News
Ad
Ad
Ad
Tag

Gianluca Gemme

Browsing

LIGO, Virgo e KAGRA osservano per la prima volta buchi neri di “seconda generazione”, GW241011 e GW241110

Due fusioni di buchi neri speciali, rivelate a un mese di distanza l’una dall’altra alla fine del 2024, aggiungono un nuovo importante tassello alla nostra comprensione dei fenomeni più violenti del nostro universo. Alcune caratteristiche di queste fusioni suggeriscono infatti che si tratti di buchi neri di “seconda generazione”, cioè di buchi neri generati a loro volta da precedenti fusioni, avvenute in ambienti cosmici molto densi e affollati, come gli ammassi stellari, dove è più probabile che i buchi neri si scontrino e si fondano ripetutamente.

In un nuovo articolo pubblicato oggi su The Astrophysical Journal Letters, la Collaborazione Internazionale LIGO-Virgo-KAGRA ha annunciato la rilevazione di due segnali di onde gravitazionali avvenuta nell’ottobre e nel novembre dello scorso anno, in cui i buchi neri presentano degli spin, ovvero caratteristiche di rotazione, insoliti. Un’osservazione che aggiunge un nuovo importante tassello alla nostra comprensione dei fenomeni più elusivi dell’universo. Le onde gravitazionali sono “increspature” nello spazio-tempo che derivano da cataclismi dello spazio profondo: i segnali più intensi di questa natura sono spesso generati dalla collisione di buchi neri. Utilizzando algoritmi e modelli matematici estremamente sofisticati, è possibile ricostruire dall’analisi di questi segnali molte caratteristiche fisiche dei buchi neri che li hanno generati: la loro massa, la distanza dalla Terra e persino la velocità e la direzione della loro rotazione attorno al proprio asse, chiamata spin.

La prima fusione rivelata, GW241011 (11 ottobre 2024), si è verificata a circa 700 milioni di anni luce di distanza dalla Terra ed è stata causata dalla collisione di due buchi neri con una massa pari a circa 17 e 7 volte quella del nostro sole. Il più grande dei due buchi neri in GW241011 è uno dei buchi neri che ruota più rapidamente tra quelli osservati fino ad oggi. Quasi un mese dopo, il 10 Novembre 2024, è stato rilevato GW24111010, un segnale proveniente da circa 2,4 miliardi di anni luce dalla Terra, proveniente dalla fusione di buchi neri con una massa pari a circa 16 e 8 volte quella del nostro sole. Mentre la maggior parte dei buchi neri osservati ruotano nella stessa direzione della loro orbita, il buco nero primario di GW241110 ruota invece in direzione opposta e rappresenta il primo caso del genere osservato fino ad oggi.

“Ogni nuova rivelazione fornisce importanti indicazioni sull’universo, poiché ogni fusione osservata è sia una scoperta astrofisica che un laboratorio eccezionale per sondare le leggi fondamentali della fisica”, afferma il coautore del lavoro Carl-Johan Haster, assistant professor di astrofisica presso l’Università del Nevada, Las Vegas (UNLV). “Binarie come queste erano state previste, ma questa è la prima prova diretta della loro esistenza”.

Entrambe le rivelazioni, inoltre, indicano la possibilità di buchi neri di “seconda generazione”.

“GW241011 e GW241110 sono tra gli ultimi eventi delle diverse centinaia osservati dalla rete LIGO-Virgo-KAGRA”, afferma Stephen Fairhurst, professore all’Università di Cardiff e portavoce della collaborazione scientifica LIGO. “Entrambi gli eventi hanno un buco nero significativamente più massiccio dell’altro e in rapida rotazione, e forniscono indicazioni interessanti che questi buchi neri si siano formati da precedenti fusioni di buchi neri”.

In particolare gli indizi evidenziati dai ricercatori sono la differenza di dimensioni tra i buchi neri in ciascuna fusione (il più grande era quasi il doppio del più piccolo) e l’orientamento di rotazione dei buchi neri più grandi in ciascun evento. Una spiegazione naturale di queste peculiarità è che i buchi neri siano il risultato di precedenti fusioni. Fenomeni di questo tipo, chiamati fusioni gerarchiche, avvengono solitamente in regioni cosmiche estremamente ‘affollate’, come gli ammassi stellari, dove i buchi neri sono più propensi a scontrarsi e quindi a fondersi ripetutamente.

“Queste rivelazioni evidenziano le straordinarie capacità dei nostri osservatori di onde gravitazionali”, afferma Gianluca Gemme, ricercatore dell’Istituto Nazionale di Fisica Nucleare e portavoce della Collaborazione Virgo. “Le insolite configurazioni di spin osservate in GW241011 e GW241110 non solo sfidano la nostra comprensione della formazione dei buchi neri, ma offrono anche prove convincenti di fusioni gerarchiche in alcuni ambienti cosmici: ci insegnano che alcuni buchi neri non esistono solo come partner isolati, ma probabilmente come membri di una folla densa e dinamica. Queste scoperte evidenziano, ancora una volta, il ruolo cruciale della rete internazionale di interferometri gravitazionali per svelare i fenomeni più elusivi dell’universo”.

Alla scoperta delle proprietà nascoste delle fusioni di buchi neri

Le onde gravitazionali furono previste per la prima volta da Albert Einstein nel 1916 come parte della sua teoria della relatività generale, ma sebbene la loro esistenza fu dimostrata negli anni ’70, la loro prima osservazione diretta risale a soli 10 anni fa, quando le collaborazioni scientifiche LIGO e Virgo annunciarono di avere rivelato onde gravitazionali risultanti dalla fusione di due buchi neri. Oggi, LIGO, Virgo e KAGRA costituiscono una rete mondiale di rivelatori avanzati di onde gravitazionali e stanno per concludere il loro quarto ciclo di osservazioni, O4. La campagna attuale è iniziata alla fine di maggio 2023 e dovrebbe continuare fino a metà novembre di quest’anno. Ad oggi, sono state osservate circa 300 fusioni di buchi neri attraverso le onde gravitazionali, compresi i candidati identificati nella campagna O4 in corso che sono in attesa di validazione finale.

Inoltre, nel caso dell’osservazione annunciata oggi, la precisione con cui è stato misurato GW241011 ha permesso di testare in condizioni estreme alcune delle previsioni chiave della teoria della relatività generale di Einstein.

Infatti questo evento può essere confrontato con le previsioni della teoria di Einstein e con la soluzione del matematico Roy Kerr per i buchi neri in rotazione. La rapida rotazione del buco nero lo deforma leggermente, lasciando un’impronta caratteristica nelle onde gravitazionali che emette. Analizzando GW241011, il team di ricerca ha trovato un eccellente accordo con la soluzione di Kerr e ha verificato, ancora una volta, la previsione di Einstein, ma con una precisione senza precedenti. 

Inoltre, poiché le masse dei singoli buchi neri differiscono in modo significativo, il segnale delle onde gravitazionali contiene il “ronzio” di un’armonica superiore, simile agli armonici degli strumenti musicali, ‘ascoltato’ solo in tre diversi segnali gravitazionali fino ad oggi. Una di queste armoniche è stata osservata con estrema chiarezza e conferma un’altra previsione della teoria di Einstein.

“Questa scoperta significa anche che siamo più sensibili che mai a qualsiasi nuova fisica che possa andare oltre la teoria di Einstein”, afferma Haster.

Ricerca avanzata di particelle elementari

I buchi neri in rapida rotazione come quelli osservati in questo studio hanno un’altra applicazione: la fisica delle particelle. Scienziate e scienziati possono utilizzarli per verificare l’esistenza di alcune particelle elementari leggere e ipotizzare la loro massa.

Queste particelle, chiamate bosoni ultraleggeri, sono previste da alcune teorie che vanno oltre il Modello Standard della fisica delle particelle, che descrive e classifica tutte le particelle elementari conosciute. Se i bosoni ultraleggeri esistono, possono essere generati dall’energia rotazionale dei buchi neri. Quanta energia si disperda in queste particelle e quanto la rotazione dei buchi neri rallenti nel tempo dipende dalla massa, che non conosciamo, degli ipotetici bosoni. L’osservazione che il buco nero massiccio nel sistema binario che ha emesso GW241011 continua a ruotare rapidamente anche milioni o miliardi di anni dopo la sua formazione è un’idicazione che ci permette di escludere un’ampia gamma di masse di bosoni ultraleggeri.

“La rivelazione e lo studio di questi due eventi dimostrano quanto sia importante far funzionare i nostri rivelatori in sinergia e sforzarsi di migliorarne la sensibilità”, afferma Francesco Pannarale, professore alla Sapienza – Università di Roma e ricercatore della Collaborazione Virgo – “Gli strumenti LIGO e Virgo ci hanno insegnato nuovamente qualcosa su come si formano le binarie di buchi neri nel nostro Universo”, aggiunge, “e sulla fisica fondamentale che le regola nella loro essenza. Con il potenziamento dei nostri strumenti, saremo in grado di approfondire questi e altri aspetti grazie alla maggiore precisione delle nostre osservazioni”.

 

Riferimenti bibliografici: 

“GW241011 and GW241110: Exploring Binary Formation and Fundamental Physics with Asymmetric, High-Spin Black Hole Coalescences” è stato pubblicato il 28 ottobre su The Astrophysical Journal Letters,  DOI: http://dx.doi.org/10.3847/2041-8213/ae0d54

Testo, video e immagini dall’Ufficio Stampa EGO e Virgo.

LVK: a dieci anni dalla scoperta, le onde gravitazionali verificano il teorema dell’area dei buchi neri di Stephen Hawking

LIGO, Virgo e KAGRA celebrano questa settimana l’anniversario della prima rilevazione delle onde gravitazionali e annunciano la verifica del teorema dell’area dei buchi neri di Stephen Hawking

Il 14 settembre 2015 è arrivato sulla Terra un segnale generato da una coppia di buchi neri che, dopo aver spiraleggiato uno attorno all’altro a velocità impressionanti, si erano fusi, liberando una enorme quantità di energia. Per raggiungerci il segnale aveva viaggiato per circa 1,3 miliardi di anni alla velocità della luce, ma non si trattava di un segnale luminoso, era un fremito dello spazio-tempo chiamato onda gravitazionale, teorizzato per la prima volta da Albert Einstein 100 anni prima. Quella prima rivelazione diretta delle onde gravitazionali effettuata dai due rilevatori gemelli LIGO negli Stati Uniti, sarà annunciata al mondo dalle collaborazioni LIGO e Virgo,  dopo molti mesi di analisi e verifiche, solo nel febbraio 2016. E porterà l’anno successivo alla assegnazione del premio Nobel per la Fisica, a tre dei fondatori di LIGO: Rainer Weiss, professore emerito di fisica dell’MIT (recentemente scomparso all’età di 92 anni), Barry Barish e Kip Thorne di Caltech.

Oggi i rivelatori gravitazionali statunitensi LIGO negli stati di Washington e Louisiana, Virgo, progetto fondato dall’Istituto Nazionale  di Fisica Nucleare e dal francese CNRS in Italia e KAGRA in Giappone opera in modo coordinato e osserva circa una fusione di buchi neri ogni tre giorni. Il network LVK (LIGO, Virgo e KAGRA) ha osservato un totale di circa 300 fusioni di buchi neri, alcune delle quali sono state confermate mentre altre sono in attesa di ulteriori analisi. Nel corso dell’attuale periodo di osservazione scientifico, cominciato a giugno 2023, LVK ha rivelato circa 230 segnali candidati a essere fusioni di buchi neri, più del doppio di quelli rilevati nei primi tre periodi.

Dieci anni di scoperte di LVKQuesto grafico illustra le scoperte effettuate dalla rete LIGO-Virgo-KAGRA (LVK) dalla prima rilevazione di LIGO, nel 2015, di onde gravitazionali provenienti da una coppia di buchi neri in collisione. Le rivelazioni consistono principalmente in fusioni di buchi neri, ma una manciata coinvolge stelle di neutroni (collisioni buco nero-stella di neutroni o stella di neutroni-stella di neutroni). Finora, durante l'attuale quarto ciclo scientifico, i rivelatori LVK hanno individuato circa 220 fusioni, più del doppio del numero (90) trovato nei primi tre cicli combinati. L'evento più vicino osservato finora, mostrato nel Run 2 e indicato dalla freccia in basso, è una fusione binaria di stelle di neutroni nota come GW170817, situata a soli 130 milioni di anni luce di distanza. In questo grafico, le masse totali degli oggetti iniziali sono rappresentate dalle dimensioni, mentre l'intensità del segnale è indicata dal colore. Il grafico dimostra che nel corso del tempo gli osservatori di onde gravitazionali stanno trovando un maggior numero di buchi neri e li rivelano con un rapporto segnale/rumore più elevato, grazie ai progressi compiuti dai rivelatori. Si noti che le rivelazioni di buchi neri nell'ultima metà del quarto run sono grigie e appaiono della stessa dimensione, perché questi dati non sono stati rilasciati per intero, a eccezione dell'evento denominato GW250114. Questo evento, il segnale più chiaro mai rilevato da LIGO, appare come un punto luminoso arancione sul grafico del quarto run. Crediti immagine: LIGO/Caltech/MIT/R. Hurt (IPAC)
Dieci anni di scoperte di LVK
Questo grafico illustra le scoperte effettuate dalla rete LIGO-Virgo-KAGRA (LVK) dalla prima rilevazione di LIGO, nel 2015, di onde gravitazionali provenienti da una coppia di buchi neri in collisione. Le rivelazioni consistono principalmente in fusioni di buchi neri, ma una manciata coinvolge stelle di neutroni (collisioni buco nero-stella di neutroni o stella di neutroni-stella di neutroni).
Finora, durante l’attuale quarto ciclo scientifico, i rivelatori LVK hanno individuato circa 220 fusioni, più del doppio del numero (90) trovato nei primi tre cicli combinati. L’evento più vicino osservato finora, mostrato nel Run 2 e indicato dalla freccia in basso, è una fusione binaria di stelle di neutroni nota come GW170817, situata a soli 130 milioni di anni luce di distanza.
In questo grafico, le masse totali degli oggetti iniziali sono rappresentate dalle dimensioni, mentre l’intensità del segnale è indicata dal colore. Il grafico dimostra che nel corso del tempo gli osservatori di onde gravitazionali stanno trovando un maggior numero di buchi neri e li rivelano con un rapporto segnale/rumore più elevato, grazie ai progressi compiuti dai rivelatori.
Si noti che le rivelazioni di buchi neri nell’ultima metà del quarto run sono grigie e appaiono della stessa dimensione, perché questi dati non sono stati rilasciati per intero, a eccezione dell’evento denominato GW250114. Questo evento, il segnale più chiaro mai rilevato da LIGO, appare come un punto luminoso arancione sul grafico del quarto run.
Crediti immagine: LIGO/Caltech/MIT/R. Hurt (IPAC)

Il notevole aumento del numero di osservazioni di LVK nell’ultimo decennio è dovuto a diversi miglioramenti apportati ai rivelatori, alcuni dei quali sfruttano l’ingegneria di precisione quantistica di ultima generazione. Questi interferometri per onde gravitazionali sono di gran lunga il più preciso strumento di misurazione mai creato dall’umanità. Le distorsioni spazio-temporali indotte dalle onde gravitazionali sono incredibilmente minuscole. Per osservarle, LIGO,Virgo e KAGRA devono rivelare cambiamenti nello spazio-tempo più piccoli di un decimillesimo della dimensione di un protone. Vale a dire 700.000 miliardi di volte più piccole dello spessore di un capello umano.

Il segnale più chiaro finora

La maggiore sensibilità degli strumenti è esemplificata dalla recente scoperta di una fusione di buchi neri denominata GW250114 (i numeri indicano la data in cui il segnale delle onde gravitazionali è arrivato sulla Terra: 14 gennaio 2025). L’evento non è molto diverso dalla prima rivelazione in assoluto (denominata GW150914): entrambi coinvolgono buchi neri in collisione a circa 1,3 miliardi di anni luce di distanza, con masse da 30 a 40 volte quelle del nostro Sole. Ma grazie a 10 anni di progressi tecnologici che hanno ridotto il rumore strumentale, il segnale di GW250114 è molto più nitido.

“Possiamo sentirlo forte e chiaro, e questo ci permette di testare le leggi fondamentali della fisica”,

dice Katerina Chatziioannou, membro di LIGO e Assistant Professor di fisica a Caltech, tra i principali autori di un nuovo studio su GW250114 pubblicato su Physical Review Letters.

Analizzando le frequenze delle onde gravitazionali emesse dalla fusione, il team di LVK è stato in grado di fornire la migliore prova osservativa finora acquisita di quello che è noto come il teorema dell’area dei buchi neri, un’idea avanzata da Stephen Hawking nel 1971 secondo cui le superfici totali dei buchi neri non possono diminuire. Quando i buchi neri si fondono, le loro masse si uniscono, aumentando la superficie. Ma perdono anche energia sotto forma di onde gravitazionali. Inoltre, la fusione può far sì che il buco nero combinato aumenti il suo spin, il che porterebbe a ridurre la sua area. In realtà Il teorema dell’area del buco nero afferma che, nonostante questi fattori in competizione, la superficie totale del buco nero finale deve comunque crescere In seguito, Hawking e il fisico Jacob Bekenstein conclusero che l’area di un buco nero è proporzionale alla sua entropia, o grado di disordine. Queste scoperte hanno aperto la strada a successivi lavori rivoluzionari nel campo della gravità quantistica, che cerca di unire due pilastri della fisica moderna: la relatività generale e la fisica quantistica.

Credito immagine: Lucy Reading-Ikkanda/Simons Foundation
Credito immagine: Lucy Reading-Ikkanda/Simons Foundation

In sostanza, la rivelazione ha permesso al team di “ascoltare” i due buchi neri che crescevano mentre si fondevano in uno solo, verificando il teorema di Hawking. I buchi neri iniziali avevano una superficie totale di 240.000 chilometri quadrati (circa la dimensione del Regno Unito), mentre l’area finale era di circa 400.000 chilometri quadrati (quasi la dimensione della Svezia). Questo è il secondo test del teorema dell’area del buco nero; un primo test è stato eseguito nel 2021 utilizzando i dati del primo segnale GW150914, ma poiché quei dati non erano così chiari, i risultati avevano un livello di confidenza del 95% rispetto al 99,999% dei nuovi dati. Kip Thorne ricorda che Hawking gli telefonò per chiedergli se LIGO potesse essere in grado di testare il suo teorema subito dopo aver appreso della rivelazione delle onde gravitazionali nel 2015. “Se Hawking fosse ancora vivo, si avrebbe certamente gioito  nel vedere che l’analisi dei dati di GW250114 mostri che  l’area dei buchi neri uniti effettivamente aumenta”, dice Thorne.  (Hawking è scomparso nel 2018)

Credito immagine: Lucy Reading-Ikkanda/Simons Foundation
Credito immagine: Lucy Reading-Ikkanda/Simons Foundation

Nello studio pubblicato oggi, infatti, i ricercatori sono riusciti a misurare con precisione i dettagli della cosiddetta fase di ringdown, in cui, dopo la fusione, il buco nero finale vibra come una campana colpita. Ciò ha permesso loro di calcolare la massa e lo spin del buco nero e di determinarne quindi la superficie. In questo studio,in effetti, sono stati individuati per la prima volta, con sicurezza, due distinti “modi” di onde gravitazionali nella fase di ringdown. I modi sono come i suoni caratteristici di una campana, quando viene colpita: hanno frequenze simili ma si estinguono a velocità diverse, il che li rende difficili da identificare. Grazie al miglioramento dei dati relativi a GW250114, il team ha potuto estrarre per la prima volta i modi, dimostrando che il ringdown del buco nero si è verificato esattamente come previsto dai modelli matematici. Infine un altro studio di LIGO – Virgo – KAGRA, presentato oggi a Physical Review Letters, pone dei limiti alla previsione di un terzo tono più acuto nel segnale di GW250114 ed esegue alcuni dei test più rigorosi finora condotti sull’accuratezza della relatività generale nel descrivere la fusione dei buchi neri.

“Analizzare i dati dei rivelatori per individuare segnali astrofisici transitori, inviare alerts per attivare osservazioni di follow-up da parte dei telescopi e pubblicare i risultati raccogliendo informazioni da centinaia di eventi è un processo piuttosto lungo e complesso”, aggiunge Nicolas Arnaud, ricercatore del CNRS in Francia e coordinatore del quarto ciclo di osservazioni di Virgo. “Dietro a tutti questi passaggi ci sono. però, esseri umani, in particolare quelli che sono in turno costantemente a sorvegliare i nostri strumenti, in tutte le regioni del pianeta: letteralmente, il Sole non tramonta mai sulle nostre collaborazioni!”.

Spingersi oltre i limiti

LIGO e Virgo hanno anche osservato stelle di neutroni nell’ultimo decennio. Come i buchi neri, le stelle di neutroni si formano dopo la morte esplosiva delle stelle massicce, ma sono meno pesanti e emettono luce. Nell’agosto 2017, LIGO e Virgo hanno assistito all’epica collisione tra una coppia di stelle di neutroni – una kilonova – che ha disperso nello spazio oro e altri elementi pesanti. Lo stesso fenomeno è stato immediatamente segnalato a  decine di telescopi suulla Terra e nello Spazio, che hanno potuto catturare altri segnali generati dallo stesso evento: dai raggi gamma ad alta energia alle onde radio a bassa energia. Questo evento astronomico “multi-messaggero” ha segnato una tappa epocale. La ricerca di altre collisioni di stelle di neutroni resta oggi una delle frontiere più promettenti per la comunità astronomica e il network LVK è al centro di un sistema di alerts, che consente ai telescopi di cercare nei cieli i segni di una nuova potenziale kilonova.

“La rete globale fdi rivelatori gravitazionali  è essenziale per l’astronomia delle onde gravitazionali”, afferma Gianluca Gemme, portavoce di Virgo e dirigente di ricerca dell’INFN (Istituto Nazionale di Fisica Nucleare). “Con tre o più rivelatori che operano all’unisono, possiamo individuare gli eventi cosmici con maggiore precisione, estrarre informazioni astrofisiche più ricche e consentire segnalazioni rapide per il follow-up di più messaggeri. La Collaborazione Virgo è orgogliosa di contribuire a questa impresa scientifica mondiale”.

Guardando al futuro, gli scienziati stanno lavorando a rivelatori ancora più grandi. Il progetto europeo, chiamato Einstein Telescope, prevede di costruire uno o due enormi interferometri sotterranei con bracci di oltre 10 chilometri, mentre quello statunitense, chiamato Cosmic Explorer, sarebbe simile all’attuale LIGO ma con bracci lunghi 40 chilometri. Osservatori di questa portata consentirebbero di ascoltare le prime fusioni di buchi neri nell’universo e, forse, l’eco delle scosse gravitazionali dei primissimi istanti dopo il Big Bang.

“Questo è un momento straordinario per la ricerca sulle onde gravitazionali: grazie a strumenti come Virgo, LIGO e KAGRA, possiamo esplorare un universo oscuro che prima era completamente inaccessibile”, ha dichiarato Massimo Carpinelli, professore all’Università di Milano Bicocca e direttore dell’Osservatorio Gravitazionale Europeo di Cascina. “Le conquiste scientifiche di questi 10 anni stanno innescando una vera e propria rivoluzione nella nostra visione dell’Universo. Stiamo già preparando una nuova generazione di rivelatori come Einstein Telescope in Europa e Cosmic Explorer negli Stati Uniti, oltre all’ interferometro spaziale LISA, che ci porteranno ancora più lontano nello spazio e nel tempo. Nei prossimi anni, saremo in grado di affrontare queste straordinarie sfide solo grazie a una sempre più ampia e solida collaborazione tra scienziati, Paesi e istituzioni diverse, sia a livello europeo che globale.”

Una sinfonia cosmica rivelataQuest'opera d'arte ci immerge in GW250114, una potente collisione tra due buchi neri osservata con le onde gravitazionali dal progetto LIGO della National Science Foundation statunitense. Raffigura la vista da uno dei buchi neri mentre si dirige a spirale verso il suo partner cosmico. Dieci anni dopo la storica rilevazione delle onde gravitazionali da parte di LIGO, i rivelatori migliorati hanno permesso di "sentire" questa collisione celeste con una chiarezza senza precedenti. I dati sulle onde gravitazionali hanno permesso agli scienziati di distinguere molteplici toni che risuonano come una campana cosmica attraverso l'universo (immaginato qui come un intreccio di fili musicali che si dirigono a spirale verso il centro). Sebbene solo LIGO fosse online durante l’osservazione di GW250114, ora opera abitualmente come parte di una rete con altri rivelatori di onde gravitazionali, tra cui Virgo in Europa e KAGRA in Giappone. Credit immagine: Aurore Simonnet (SSU/EdEon)/LVK/URI
A dieci anni dalla scoperta, le onde gravitazionali verificano il teorema dell’area dei buchi neri di Stephen Hawking. Una sinfonia cosmica rivelata.
Quest’opera d’arte ci immerge in GW250114, una potente collisione tra due buchi neri osservata con le onde gravitazionali dal progetto LIGO della National Science Foundation statunitense. Raffigura la vista da uno dei buchi neri mentre si dirige a spirale verso il suo partner cosmico. Dieci anni dopo la storica rilevazione delle onde gravitazionali da parte di LIGO, i rivelatori migliorati hanno permesso di “sentire” questa collisione celeste con una chiarezza senza precedenti. I dati sulle onde gravitazionali hanno permesso agli scienziati di distinguere molteplici toni che risuonano come una campana cosmica attraverso l’universo (immaginato qui come un intreccio di fili musicali che si dirigono a spirale verso il centro).
Sebbene solo LIGO fosse online durante l’osservazione di GW250114, ora opera abitualmente come parte di una rete con altri rivelatori di onde gravitazionali, tra cui Virgo in Europa e KAGRA in Giappone.
Credit immagine: Aurore Simonnet (SSU/EdEon)/LVK/URI

Testo, video e immagini dall’Ufficio Stampa EGO e Virgo