News
Ad
Ad
Ad
Tag

ghiaccio

Browsing

KEPLER-10c: UN PIANETA DI ACQUA SVELATO DAI CIELI DELLE CANARIE

Un team guidato dall’INAF ha misurato con grande precisione la massa del pianeta Kepler-10c, definendolo come un possibile mondo in gran parte composto da ghiaccio di acqua. Lo studio, pubblicato oggi sulla rivista Astronomy & Astrophysics e realizzato grazie ai dati raccolti dallo spettrografo HARPS-N installato al Telescopio Nazionale Galileo, ha permesso anche di confermare la presenza di un altro pianeta nel sistema di Kepler-10, fornendo nuove informazioni per comprendere la formazione dei pianeti e le origini del nostro Sistema solare.

Un team internazionale guidato da ricercatori dell’Istituto Nazionale di Astrofisica (INAF) ha determinato la massa e la densità del pianeta Kepler-10c con precisione e accuratezza senza precedenti. Grazie a circa 300 misure di velocità radiale raccolte con lo spettrografo High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) installato al Telescopio Nazionale Galileo (TNG) che scruta il cielo dalle Isole Canarie, è stato possibile stimarne la sua composizione – in gran parte di acqua allo stato solido ma forse anche liquido – e capire come si possa essere formato. Lo studio è stato pubblicato oggi sulla rivista Astronomy & Astrophysics.

Kepler-10 è un sistema esoplanetario storico: ospita Kepler-10b, la prima super-Terra rocciosa scoperta dalla missione spaziale Kepler della NASA con un periodo orbitale inferiore al giorno terrestre, e Kepler-10c, un pianeta con un periodo orbitale di 45 giorni, classificato come sub-Nettuno, ovvero un pianeta con raggio e massa inferiori a quelli di Nettuno. Per anni, la massa di Kepler-10c è stata oggetto di grande incertezza: stime discordanti avevano reso difficile capire di cosa fosse fatto.

I dati acquisiti con HARPS-N sono stati elaborati con un nuovo metodo che corregge per effetti strumentali e variazioni dell’attività magnetica della stella madre, anche se di bassa intensità, e sono stati analizzati indipendentemente da tre gruppi dentro il team, raggiungendo gli stessi risultati. Questo lavoro ha permesso di capire che probabilmente Kepler-10c è un water world, ovvero un pianeta con gran parte della sua massa in acqua allo stato solido (ghiaccio) e forse, in piccola percentuale, anche liquido. I ricercatori ritengono che il pianeta si sia formato oltre la cosiddetta linea di condensazione dell’acqua a circa due o tre unità astronomiche dalla sua stella, e che poi si sia progressivamente avvicinato fino alla sua attuale orbita.

Ma non è tutto: il team ha anche confermato l’esistenza di un terzo pianeta, non visibile nei transiti ma rivelato per una piccola anomalia che esso induce sull’orbita di Kepler-10c, riscontrabile nelle  variazioni dei tempi di transito proprio del pianeta Kepler-10c, in modo analogo alla scoperta di Nettuno grazie alle anomalie osservate nell’orbita di Urano. Questo pianeta “fantasma” era stato ipotizzato in precedenza, ma solo ora è stato possibile determinarne in modo accurato il periodo orbitale di 151 giorni e la massa minima, grazie all’eccezionale qualità delle misure di velocità radiale HARPS-N.

“L’analisi delle velocità radiali e delle variazioni dei tempi di transito, dapprima singolarmente e poi in combinazione tra loro, ha dato dei risultati in ottimo accordo sui parametri del terzo pianeta; abbiamo così corretto precedenti stime inaccurate delle sue proprietà”, commenta Luca Borsato dell’INAF di Padova, secondo autore dell’articolo.

Aldo Bonomo dell’INAF di Torino, primo autore dell’articolo, aggiunge: “L’esistenza dei water world è stata prevista teoricamente dai modelli di formazione e migrazione planetarie, ma non ne abbiamo ancora una conferma certa. Tuttavia, una quindicina di pianeti attorno a stelle di tipo solare come Kepler-10c sembrano avere proprio la composizione prevista da questi modelli. La prova del nove dell’esistenza dei water world dovrebbe venire dallo studio delle loro atmosfere con il telescopio spaziale James Webb, perché ci aspettiamo che essi abbiano delle atmosfere particolarmente ricche di vapore acqueo”.

Lo studio del sistema Kepler-10 ci aiuta a capire come si formano i pianeti attorno alle loro stelle. Super-terre come Kepler-10b e sub-Nettuni come Kepler-10c, così comuni nella Galassia ma assenti nel nostro Sistema solare, rappresentano un tassello cruciale per comprendere la varietà dei mondi che orbitano attorno ad altre stelle. In particolare, studiare la composizione dei pianeti cosiddetti sub-nettuniani e capire se sono ricchi o poveri di ghiaccio, può fornire indicazioni non solo sulla loro origine, ma anche sulle prime fasi di formazione dei sistemi planetari e quindi del nostro stesso Sistema solare. Conoscere come e dove si formano questi pianeti e i loro moti di migrazione verso la loro stella, significa guardare indietro nel tempo per scoprire qualcosa in più sulle origini della Terra e forse anche  della vita.


 

Riferimenti Bibliografici:

L’articolo In-depth characterization of the Kepler-10 three-planet system with HARPS-N radial velocities and Kepler transit timing variations, di A. S. Bonomo, L. Borsato, V.M. Rajpaul, L. Zeng, M. Damasso, N.C. Hara, M. Cretignier, A. Leleu, N. Unger, X. Dumusque, F. Lienhard, A. Mortier, L. Naponiello, L. Malavolta, A. Sozzetti, D.W. Latham, K. Rice, R. Bongiolatti, L. Buchhave, A.C. Cameron, A.F. Fiorenzano, A. Ghedina, R.D. Haywood, G. Lacedelli, A. Massa, F. Pepe, E. Poretti e S. Udry è stato pubblicato online sulla rivista Astronomy & Astrophysics.

Testo e immagini dall’Ufficio Stampa dell’Istituto Nazionale di Astrofisica – INAF

Prima evidenza sperimentale del ghiaccio VII plastico, una nuova forma di ghiaccio dal comportamento dinamico

Uno studio internazionale, coordinato dalla Sapienza Università di Roma, ha dimostrato sperimentalmente l‘esistenza del ghiaccio VII plastico, la cui presenza è ipotizzata all’interno di alcune lune del sistema solare. La scoperta, pubblicata su “Nature”, apre nuove opportunità di ricerca per la comprensione dell’evoluzione strutturale dei pianeti ghiacciati.

Una fase cristallina dell’acqua che si forma a pressioni superiori a 50000 atmosfere e 300 °C: il ghiaccio VII plastico che si differenzia dalle altre forme di ghiaccio per la sua natura ibrida tra un solido e un liquido. Le molecole dell’acqua in questa fase sono disposte in un reticolo cubico denso, ma, a differenza delle altre forme di ghiaccio, sono libere di ruotare attorno alle loro posizioni d’equilibrio in modo simile a un liquido. Questo comportamento dinamico conferisce alla fase una natura plastica, la cui esistenza è stata ipotizzata da simulazioni di dinamica molecolare ma mai osservata sperimentalmente.

Il gruppo internazionale di ricerca, guidato da Livia Eleonora Bove del Dipartimento di Fisica della Sapienza, è riuscito a ottenere l’osservazione diretta dell’esistenza del ghiaccio VII plastico. Per dimostrare sperimentalmente il comportamento esotico di questa fase dell’acqua, il team di ricercatori ha utilizzato lo scattering quasi-elastico da neutroni (QENS), una tecnica che consente di misurare direttamente le proprietà rotazionali e la dinamica diffusiva in sistemi molecolari. I dati sperimentali hanno fornito fin da subito la prova dell’esistenza della fase plastica. Tuttavia, per comprendere in dettaglio il meccanismo con cui le molecole ruotano, sono stati necessari ulteriori esperimenti e il confronto con simulazioni di dinamica molecolare. A queste attività di ricerca hanno contribuito in particolare John Russo e Francesco Sciortino del Dipartimento di Fisica della Sapienza.

“Combinando dati sperimentali e simulazioni, abbiamo scoperto che le rotazioni nel ghiaccio plastico non sono completamente libere, ma piuttosto avvengono attraverso salti tra posizioni preferenziali – spiega Maria Rescigno della Sapienza, prima autrice del lavoro – Questo comportamento conferisce al ghiaccio VII plastico proprietà uniche, che lo distinguono dalle altre fasi solide dell’acqua e ne influenzano significativamente le proprietà fisiche”.

Lo studio, non solo fornisce nuove informazioni sulla natura dei legami idrogeno in condizioni estreme – fondamentali per comprendere meglio le proprietà dell’acqua e di molti altri sostanze chimiche – ma apre nuove strade per la comprensione della struttura dei corpi celesti ghiacciati e la loro evoluzione.

Un caso particolarmente interessante è quello delle due lune di Giove, Ganimede e Callisto, la cui differenziazione interna rimane una questione aperta nella planetologia. Una possibile spiegazione di tale fenomeno potrebbe dipendere dalla presenza di ghiaccio plastico in una sola delle due lune. Questa circostanza avrebbe influenzato diversamente la loro evoluzione strutturale.

La ricerca, frutto di una collaborazione internazionale che ha coinvolto ben 9 istituzioni, rappresenta un importante avanzamento nella comprensione del complesso diagramma delle fasi dell’acqua in condizioni estreme e potrebbe aprire nuove prospettive di ricerca nel campo della planetologia.

Diagramma di fase. Immagine realizzata da Maria Rescigno del Dipartimento di Fisica della Sapienza
Diagramma di fase. Immagine realizzata da Maria Rescigno del Dipartimento di Fisica della Sapienza

Riferimenti bibliografici:

Rescigno, M., Toffano, A., Ranieri, U. et al. “Observation of Plastic Ice VII by Quasi-Elastic Neutron Scattering”, Nature (2025), DOI: https://doi.org/10.1038/s41586-025-08750-4

Al momento in cui si scrive, l’articolo su Nature è ancora in fase di editing.

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Su Pnas studio dell’Istituto di scienze polari del Cnr e Ca’ Foscari

QUANDO IL GHIACCIO SPARÌ DAL NORD ATLANTICO

Durante l’ultima era glaciale nel Nord Atlantico le riduzioni di ghiaccio marino si verificarono nell’arco di 250 anni, in concomitanza con eventi di rapido aumento delle temperature

ghiaccio Nord Atlantico
sito di perforazione di Renland con le bandiere delle nazioni partecipanti al progetto

VENEZIA – Gli improvvisi eventi di riscaldamento climatico nell’emisfero Nord, avvenuti durante l’ultima era glaciale, sono stati accompagnati da una egualmente rapida riduzione dell’estensione di ghiaccio marino nel Nord Atlantico. A sostenerlo è un lavoro sul paleoclima pubblicato sulla rivista Proceedings of the National Academy of Sciences (Pnas) e realizzato da un team di ricerca internazionale di cui hanno fatto parte l’Istituto di scienze polari del Consiglio nazionale delle ricerche (Cnr-Isp) e l’Università Ca’ Foscari Venezia, e coordinato dall’Università di Bergen (Norvegia).

“Tra 10 e 100 mila anni fa, durante l’ultimo periodo glaciale, l’emisfero Nord si presentava bianco a causa delle grandi calotte glaciali che avvolgevano i continenti settentrionali e dell’esteso ghiaccio marino che copriva i mari del Nord”, spiega Andrea Spolaor, ricercatore Cnr-Isp, tra gli autori dello studio. “Il freddo clima glaciale è stato però più volte interrotto da una serie di eventi di forte e improvviso aumento delle temperature, noti come eventi di Dansgaard-Oeschger, fino a 16 °C sulla piattaforma glaciale groenlandese”.

sito di perforazione di Renland

Le cause di questi eventi di riscaldamento, scoperti già a metà degli anni ‘80 dall’analisi di carote di ghiaccio groenlandese, sono tuttora oggetto di dibattito benché la pubblicazione di questa ricerca abbia contribuito a una loro maggiore comprensione. I risultati dello studio indicano infatti che la forte riduzione dell’estensione del ghiaccio marino potrebbe essersi verificata nell’arco di 250 anni o meno, contemporaneamente all’inizio di una fase di rimescolamento della stratificazione delle acque del Nord Atlantico, causando così un forte rilascio di calore e conseguente riscaldamento atmosferico. “Mentre il Nord Atlantico perdeva rapidamente la copertura di ghiaccio, il calore dell’acqua oceanica veniva trasmesso all’atmosfera sovrastante, portando così ad un’amplificazione degli eventi di riscaldamento climatico in atto”, afferma Niccolò Maffezzoli, ricercatore Marie Curie all’Università Ca’ Foscari Venezia, coautore dello studio.

Per questo lavoro l’équipe di ricerca ha combinato insieme per la prima volta dati climatici da carote di sedimenti marini e carote di ghiaccio. “I colleghi norvegesi hanno analizzato le due carote di sedimento prelevate nel Mare di Norvegia, mentre nei laboratori di Ca’ Foscari e Cnr-Isp abbiamo misurato nel ghiaccio della carota groenlandese di Renland le concentrazioni di bromo e sodio, due elementi sensibili alla presenza di ghiaccio marino stagionale nell’Oceano Nord Atlantico, in particolare nell’area tra Norvegia e Groenlandia”, prosegue Maffezzoli. “A segnalare l’estensione del ghiaccio marino stagionale è specialmente il bromo, che viene emesso in atmosfera durante la primavera artica per poi depositarsi sulla calotta polare. Queste ‘esplosioni di bromo’ stagionali registrate nelle carote di ghiaccio ci hanno permesso di ricostruire le dinamiche del ghiaccio marino nei millenni passati”.

“I dati sono stati poi allineati tra loro attraverso l’identificazione, in tutte le carote, di diversi strati di tephra, strati di cenere vulcanica provenienti da eruzioni islandesi passate, che ne ha permesso la sincronizzazione temporale”, conclude Spolaor. “Il nostro studio ha evidenziato l’utilità di effettuare ricostruzioni climatiche combinando carote di sedimento oceanico e glaciali, fornendo così una più solida comprensione delle variazioni passate del ghiaccio marino nei mari del Nord”.

ghiaccio Nord Atlantico
team di ricerca che sorregge l’ultima porzione della carota estratta

 

L’articolo:

Rapid reductions and millennial-scale variability in Nordic Seas sea ice cover during abrupt glacial climate changes. Sadatzki, N. Maffezzoli, T. M. Dokken, M. H. Simon, S. M. P. Berben, K. Fahl, H. A. Kjær, A. Spolaor, R. Stein, P. Vallelonga, B. M. Vinther, E. Jansen, link: ww.pnas.org/content/early/2020/11/03/2005849117

 Testo dall’Università Ca’ Foscari Venezia, foto CNR-UniVe

Le forme dell’acqua

Un nuovo studio numerico, risultato di una collaborazione tra la Sapienza Università di Roma e la Princeton University, ha dimostrato per la prima volta l’esistenza di due diverse forme di acqua, ovvero di due distinte fasi liquide che a bassissime temperature si separano, galleggiando l’una sull’altra. Il lavoro, pubblicato sulla rivista Science, apre nuove strade alla comprensione dei misteri legati al liquido della vita

forme acqua
In questa serie di immagini, la molecola centrale (rossa) è legata attraverso legami idrogeno con le molecole vicine. In verde sono indicate le molecole che accettano il protone dalla molecola centrale, in giallo le molecole che donano il protone alla molecola centrale. In viola, molecole non direttamente legate alla molecola centrale.
L’ immagine di sinistra rappresenta una molecola con intorno una struttura tetraedrica, con quattro legami idrogeno (due verdi, due gialli). Al centro il caso di una molecola con cinque legami idrogeno (due verdi, tre gialli) e a destra il caso di una molecola centrale che forma solo tre legami idrogeno (due verdi ed un giallo). Il liquido a bassa densità è tutto formato da molecole tetraedriche. Il liquido ad alta densità include anche molecole con tre e cinque legami.

 

Ogni liquido assume la forma del contenitore che lo accoglie. Sappiamo che è così perché riusciamo a osservarlo direttamente con i nostri occhi. Eppure questa affermazione vale solo a livello macroscopico. A livello molecolare infatti ogni liquido ha una forma propria determinata dalla posizione spaziale in cui si dispongono le molecole che lo compongono.

L’acqua, il liquido della vita, potrebbe invece essere differente e avere, non una, ma bensì due forme molecolari diverse: una forma in cui localmente ogni molecola è circondata da quattro altre molecole disposte con una geometria tetraedrica (ordinata) e con le quali forma dei legami particolarmente intensi (i legami idrogeno), e una in cui la struttura tetraedrica invece è significativamente distorta, ovvero una configurazione più disordinata, in cui alcune molecole formano solo tre o cinque legami idrogeno.

La competizione tra queste due strutture spiegherebbe le anomalie dell’elemento più prezioso e abbondante della Terra: l’acqua infatti ha un comportamento che differisce da quello di tutti gli altri liquidi esistenti in natura. Per esempio come solido ha una densità inferiore che come liquido (si spiega così il galleggiamento del ghiaccio), ha un calore specifico molto alto (è in assoluto il liquido che impiega più tempo per riscaldarsi), ha una tensione superficiale elevata (le gocce d’acqua rimangono integre su molte superfici, come sulle foglie delle piante, e non si espandono come gli altri liquidi).

Nonostante i molteplici lavori, teorici e sperimentali condotti negli ultimi venti anni, non sono state prodotte prove definitive del ruolo giocato da queste due strutture all’interno dell’acqua.

Un nuovo studio pubblicato sulla rivista Science fornisce una prova inequivocabile, basata sui più accurati modelli oggi disponibili, che l’unicità dell’acqua dipenda proprio dalla non univocità della sua forma. Il lavoro, frutto della collaborazione scientifica fra Francesco Sciortino del Dipartimento di Fisica della Sapienza di Roma e il team di Pablo Debenedetti della Princeton University (USA), ha dimostrato per la prima volta che a temperature bassissime la “competizione” tra le due strutture genera due fasi liquide ben distinte, con diversa densità e che il passaggio tra le due “acque” costituisce una vera e propria transizione di fase, esattamente come avviene, ad esempio, da una fase solida a una gassosa.

In particolare, i ricercatori hanno visto che al di sotto della temperatura di circa 180 gradi Kelvin, l’equivalente di -90 gradi Celsius, dove l’acqua è metastabile rispetto al ghiaccio, la densità del liquido comincia a oscillare fra due valori: liquido a bassa densità e liquido ad alta densità.

“Come il ghiaccio che galleggia sull’acqua – spiega Francesco Sciortino – sotto i 180 gradi Kelvin, l’acqua di bassa densità galleggia sopra l’acqua di alta densità. Abbiamo dimostrato, con modelli alquanto accurati, un punto critico per la transizione liquido-liquido: la prova teorica che serviva per convincere la comunità scientifica che è possibile avere un sistema puro (una sola componente) con più di una fase liquida”.

Per raggiungere questi risultati sono state necessarie simulazioni estremamente lunghe di sistemi particolarmente grandi, un vero tour-de-force numerico che ha richiesto una enorme quantità di risorse di calcolo, sia a Roma che a Princeton. Gli autori infatti hanno risolto le equazioni del moto che descrivono l’evoluzione del liquido per ben 100 miliardi di volte di seguito coprendo così un intervallo temporale di circa 100 microsecondi, per osservare la transizione tra i due liquidi che avviene sulla scala di decine di microsecondi, prima che l’acqua cristallizzi.

“Grazie a questo lavoro – conclude Sciortino – disponiamo di un modello e di dati numerici accurati che ci consentiranno in futuro di osservare la struttura molecolare su scala subnanometrica, per dimostrare sperimentalmente questa transizione di fase e per scartare scenari termodinamici rivelatisi inadeguati a coglierne l’esistenza”.

 

 

Riferimenti:

Second critical point in two realistic models of water – Pablo G. Debenedetti, Francesco Sciortino, Gül H. Zerze – Science  17 Jul 2020 DOI: 10.1126/science.abb9796

 

Testo, video e immagine sulle forme dell’acqua dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma.