News
Ad
Ad
Ad
Tag

Germania

Browsing

Parassiti del melo: approcci innovativi e sostenibili dalla ricerca internazionale da due progetti tra Alto Adige, Germania e Lussemburgo

Un gruppo di ricerca coordinato dal prof. Hannes Schuler del Centro di competenza per la salute delle piante è coinvolto in nuovi progetti internazionali di ricerca volti a individuare alternative innovative e sostenibili nella lotta contro le malattie del melo. A maggio hanno preso il via due progetti congiunti con partner in Germania e Lussemburgo. L’obiettivo? Comprendere meglio il ruolo degli insetti vettori e dei batteri simbionti nella trasmissione di patogeni che causano gli scopazzi del melo.

Gli scopazzi del melo sono una delle fitopatie più problematiche per la melicoltura altoatesina da oltre vent’anni. Causata da fitoplasmi, batteri privi di parete cellulare, la malattia si trasmette attraverso insetti fitofagi (che si nutrono della linfa o dei contenuti cellulari delle piante), in particolare le psille. Tali insetti, nutrendosi della linfa di piante infette, possono acquisire i fitoplasmi, che si replicano al loro interno e vengono poi trasmessi ad altre piante sane durante l’alimentazione.

Nel progetto VectoRise — una collaborazione tra unibz, l’Istituto di Scienza e Tecnologia del Lussemburgo (Luxembourg Institute of Science and Technology) e l’istituto tedesco RLP AgroScience — l’attenzione dei ricercatori si concentra sul ruolo della psilla del biancospino.

« In Germania, questa specie non è rilevante per la trasmissione dei fitoplasmi ma i nostri studi precedenti hanno dimostrato che in Alto Adige è in grado di acquisire e probabilmente anche trasmettere il patogeno», spiega il prof. Hannes Schuler.  «Comprendere i fattori alla base di queste differenze regionali nell’efficienza vettoriale è essenziale per sviluppare alternative più sostenibili agli insetticidi».

Nella collaborazione, il team unibz si occuperà di genomica, studiando quali geni influenzano la capacità dell’insetto di acquisire e trasmettere i fitoplasmi. I ricercatori lussemburghesi analizzeranno invece se le variazioni regionali della psilla modificano la trasmissibilità del patogeno e se l’aumento delle temperature legato al cambiamento climatico possa accelerarne la diffusione.

Struttura sperimentale di un esperimento di trasmissione del fitoplasma
Parassiti del melo: approcci innovativi e sostenibili dalla ricerca internazionale da due progetti tra Alto Adige, Germania e Lussemburgo. Struttura sperimentale di un esperimento di trasmissione del fitoplasma

Un viaggio nel tempo attraverso centinaia di milioni di anni

Un secondo progetto congiunto, sviluppato dalla Facoltà di Scienze Agrarie, Ambientali e Alimentari insieme alla Deutsche Forschungsgemeinschaft (DFG), al Max-Planck-Institut di Jena, alla Martin-Luther-Universität di Halle-Wittenberg e al Naturmuseum di Berlino, esplora la storia evolutiva della simbiosi tra psille e batteri. Questi microrganismi forniscono nutrienti essenziali agli insetti fitofagi come aminoacidi assenti nella linfa vegetale, e rappresentano un elemento chiave per la sopravvivenza degli insetti vettori.

Combinando sequenziamento genomico, ricostruzioni filogenetiche e microscopia a fluorescenza, gli scienziati studieranno oltre cento specie di psille per comprendere le dinamiche della coevoluzione con i loro simbionti batterici.

«Questo progetto – conclude Schuler – non solo approfondirà la nostra conoscenza delle interazioni insetto-microbo, ma potrà offrire strumenti concreti per bloccare la trasmissione di malattie vegetali».

il prof. Hannes Schuler
il prof. Hannes Schuler

Testo e immagini dall’Ufficio Stampa e organizzazione eventi Libera Università di Bolzano – Freie Universität Bozen

Polarizzazione politica e interazioni sui social: esistono schemi comuni a livello internazionale
La ricerca pubblicata su Nature Communications, che ha coinvolto il Dipartimento di Informatica della Sapienza, mette in luce le dinamiche comuni della polarizzazione politica online su scala globale. Grazie all’analisi delle interazioni tra gli utenti su piattaforme online in ben nove Paesi, i ricercatori hanno rilevato l’esistenza di pattern ripetuti in diversi contesti nazionali.

La polarizzazione politica sui social network è un fenomeno internazionale. Al di là delle specificità dei singoli contesti nazionali – che differiscono per cultura, storia, sistema politico – il dibattito politico online si articola seguendo pattern comuni a livello globale. Lo studio, pubblicato su Nature Communications e condotto da un team internazionale di ricercatori, tra cui Walter Quattrociocchi, direttore del Centro per la Data Science e la complessità per la società della Sapienza, mira a individuare le dinamiche comunicative che vanno oltre i confini politici dei singoli Stati.

Grazie ad una analisi effettuata nel 2022 sulle interazioni che avvenivano su una specifica piattaforma in nove Paesi anche molto diversi tra loro (Canada, Francia, Germania, Italia, Polonia, Spagna, Turchia, Regno Unito e Stati Uniti), il gruppo di ricercatori, composto da scienziati sociali e informatici, ha individuato molteplici elementi ricorrenti.

La polarizzazione politica – presente anche nel mondo offline – appare particolarmente visibile nel mondo dei social network, soprattutto per la struttura intrinseca delle piattaforme online. In tutti i Paesi analizzati, le reti di interazione politica sui social sono risultate strutturalmente polarizzate lungo linee ideologiche (ad esempio destra/sinistra).

“Su quella che era la piattaforma Twitter, l’ostilità tra gruppi politici contrapposti è manifesta – spiega Walter Quattrociocchi. Questo, a livello comunicativo, si traduce in interazioni più tossiche rispetto a quelle osservabili tra i membri appartenenti allo stesso gruppo politico. Contrariamente a quanto si potrebbe pensare, le interazioni tossiche coinvolgono meno gli utenti. Per questi contenuti, il numero di like infatti appare minore rispetto a quello delle interazioni meno tossiche”

La ricerca mette in evidenza come la polarizzazione politica non sia un fenomeno limitato a una singola nazione, ma presenti caratteristiche simili tra diverse culture e contesti nazionali.

“Comprendere questi pattern comuni – commenta Quattrociocchi – è essenziale per poter pensare a soluzioni efficaci in grado di ridurre l’ostilità politica e promuovere un dialogo più costruttivo”.

Riferimenti bibliografici:

Patterns of partisan toxicity and engagement reveal the common structure of online political communication across countries – Falkenberg, M., Zollo, F., Quattrociocchi, W. et al. Nature Communications (2024), DOI: https://doi.org/10.1038/s41467-024-53868-0

 

politica interazioni social media network
Polarizzazione politica e interazioni sui social: esistono schemi comuni a livello internazionale, lo studio su Nature Communications. Foto di Mudassar Iqbal

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

La storia del compasso di proporzione nella mostra “Circinus. Compassi di proporzione dal XV al XVIII secolo” al Museo Galileo di Firenze dal 28 giugno al 15 settembre

Firenze, 26 giugno – Cento compassi originali del XV e XVIII, di cui due esemplari del compasso geometrico e militare di Galileo Galilei, saranno esposti al Museo Galileo di Firenze dal 28 giugno al 15 settembre per la mostra “Circinus. Compassi di proporzione dal XV al XVIII secolo”, organizzata in collaborazione con l’Arithmeum di Bonn. L‘esposizione intende ricostruire la storia del compasso di proporzione, uno strumento di calcolo analogico che rappresenta una delle più significative conquiste della matematica pratica occidentale, illustrandone l’evoluzione, il funzionamento e i diversi utilizzi, e soprattutto il fondamentale ruolo svolto nello sviluppo delle applicazioni matematiche, invogliando i visitatori, e i più giovani in particolare, ad approfondire la conoscenza di questo straordinario strumento.

Gli strumenti in mostra provengono dall’Arithmeum di Bonn, dall’Astronomisch-Physikalisches Kabinett–Hessen Kassel Heritage, dalla Collezione Rocca di Bonn, dalla Collezione Delalande di Parigi e dalla Fondazione Pisa presso Palazzo Blu, oltre che dal Museo Galileo stesso, affiancati da volumi originali e in facsimile e da ricostruzioni di compassi di proporzione, tra i quali alcuni ideati da Leonardo da Vinci.

Tra i pezzi più importanti in mostra: due esemplari del compasso geometrico e militare di Galileo Galilei, uno dal Museo Galileo e l’altro dalla Fondazione Pisa; diverse “cassette matematiche”, raffinate scatole contenenti compassi e altri strumenti matematici: tra di esse si segnala la grande “cassetta da esploratore” costruita a metà XVIII secolo da Jacques Canivet, in prestito proveniente dalla Collezione Delalande, che contiene 160 strumenti matematici e da disegno in argento, acciaio, ottone, avorio, vetro e legno. E tra i pezzi pregiati anche un raro compasso di Fabrizio Mordente della fine del XVI secolo, concesso in prestito dall’Astronomisch-Physikalisches Kabinett di Kassel. Tra gli oggetti più curiosi, un set di strumenti matematici in miniatura della seconda metà del XVII secolo, che contiene sei strumenti, tra cui un minuscolo compasso di proporzione lungo appena 2,7 cm.

Il compasso di proporzione è stato per oltre due secoli un compagno indispensabile di architetti, ingegneri e scienziati. A prima vista, si tratta di uno strumento matematico molto semplice, costituito da due gambe piatte unite da un perno. Ogni gamba reca incise diverse scale, il cui utilizzo consente di effettuare misurazioni, eseguire calcoli e ricavare informazioni di vario genere.

“Il compasso di proporzione – si legge in una nota dei curatori – è anche un perfetto esempio della simbiosi tra scienza e arte, frutto della combinazione di rigorosi principi matematici con la maestria di artisti raffinati. I preziosi esemplari esposti in molti casi costituiscono veri e propri capolavori per la ricchezza dei materiali impiegati e la ricercatezza con cui furono realizzati”.

La mostra fiorentina costituisce uno sviluppo dell’esposizione “Proportionalzirkel und seltene Mathematik- und Zeicheninstrumente des 17. und 18. Jahrhunderts” allestita presso l’Arithmeum di Bonn (21 ottobre 2023 – 9 giugno 2024), ed è arricchita da una sezione appositamente concepita, dedicata alle origini del compasso di proporzione, da Leonardo da Vinci a Galileo Galilei, nella quale sono esposti strumenti e libri provenienti dalle collezioni del Museo Galileo.

 

Il catalogo della mostra è co-pubblicato da Edizioni Museo Galileo, Arithmeum Press e Sillabe.

Alla preview erano presenti i curatori della mostra — Ina Prinz (Direttrice, Arithmeum), Patrick Rocca (Curatore, Arithmeum), Filippo Camerota (Direttore scientifico, Museo Galileo) — oltre a Francesco Saverio Pavone e Roberto Ferrari, rispettivamente Presidente e Direttore esecutivo del Museo Galileo.

In occasione della preview della mostra, sono stati presentati anche gli interventi recentemente realizzati per garantire il massimo livello di accessibilità del percorso museale. Il Museo Galileo ha partecipato al bando PNRR del Ministero della Cultura per la rimozione delle barriere fisiche e cognitive in musei, biblioteche e archivi, impegnandosi a introdurre specifiche modalità di fruizione rivolte alle persone con diversi tipi di disabilità, a sostituire alcuni impianti obsoleti, a installare nuove sedute lungo il percorso espositivo e nuovi apparecchi di illuminazione a ridotto consumo energetico per ottimizzare la visibilità.

Testo e immagini dall’Ufficio stampa PS Comunicazione

Il geotermico è la rinnovabile più efficace per diminuire le emissioni di CO2 (seguono idroelettrico e solare)

Lo studio dell’Università di Pisa su 27 paesi OCSE dal 1965 al 2020 pubblicato sul Journal of Cleaner Production

Impianto ad energia geotermica di Nesjavellir in Islanda, che fornisce acqua calda all'area di Reykjavík
Impianto ad energia geotermica di Nesjavellir in Islanda, che fornisce acqua calda all’area di Reykjavík. Foto di Gretar Ívarsson, modificata da Fir0002, in pubblico dominio

Per diminuire le emissioni di CO2 nell’atmosfera, il geotermico è la fonte di energia rinnovabile più efficace, seguito da idroelettrico e solare. La notizia arriva da uno studio su 27 paesi OCSE dal 1965 al 2020 pubblicato sul Journal of Cleaner Production.

La ricerca ha analizzato l’impatto di alcune fonti di energia rinnovabile per la produzione di energia elettrica: geotermico, solare, eolico, biofuel, idroelettrico. Dai risultati è emerso che ognuna di esse contribuisce a ridurre le emissioni di CO2 e dunque è utile agli obiettivi della transizione ecologica. Fra tutte, le migliori sono il geotermico, l’idroelettrico, e il solare, in ordine decrescente di importanza. A livello quantitativo, 10 terawattora di energia elettrica prodotti da geotermico, idroelettrico, e solare, consentono infatti di ridurre le emissioni di CO2 pro capite rispettivamente di 1.17, 0.87, e 0.77 tonnellate.

I 27 paesi OCSE esaminati dal 1965 al 2020 sono stati scelti come campione perché contribuiscono notevolmente al rilascio di emissioni di CO2 nell’atmosfera e rappresentano circa un terzo del totale delle emissioni globali di CO2. Nello specifico si tratta di Australia, Austria, Canada, Cile, Cipro, Danimarca, Finlandia, Francia, Germania, Grecia, Islanda, Irlanda, Israele, Italia, Giappone, Messico, Paesi Bassi, Nuova Zelanda, Norvegia, Polonia, Portogallo, Corea del Sud, Spagna, Svezia, Svizzera, Regno Unito e Stati Uniti.

Per ricavare i dati, la ricerca ha analizzato molteplici fonti, le principali sono: Food and Agriculture Organization (FAO), International Energy Agency (IEA), OECD, Our World in Data (OWID), e World Bank.

“È noto che circa due terzi degli italiani si dichiara appassionato del tema della sostenibilità e ritiene importante l’uso delle rinnovabili per avere città più sostenibili  – dice Gaetano Perone, ricercatore del dipartimento di Economia e Management dell’Università di Pisa e autore dell’articolo – la mia analisi spiega in modo dettagliato l’impatto di ciascuna energia rinnovabile sulle emissioni di CO2, considerando anche altri aspetti legati ai costi di implementazione e costruzione delle centrali e delle opportunità date dalle caratteristiche geografiche e climatiche dei paesi considerati”.

Riferimenti bibliografici:

Gaetano Perone, The relationship between renewable energy production and CO2 emissions in 27 OECD countries: A panel cointegration and Granger non-causality approach, Journal of Cleaner Production,
Volume 434, 2024, 139655, ISSN 0959-6526, DOI: https://doi.org/10.1016/j.jclepro.2023.139655

Testo dall’Unità Comunicazione Istituzionale dell’Università di Pisa.

LOFAR: LA PIÙ GRANDE RETE DI RADIOTELESCOPI ALLE BASSE FREQUENZE SI RAFFORZA DIVENENDO UN CONSORZIO EUROPEO DI INFRASTRUTTURA DI RICERCA (ERIC)

Il radiotelescopio europeo LOFAR (LOw Frequency ARray) acquisisce la nuova configurazione di European Research Infrastructure Consortium (ERIC). L’avvio di questa entità legale pensata per ottimizzare la gestione dell’infrastruttura e consolidare la leadership mondiale dell’Europa nel campo è stato ufficialmente dato nel corso della prima riunione del Consiglio di LOFAR ERIC svoltasi oggi.

Crediti per l’immagine: ASTRON

L’infrastruttura di ricerca di LOFAR, composta da 70mila antenne distribuite su ben dieci Paesi europei a cui anche l’Italia partecipa con la guida dell’Istituto Nazionale di Astrofisica, forma il telescopio a bassa frequenza più potente del pianeta ed è il più grande precursore del futuro radiotelescopio SKA alle basse frequenze. LOFAR ha già rivoluzionato la ricerca sulla radioastronomia, dando luogo a una valanga di pubblicazioni scientifiche nell’ultimo decennio. In particolare, la comunità Italiana sta giocando un ruolo fondamentale nell’utilizzo scientifico dei dati LOFAR e ha dato un contributo tecnologico importante nella progettazione e realizzazione dei sistemi che saranno utilizzati nell’aggiornamento della infrastruttura (LOFAR 2.0) prevista per il 2025.

LOFAR ERIC governerà proprio la sfida tecnologica alla base di LOFAR 2.0, che porterà ad un grande potenziamento di LOFAR mettendo a disposizione della comunità astronomica una capacità di osservazione ed elaborazione dei dati ancora più all’avanguardia, producendo un ulteriore balzo in avanti nella sensibilità e risoluzione delle immagini prodotte da LOFAR.

“Siamo fieri di contribuire in modo decisivo al progetto LOFAR” commenta Marco Tavani, Presidente dell’Istituto Nazionale di Astrofisica. “L’Italia è infatti uno dei Paesi fondatori di questo ERIC che oggi rafforza la leadership mondiale dell’Europa nel campo della radioastronomia. Il lavoro incessante per migliorare a livello tecnologico e organizzativo questa infrastruttura di ricerca sarà fondamentale per entrare in una nuova era dello studio dell’universo nelle onde radio, quando sarà operativo anche lo Square Kilometre Array Observatory”.

LOFAR ERIC fornirà un accesso trasparente a un’ampia gamma di servizi di ricerca scientifica per la comunità europea e globale, promuovendo collaborazioni e consentendo ai ricercatori di portare avanti progetti innovativi su larga scala in tutti i settori scientifici, tra cui lo studio dell’universo primordiale, la formazione e l’evoluzione delle galassie, la fisica delle pulsar e dei fenomeni radio transitori, la natura delle particelle cosmiche ad altissima energia e la struttura dei campi magnetici cosmici. LOFAR ERIC garantirà l’accesso ad una mole di dati senza precedenti attraverso un archivio distribuito su scala Europea e aperto alla comunità.

I membri fondatori di LOFAR ERIC sono Bulgaria, Germania, Irlanda, Italia, Paesi Bassi e Polonia. Collaborazioni con istituti in Francia, Lettonia, Svezia e Regno Unito garantiscono un’ulteriore partecipazione all’infrastruttura distribuita LOFAR e al programma di ricerca. La sede statutaria di LOFAR ERIC è a Dwingeloo, nei Paesi Bassi, ospitata dal NWO-I/ASTRON (Netherlands Institute for Radio Astronomy, che ha guidato la progettazione di LOFAR).

“L’istituzione di LOFAR ERIC consolida l’eccellenza a livello mondiale per l’Europa in un importante settore di ricerca”, dice René Vermeulen, direttore fondatore di LOFAR ERIC. “Con la sua impareggiabile infrastruttura di ricerca distribuita e il suo solido partenariato paneuropeo, LOFAR ERIC entra nello Spazio europeo della ricerca come una potenza all’avanguardia nella scienza e nella tecnologia dell’astronomia, con il potenziale per contribuire a sfide complesse più ampie”.

Informazioni su LOFAR ERIC

LOFAR ERIC (LOw-Frequency ARray European Research Infrastructure Consortium) assicura il futuro della radioastronomia a bassa frequenza sfruttando l’infrastruttura di ricerca distribuita LOFAR come osservatorio leader mondiale per la ricerca astronomica su larga scala. LOFAR ERIC consolida la leadership mondiale dell’Europa in questo campo. È stato istituito dalla Commissione europea il 20 dicembre 2023. I membri fondatori di LOFAR ERIC sono Bulgaria, Germania, Irlanda, Italia, Paesi Bassi e Polonia. Collaborano a LOFAR ERIC anche istituti in Francia, Lettonia, Svezia e Regno Unito.

LOFAR ERIC
Crediti per l’immagine: ASTRON

Informazioni su LOFAR

LOFAR è il più grande e sensibile radiotelescopio al mondo che opera a basse frequenze radio, tra 10 e 240 MHz. Si tratta di un’infrastruttura di ricerca distribuita che consiste in molteplici stazioni d’antenna, geograficamente distribuite in tutta Europa, tutte gestite via software e dotate di un potente sistema di calcolo e di una massiccia archiviazione di dati in diversi centri dati distribuiti. Il funzionamento congiunto forma un sistema di osservazione ed elaborazione dati unificato, altamente agile e capace. Con una sensibilità cento volte superiore a quella di qualsiasi telescopio precedente a queste frequenze, una risoluzione d’immagine senza precedenti su un ampio campo visivo e la capacità di osservare simultaneamente in più direzioni, LOFAR è di gran lunga il telescopio a bassa frequenza più potente del pianeta e sta rivoluzionando la nostra visione dell’universo radio a bassa frequenza. LOFAR è stato originariamente sviluppato dal NWO-I/ASTRON, l’Istituto olandese di radioastronomia, che ora ospita LOFAR ERIC e fornisce la maggior parte dei servizi operativi di LOFAR ERIC. LOFAR ERIC è finanziato congiuntamente dai suoi membri e partner, che stanno implementando collettivamente un importante aggiornamento (LOFAR2.0) per migliorare e ampliare notevolmente le capacità di ricerca scientifica.

LOFAR ERIC
Crediti per l’immagine: ASTRON

Testo e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

LE PULSAR CI SVELANO IL RESPIRO DELLO SPAZIO-TEMPO: SI APRE UNA NUOVA FINESTRA NELL’OSSERVAZIONE DELLE ONDE GRAVITAZIONALI

Una collaborazione internazionale di astronomi europei, fra cui ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università di Milano-Bicocca, coadiuvata da colleghi indiani e giapponesi, ha pubblicato i risultati di oltre 25 anni di osservazioni effettuate da sei dei radiotelescopi più sensibili del mondo. Dall’analisi di questi dati e di quelli di altre collaborazioni in nord America, Australia e Cina, emergono i segni distintivi della presenza nel cosmo di onde gravitazionali di bassissima frequenza. Questi risultati rappresentano una pietra miliare per l’astrofisica contemporanea: da un lato aprono una nuova finestra osservativa nella scienza delle onde gravitazionali e dall’altro confermano l’esistenza di onde gravitazionali ultra lunghe che, secondo le teorie correnti, dovrebbero essere generate da coppie di buchi neri super-massicci formatisi nel corso del processo di fusione fra le galassie.

Le pulsar ci svelano il lento respiro dello spazio-tempo: si apre una nuova finestra nell’osservazione delle onde gravitazionali. Crediti: Danielle Futselaar / MPIfR

In una serie di articoli pubblicati oggi sulla rivista Astronomy and Astrophysics, gli scienziati dell’European Pulsar Timing Array (EPTA), in collaborazione con i colleghi indiani e giapponesi dell’Indian Pulsar Timing Array (InPTA), riportano i risultati ottenuti analizzando dati raccolti in oltre 25 anni, che promettono di condurre a scoperte senza precedenti nello studio della formazione e dell’evoluzione del nostro Universo e delle galassie che lo popolano.

“I risultati presentati oggi dalla collaborazione EPTA sono straordinari per la loro importanza scientifica e per le prospettive future di ulteriore consolidamento dei risultati” commenta Marco Tavani, presidente dell’INAF. “L’Astrofisica italiana e l’INAF sono leader mondiali in una grande impresa finalizzata a esplorare il Cosmo con le onde gravitazionali, un filone di ricerca che vedrà l’Italia protagonista nei prossimi anni”.

Le pulsar ci svelano il lento respiro dello spazio-tempo: si apre una nuova finestra nell’osservazione delle onde gravitazionali. Crediti: Danielle Futselaar / MPIfR

L’EPTA è una collaborazione di scienziati di undici istituzioni in tutta Europa, fra cui due in Italia (l’INAF con la sua sede di Cagliari e l’Università di Milano-Bicocca), e riunisce astronomi e fisici teorici, al fine di utilizzare le osservazioni degli impulsi ultra regolari provenienti da stelle di neutroni chiamate “pulsar” per costruire un rilevatore di onde gravitazionali delle dimensioni della nostra Galassia.

«Le pulsar sono eccellenti orologi naturali e possiamo usare l’incredibile regolarità dei loro segnali per cercare minuscoli cambiamenti nel loro ticchettio causati da sottili dilatazioni e compressioni dello spazio-tempo provocati da onde gravitazionali provenienti dall’Universo lontano»,

spiega Golam Shaifullah, ricercatore presso l’Università di Milano-Bicocca nel gruppo di ricerca ‘B Massive’ diretto da Alberto Sesana, professore ordinario dell’Ateneo, e finanziato dall’European Research Council.

Infatti le pulsar si comportano come orologi naturali di alta precisione e dalla misura ripetuta di piccolissime variazioni (inferiori ad un milionesimo di secondo e correlate fra loro) nei tempi di arrivo dei loro impulsi è possibile misurare le minute dilatazioni e compressioni dello spazio-tempo provocate dal passaggio di onde gravitazionali provenienti dall’Universo lontano.

Questo gigantesco rivelatore di onde gravitazionali – che dalla Terra si estende in direzione di 25 pulsar, selezionate all’interno della nostra Via Lattea e distanti migliaia di anni luce da noi – rende possibile sondare un tipo di onde gravitazionali aventi un ritmo lentissimo, corrispondente a lunghezze d’onda enormemente più lunghe di quelle osservate, a partire dal 2015, dai cosiddetti interferometri per onde gravitazionali, tra cui spiccano Virgo a Cascina (vicino a Pisa) e LIGO negli USA.

All’INAF di Cagliari, l’entusiasmo è palpabile:

“Grazie alle osservazioni di EPTA, stiamo aprendo una nuova finestra nell’universo delle onde gravitazionali ultra lunghe (corrispondenti a frequenze di oscillazione del miliardesimo di Hertz) che sono associate a sorgenti e fenomeni unici”,

afferma la ricercatrice Caterina Tiburzi. La collega Marta Burgay precisa

Queste onde gravitazionali ci permettono di studiare alcuni dei misteri finora irrisolti nell’evoluzione dell’Universo, fra cui, ad esempio, le proprietà della elusiva popolazione cosmica dei sistemi binari formati da due buchi neri supermassici, aventi masse miliardi di volte maggiori di quella del Sole”. 

Questi buchi neri si trovano ad orbitare al centro di galassie che stanno fondendosi l’una con l’altra, e durante il loro orbitare, la teoria della relatività generale di Albert Einstein prevede che emettano onde gravitazionali ultra lunghe.

Gli strumenti utilizzati per raccogliere i dati sono l’Effelsberg Radio Telescope in Germania, il Lovell Telescope dell’Osservatorio Jodrell Bank nel Regno Unito, il Nancay Radio Telescope in Francia, il Westerbork Radio Synthesis Telescope nei Paesi Bassi, e il Sardinia Radio Telescope (SRT) in Italia.

“Questi risultati – aggiunge l’astronoma Delphine Perrodin, sempre dell’INAF di Cagliari – si basano su decenni di certosine e instancabili campagne di osservazione effettuate utilizzando i cinque più grandi radiotelescopi in Europa. Inoltre, una volta al mese i dati di questi telescopi vengono anche sommati fra loro, aumentando ulteriormente la sensibilità dell’esperimento”.

Queste osservazioni sono poi state ulteriormente integrate dai dati forniti dal Giant Metrewave Radio Telescope in India, con ciò rendendo l’insieme di dati ancora più accurato.

“È una grande soddisfazione per tutta l’astrofisica italiana che SRT, il grande radiotelescopio gestito da INAF, sia fra i  testimoni dell’emergere nei dati di questo lento respiro dello spazio-tempo”, spiega Andrea Possenti, Primo Ricercatore dell’INAF di Cagliari e fra i fondatori di EPTA, assieme all’ex presidente dell’Istituto Nazionale di Astrofisica Nichi D’Amico: “Si tratta di nuovo grande risultato scientifico, che conferma, a livello mondiale, il ruolo centrale dell’Italia, e vieppiù della Sardegna (con SRT e speriamo presto anche con l’Einstein Telescope), nello studio delle onde gravitazionali per molti decenni a venire “.

I risultati dell’EPTA si confrontano con una serie di pubblicazioni indipendenti oggi annunciate in parallelo da altre collaborazioni in tutto il mondo, facenti capo agli esperimenti di tipo PTA (pulsar timing array) australiano, cinese e nordamericano, noti rispettivamente come PPTA, CPTA e NANOGrav. I vari risultati sono consistenti fra tutte le collaborazioni, ciò che corrobora ulteriormente la presenza nei dati di un segnale dovuto ad onde gravitazionali. Il lavoro però non termina qui, in quanto la natura stessa del segnale osservato prevede che esso si manifesti in maniera progressivamente più chiara.

“Ho cominciato il mio dottorato al momento giusto – ricorda Francesco Iraci, dottorando dell’Università di Cagliari che da circa un anno svolge le sue ricerche presso l’INAF di Cagliari proprio nel contesto di EPTA – e non vedo l’ora di contribuire all’ulteriore affinamento dei dati!”

Spiegando l’importanza di questo risultato, il professor Alberto Sesana afferma: «L’insieme di dati dell’EPTA è straordinariamente lungo e denso ed ha permesso di ampliare la finestra di frequenza in cui possiamo osservare queste onde, permettendo una migliore comprensione della fisica delle galassie che si fondono e dei buchi neri supermassicci che esse ospitano».

La lunghezza del set di dati consente infatti di sondare onde gravitazionali che oscillano in maniera incredibilmente lenta consentendo di esplorare sistemi binari di buchi neri con periodi orbitali di decine di anni. D’altra parte, la cadenza dei dati consente anche di studiare onde che compiono molte oscillazioni al mese, dando accesso a sistemi di buchi neri con periodi orbitali molto più brevi, dell’ordine di pochi giorni.

I risultati dell’analisi dei dati EPTA presentati oggi sono in linea con quanto atteso dalle predizioni degli astrofisici. Nataliya Porayko, ‘visiting researcher’ all’Università di Milano-Bicocca tuttavia sottolinea che

«una regola d’oro in fisica per conclamare la scoperta di un nuovo fenomeno è che il risultato dell’esperimento abbia una probabilità di verificarsi casualmente meno di una volta su un milione».

Il risultato riportato da EPTA – così come dalle altre collaborazioni internazionali – non soddisfa ancora questo criterio, infatti c’è ancora circa una probabilità su mille che fonti di rumore casuali cospirino per generare il segnale.

«Ma i lavori sono già in corso –  come spiega Aurelien Chalumeau, assegnista del gruppo B Massive – gli scienziati delle quattro collaborazioni – EPTA, InPTA, PPTA e NANOGrav – stanno combinando i loro dati con il coordinamento dell’International Pulsar Timing Array».

L’obiettivo è quello di ampliare gli attuali insiemi di dati, sfruttando misure effettuate su oltre 100 pulsar, osservate con tredici radiotelescopi in tutto il mondo. L’accresciuta quantità e qualità dei dati dovrebbe consentire agli astronomi di raggiungere l’obiettivo nel prossimo futuro, fornendo la prova inconfutabile che una nuova era nell’esplorazione dell’Universo è iniziata.

Testo, video e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF) e dall’Ufficio stampa Università di Milano-Bicocca

LOFAR “FOTOGRAFA” IL GIGANTESCO BAGLIORE RADIO ATTORNO A UN AMMASSO DI GALASSIE, ABELL 2255

I dati sono stati raccolti durante 18 notti osservative con le migliaia di antenne che formano il radiotelescopio LOFAR.  L’origine dell’emissione radio attorno ad Abell 2255 sembra sia legata all’enorme energia rilasciata durante il processo di formazione dell’ammasso stesso. L’emissione sarebbe grande almeno 16 milioni di anni luce.

Sfruttando la potenza del radiotelescopio europeo Low Frequency Array (LOFAR), la più estesa rete al mondo attualmente operativa per osservazioni radioastronomiche a bassa frequenza, un team europeo di astronomi in Italia, Olanda e Germania ha osservato l’enorme emissione di onde radio diffusa intorno all’ammasso di galassie Abell 2255. Per 18 notti, le sensibili  antenne LOFAR hanno “ascoltato” un’area di cielo delle dimensioni apparenti di quattro lune piene, distante circa un miliardo di anni luce dalla Terra (in direzione della costellazione del Dragone). Per la prima volta gli astronomi hanno studiato un ammasso di galassie con osservazioni così profonde. Gli astrofisici, coordinati da Andrea Botteon, dell’Osservatorio di Leida, nei Paesi Bassi, recentemente trasferito al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna in qualità di assegnista di ricerca e associato presso l’INAF di Bologna, hanno pubblicato oggi i dati delle loro osservazioni sulla rivista Science Advances.

Abell 2255 LOFAR "fotografa" il gigantesco bagliore radio attorno all'ammasso di galassie Abell 2255
Immagine composita dell’ammasso di galassie Abell 2255. In blu sono evidenziati i dati a raggi X di ROSAT, che mostrano il gas caldo tra le galassie. In arancione e viola sono descritti i dati radio di LOFAR, che mostrano particelle in rapido movimento nei campi magnetici dell’ammasso. Il bagliore viola è l’emissione radio che circonda l’intero cluster. L’immagine ottica di sfondo è stata scattata con l’SDSS. L’immagine composita misura circa 18 milioni per 18 milioni di anni luce, e il campo visivo copre una regione del cielo corrispondente a circa quattro lune piene. Crediti: ROSAT/LOFAR/SDSS/Botteon et al., immagine creata da Frits Sweijen

Oggetti molto interessanti per gli astrofisici, gli ammassi di galassie si trovano nelle regioni più dense dell’Universo e contengono da centinaia a migliaia di galassie. Il volume tra le galassie è permeato da un gas estremamente rarefatto di particelle ad alta energia mescolate a campi magnetici. La loro origine è ancora avvolta da molti interrogativi: da dove vengono le particelle più energetiche in questo gas? E come interagiscono con i campi magnetici degli ammassi?

“Abbiamo scoperto che Abell 2255 è avvolto da un debole bagliore di emissione radio che incorpora migliaia di galassie presenti nell’ammasso e si estende su grandi scale come mai fino ad ora osservato, ovvero almeno 16 milioni di anni luce”, afferma Botteon, autore principale dello studio. “Questa emissione è generata da particelle ad alta energia che si muovono a velocità prossime a quella della luce in deboli campi magnetici – un milione di volte più deboli del campo terrestre – che riempiono l’intero volume dell’ammasso, anche nelle sue regioni più periferiche”.

Il ricercatore spiega, che “è la prima volta che abbiamo informazioni dettagliate sulla distribuzione e le proprietà di questi componenti su così vaste estensioni e che possiamo studiare i processi fisici che si verificano a grandi distanze dal centro dell’ammasso, nelle regioni più rarefatte dell’Universo. Riteniamo che l’origine dell’emissione radio in Abell 2255 sia legata all’enorme energia rilasciata durante il processo di formazione dell’ammasso”.

Le immagini ottenute dal gruppo di ricerca sono 25 volte più nitide e hanno un rumore 60 volte inferiore rispetto ai dati ottenuti in passato con altri strumenti. Nel corso degli ultimi due anni, il team ha dovuto sviluppare nuove e avanzate tecniche di analisi per elaborare il grande volume di dati.

“La sfida dell’analisi delle osservazioni di Abell 2255 – aggiunge Botteon – sta nel fatto che è la prima volta che osserviamo un oggetto esteso così a lungo (le osservazioni LOFAR tipicamente durano 8 ore). Questo richiede da un lato di correggere le distorsioni introdotte dalla ionosfera terrestre distribuite in un’area di cielo molto grande e dall’altro di ricostruire l’emissione diffusa e debole dell’ammasso con molta attenzione. Dato che le nostre osservazioni si spingono fino a frequenza molto bassa (50 MHz), dove le distorsioni della ionosfera si manifestano in maniera più evidente, le tecniche che abbiamo sviluppato hanno dovuto risolvere questi problemi in condizioni particolarmente complesse. Queste tecniche però hanno dato i loro frutti: l’immagine di Abell 2255 che abbiamo ottenuto a 50 MHz è l’immagine più profonda mai realizzata finora a questa frequenza”.

“Teoricamente credevamo che le regioni nelle periferie degli ammassi di galassie fossero molto attive e che la turbolenza e gli shock generati in questi ambienti potessero accelerare le particelle ad altissima energia e amplificare i campi magnetici locali. Grazie alle nostre osservazioni, ora siamo in grado di studiare questi processi in territori inesplorati”,

sottolinea Gianfranco Brunetti, dell’INAF di Bologna, il quale da alcuni anni guida a livello internazionale le ricerche LOFAR nell’ambito degli ammassi di galassie ed è coordinatore nazionale della collaborazione LOFAR.

Svelare le proprietà di regioni inesplorate delle strutture su larga scala del nostro Universo è l’obiettivo dei prossimi anni per gli astronomi che operano in questo campo. Per tale motivo, i ricercatori utilizzeranno LOFAR 2.0 e il futuro radiotelescopio SKA (così come altri strumenti) per andare oltre gli ammassi stessi, tracciando la rete di filamenti che collega gli ammassi di galassie nell’Universo: la famosa ragnatela cosmica.


 

Per ulteriori informazioni:

L’INAF ha aderito all’International LOFAR Telescope nel 2018. Con oltre 25 mila antenne raggruppate in 51 stazioni distribuite in 7 stati europei, il Low Frequency Array (LOFAR), gestito da ASTRON, è la più estesa rete per osservazioni radioastronomiche in bassa frequenza attualmente operativa. Con la firma del contratto per la realizzazione di una nuova stazione presso Medicina, in provincia di Bologna, LOFAR diventerà ancora più esteso e aumenteranno di conseguenza le sue capacità osservative. L’INAF guida un consorzio nazionale, di cui fa parte anche il dipartimento di fisica dell’Università di Torino, e parteciperà allo sviluppo della nuova generazione di dispositivi elettronici che equipaggeranno questo radiotelescopio diffuso sul territorio europeo. Il consorzio ha l’obiettivo di fornire agli scienziati italiani le condizioni per l’accesso e l’analisi dei dati di LOFAR, massimizzando l’impatto scientifico della ricerca. L’INAF gestisce, inoltre, l’infrastruttura computazionale nazionale per l’analisi dei dati LOFAR, distribuita in tre siti: Bologna, Trieste e Catania.

 

L’articolo “Magnetic fields and relativistic electrons fill entire galaxy cluster”, di Andrea Botteon,  Reinout J. van Weeren, Gianfranco Brunetti, Franco Vazza, Timothy W. Shimwell, Marcus Brüggen, Huub J. A. Röttgering, Francesco de Gasperin, Hiroki Akamatsu, Annalisa Bonafede, Rossella Cassano, Virginia Cuciti, Daniele Dallacasa, Gabriella Di Gennaro, Fabio Gastaldello, è stato pubblicato sulla rivista Science Advances.

Testo, video e foto dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF)

ISTANTANEA DI MOTI A SPIRALE: COSÌ PARTONO I GETTI DAL DISCO DI ACCRESCIMENTO DI UNA STELLA IN FORMAZIONE

Osservate, per la prima volta in maniera diretta, le linee di flusso di un “disk wind” magnetoidrodinamico, il vento che, secondo le previsioni teoriche, si origina dai dischi di accrescimento intorno a oggetti cosmici come stelle in formazione e buchi neri. A firmare la scoperta, pubblicata oggi su Nature Astronomy, un team internazionale guidato da Luca Moscadelli dell’Istituto Nazionale di Astrofisica, mediante le osservazioni radio di un’emissione “maser” dell’acqua nei pressi di una stella nascente realizzate con il Very Long Baseline Interferometry (VLBI) array, una rete globale di 26 radiotelescopi distribuiti tra l’Europa, l’Asia e gli Stati Uniti.

Durante il loro processo di formazione, molti oggetti astrofisici, dai buchi neri supermassicci fino ai pianeti giganti, sono circondati da un disco di accrescimento dal quale partono potenti getti, collimati lungo l’asse di rotazione del disco. Il collegamento tra i due fenomeni, l’accrescimento e l’emissione dei getti, è essenziale affinché questi oggetti possano formarsi, rimuovendo dal sistema il momento angolare in eccesso e permettendo alla materia di continuare ad accumularsi sull’oggetto centrale.

Illustrazione delle linee di flusso (in blu e azzurro) rilevate in prossimità di una stella nascente nella regione IRAS 21078+5211 mediante osservazione in banda radio dei maser dell’acqua (mostrati in rosso e arancione). In alto a destra, un’immagine su scala maggiore dei getti bipolari provenienti dalla stella in formazione e, nell’angolo, su scala ancora maggiore, un’immagine in banda infrarossa della nursery stellare (cliccare per ingrandire).
Crediti: André Oliva, Institut für Astronomie und Astrophysik, Universität Tübingen

Questo processo è stato compreso teoricamente negli anni Ottanta, collegando la formazione di buchi neri e stelle al cosiddetto disk wind magnetoidrodinamico: il vento lanciato dal disco tramite un meccanismo magneto-centrifugo. Mediante questo meccanismo, una frazione del flusso di accrescimento che dal disco procede verso l’oggetto centrale in formazione (un buco nero oppure una stella) viene lanciata e accelerata verso l’esterno, lungo l’asse di rotazione del disco, formando getti bipolari collimati.

La miglior prova ad oggi dell’esistenza dei disk wind magnetoidrodinamici era stata l’osservazione di un gradiente della velocità lungo la linea di vista perpendicolare all’asse del getto, interpretata in termini di rotazione del getto dovuta alla sua origine magneto-centrifuga. Si trattava, tuttavia, di evidenza indiretta, soggetta a interpretazioni fallaci ed errori sistematici. Tracciare le linee di flusso tipiche di un disk wind magnetoidrodinamico è una prova molto più convincente.

Il nuovo studio, condotto dai ricercatori INAF Luca Moscadelli e Alberto Sanna insieme a colleghi del Max-Planck-Institute for Astronomy di Heidelberg, dell’Università di Tubinga e dell’Università di Duisburg-Essen, in Germania, ha osservato una particolare emissione in banda radio: la riga emessa dalla molecola dell’acqua a una frequenza di circa 22 GHz. Questa emissione è comunemente osservata come un intenso “maser” – l’equivalente di un laser nella banda delle microonde – nelle regioni di formazione stellare. Come i laser, i maser sono fasci di radiazione intensi e altamente collimati. Le osservazioni della riga maser dell’acqua hanno consentito al team di rilevare, per la prima volta in maniera diretta, due tipiche linee di flusso di un disk wind magnetoidrodinamico: dei moti a spirale, in prossimità dell’asse di rotazione, e un flusso che ruota insieme al disco a distanze maggiori dall’asse.

Le osservazioni sono state effettuate utilizzando il Very Long Baseline Interferometry (VLBI) array, una rete globale formata da 26 radiotelescopi che osservano a 22 GHz distribuiti in Europa, Asia e Stati Uniti. Queste antenne hanno osservato simultaneamente, per 24 ore, l’emissione della riga maser dell’acqua in direzione della stella nascente, che si trova nella regione di formazione stellare IRAS 21078+5211, a circa 5300 anni luce da noi.

La tecnica dell’interferometria a lunghissima linea di base permette di simulare un telescopio gigante con un diametro paragonabile a quello terrestre e di raggiungere una risoluzione angolare estremamente elevata (~0,5 milliarcsec), essenziale per studiare la distribuzione spaziale dei singoli centri di emissione dei maser dell’acqua vicino a stelle in formazione. Raggiungendo anche una sensibilità molto elevata (~0,7 mJy) nella riga maser, sono stati rivelati un gran numero di centri di emissione maser deboli (< 50 mJy), consentendo al team di tracciare accuratamente le linee di flusso del disk wind.

“Questo lavoro mostra che osservare le emissioni maser dell’acqua in prossimità di stelle in formazione usando l’interferometria a lunghissima linea di base (VLBI) può essere uno strumento unico per studiare la fisica dei disk wind con dettagli senza precedenti” afferma Luca Moscadelli, ricercatore INAF a Firenze e primo autore del nuovo studio. “Abbiamo eseguito nuove osservazioni dell’emissione della riga maser dell’acqua includendo tutti i telescopi disponibili nella rete VLBI, con l’obiettivo di simulare radiointerferometri di prossima generazione che miglioreranno la sensibilità attuale di oltre un ordine di grandezza. Il nostro obiettivo era rilevare maser deboli originantesi in gas eccitato in urti a bassa velocità vicino alla stella in formazione per campionare meglio la cinematica di un disk wind”.


 

Per ulteriori informazioni:

L’articolo “Snapshot of a magnetohydrodynamic disk wind traced by water maser observations”, di L. Moscadelli, A. Sanna, H. Beuther, G. A. Oliva e R. Kuiper, è stato pubblicato online sulla rivista Nature Astronomy.

Testo e foto dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza
Istituto Nazionale di Astrofisica (INAF) sull’istantanea di moti a spirale, getti dal disco di accrescimento di una stella in formazione.

Individuare fenomeni quantistici attraverso rapporti di causa-effetto

Per comprendere la relazione quantistica fra due eventi, un team di ricercatori del QuantumLab della Sapienza ha sviluppato un nuovo metodo basato sulla misura della forza dei rapporti causa-effetto tra le variabili. La tecnica, eseguita sperimentalmente nei laboratori dell’Ateneo, potrà essere utilizzata per verificare il corretto funzionamento di nuove tecnologie quantistiche

Individuare fenomeni quantistici attraverso rapporti di causa-effetto: un nuovo su Science Advances

“Qual è il motivo?”, “Perché sta succedendo?” sono domande molto frequenti nella vita quotidiana, in cui spesso si è portarti a chiedersi la causa degli eventi che succedono, cercando motivi più o meno diretti o astratti. La strategia intuitivamente più efficace per capire se due eventi siano l’uno la causa dell’altro è verificare la loro correlazione, ovvero chiedersi: l’evento A succede sempre quando succede l’evento B? Come quando ogni volta che viene spinto un interruttore (evento A) si accende una lampadina (evento B). Tuttavia, questo processo, apparentemente così semplice e immediato, nasconde una grande insidia: quando due eventi sono correlati, possono sia essere la causa l’uno dell’altro ma possono anche essere influenzati da una causa comune, di cui spesso non si tiene conto. Per esempio, ogni anno, in estate, aumentano parallelamente il consumo di gelati e il numero di persone che soffrono di cali di pressione. Questi due eventi sono indubbiamente correlati, ma non sono l’uno la causa dell’altro. Avvengono simultaneamente solo perché hanno una causa comune: l’aumento delle temperature.

Comprendere se due eventi siano causati da un fattore comune o se siano direttamente collegati non è affatto semplice, per cui tali relazioni sono da sempre una sfida per gli scienziati. Secondo la fisica classica è possibile comprendere appieno la relazione causa-effetto tra due eventi effettuando una serie di opportune misurazioni. Molto più difficile è quando entrano in gioco effetti quantistici, perché i rapporti di causa-effetto tra un evento A e un evento B hanno conseguenze diverse se questi hanno una causa comune non classica. Tuttavia, la discrepanza tra predizioni classiche e quantistiche può tornare utile proprio per rilevare la presenza di fenomeni quantistici, come avviene nei cosiddetti test di Bell, effettuati per misurare le proprietà di particelle fisicamente separate ma correlate in maniera non classica.

fenomeni quantistici causa-effetto

Il gruppo QuantumLab (https://www.quantumlab.it/) della Sapienza Università di Roma ha presentato, in un lavoro recentemente pubblicato sulla rivista Science Advances, un metodo altamente innovativo che è basato sulla misura della forza dei rapporti causa-effetto tra due variabili. Lo studio è nato nell’ambito di una collaborazione internazionale dell’Ateneo romano con l’International Institute of Physics di Natal (Brasile), l’Università di Colonia (Germania) e l’Università di Gdansk (Polonia).

Il team di fisici, da tempo impegnato nello studio di questi fenomeni con l’obiettivo di creare tecniche per rilevare la presenza di fenomeni quantistici, è partito dal caso in cui un evento A è causa di un evento B e, in più, questi hanno una causa comune quantistica. In tale situazione, si può dimostrare che, per ottenere determinati effetti su B, c’è bisogno di un’influenza causale più debole da parte di A, rispetto al caso classico. Quindi, misurando la forza del rapporto causa-effetto tra A e B, è possibile capire se il processo che stiamo osservando è quantistico oppure puramente classico.

“La novità di questo approccio – afferma Iris Agresti della Sapienza – sta nel fatto che permette di individuare comportamenti quantistici del tutto nuovi, che non potevano essere individuati con le tecniche note finora”.

Per mostrare queste nuove tracce di fenomeni quantistici è stato riprodotto nei laboratori di ottica e informazione quantistica della Sapienza lo schema di rapporti causa-effetto menzionato (chiamato processo strumentale) su una piattaforma fotonica.

In dettaglio, nell’esperimento, gli eventi A e B erano i risultati di due misure su fotoni, mentre la causa comune era una sorgente di stati quantistici.

“Abbiamo generato coppie di fotoni entangled (cioè correlati quantisticamente) e abbiamo implementato il rapporto di causa-effetto tra le misure A e B, scegliendo la misura B in base al risultato di A” – spiega Fabio Sciarrino, coordinatore del gruppo. “Siccome i due fotoni da misurare vengono generati nello stesso istante, per avere il tempo di eseguire la misura A, abbiamo dovuto ritardare il fotone misurato in B tramite una fibra lunga più di 100 metri e abbiamo sfruttato un dispositivo elettro-ottico per cambiare la misura B in pochi nanosecondi”.

Questa tecnica che si basa sulla misura della forza dell’influenza causale tra due eventi per dimostrare la presenza di fenomeni quantistici, che è stata eseguita sperimentalmente dai ricercatori del QuantumLab, ha dei risvolti sia dal punto di vista applicativo, perché potrà essere utilizzata per verificare il corretto funzionamento di nuove tecnologie quantistiche, sia teorico, perché ha permesso di individuare nuove tipologie di comportamenti non classici.

Riferimenti:

Experimental test of quantum causal influences – Iris Agresti, Davide Poderini, Beatrice Polacchi, Nikolai Miklin, Mariami Gachechiladze, Alessia Suprano, Emanuele Polino, Giorgio Milani, Gonzalo Carvacho, Rafael Chaves and Fabio Sciarrino – Science Advances, Vol 8, Issue 8 https://doi.org/10.1126/sciadv.abm1515 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

L’IMPATTO DEL PRECARIATO SUI PROGETTI DI VITA DEI GIOVANI IN EUROPA

Presentazione del volume “Social exclusion of youth in Europe”, pubblicato nel 2021, che raccoglie dati, statistiche ed esperienze dei giovani europei.

precariato giovani Europa
L’impatto del precariato sui progetti di vita dei giovani in Europa. Foto di Gerd Altmann

Mercoledì 16 febbraio 2022dalle 9 alle 13, in diretta streaming dal Campus Luigi Einaudi dell’Università di Torino, si tiene la presentazione del volume Social exclusion of youth in Europethe multifaceted consequences of labour market insecurity, a cura di Sonia Bertolini, docente di sociologia dei processi economici e del lavoro al Dipartimento di Culture, Politica e Società UniTo, Michael Gebel (Università di Bamberg), Vasiliki Deliyanni-Kouimtzis (Università di Salonicco) e Dirk Hofäcker (Università di Duisburg-Essen). Modera il giornalista Paolo Volpato.

Il volume raccoglie dati, statistiche ed esperienze dei giovani europei raccolti attraverso Horizon Except, il progetto che dal 2016 ha cercato risposte a una serie di interrogativi: Cosa significa diventare autonomi in un mondo precario? Come si vive la progettualità e il percorso del divenire adulti in questo contesto? Quali sono le conseguenze dell’insicurezza sul benessere e sulla scelta di uscire dalla famiglia di origine? Che ruolo ha il significato del lavoro, in questo processo, e come si declinano questi aspetti in paesi diversi, quando diverso è il mercato del lavoro, il sistema di welfare, la cultura?

Social exclusion of youth in Europe rende conto di un lavoro interdisciplinare, comparativo e multi-metodo, fatto di analisi e lettura delle dinamiche tra lavoro e progetti di vita che riguardano i giovani in Europa. Un’iniziativa che ha coinvolto 9 paesi (Bulgaria, Estonia, Germania, Grecia, Italia, Polonia, Svezia, Ucraina e Regno Unito), con 386 interviste e 117 fotografie in tema di “divenire adulti oggi”.

In alcuni paesi come Italia, Polonia e Bulgaria emerge una doppia esclusione dei giovani: si può parlare di una sorta di “insicurezza istituzionalizzata” per indicare quando la precarietà lavorativa produce una serie di esclusioni a catena, ad esempio dal sostegno al reddito (in Italia fino allo scorso anno) o dall’accesso al credito bancario, che in questo Paesi è impossibile da ottenere senza un contratto fisso o la garanzia dei genitori, indipendentemente dal reddito.

In Italia l’insicurezza istituzionalizzata riguarda numeri considerevoli, se pensiamo che il 30% della popolazione giovanile è disoccupata e il 50% ha un contratto precario. La ricerca mette in luce le conseguenze negative sul benessere psicosociale e sull’autonomia psicologica, economica e abitativa: far fronte a questa insicurezza è un compito arduo, perché le strategie individuali e sociali non sono sufficienti per contrastare un sistema fortemente strutturato sull’insicurezza.

I dati degli ultimi anni ci dicono che la pandemia da Covid-19 ha avuto conseguenze sproporzionate su giovani e donne. Questo libro, fornendo una fotografia articolata e comparata della situazione prepandemica, aiuta a comprendere su quali premesse e su quali meccanismi abbia trovato terreno fertile quest’ultima ondata di precarietà ed esclusione.

Il team italiano di Horizon Except all’Università di Torino è composto da Sonia BertoliniMagda BolzoniChiara GhislieriValentina GoglioAntonella MeoValentina MoisoRosy MusumeciRoberta Ricucci e Paola Torrioni.

Testo dall’Ufficio Stampa dell’Università degli Studi di Torino