Giorgio Corsi, Katherine Picard, Maria Amalia di Castro, Stefano Garofalo, Federico Tucci, Giuseppina Chece, Claudio del Percio, Maria Teresa Golia, Marcello Raspa, Ferdinando Scavizzi, Fanny Decoeur, Clotilde Lauro, Mara Rigamonti, Fabio Iannello, Davide Antonio Ragozzino, Eleonora Russo, Giovanni Bernardini, Agnès Nadjar, Maria Eve Tremblay, Claudio Babiloni, Laura Maggi, Cristina Limatola – Glia 2021 Sep 6 DOI: 10.1002/glia.24090

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma