News
Ad
Ad
Ad
Tag

Gaetano Granozzi

Browsing

ECCO DOV’È L’IDROGENO PER LA “SVOLTA GREEN”: RIVOLUZIONARIA TECNICA PER OTTENERE UNO SGUARDO DIRETTO SUI PROCESSI CATALITICI A LIVELLO ATOMICO 

Team di ricercatori padovani sviluppa una rivoluzionaria tecnica che individua dove si genera, ne valuta l’efficienza e individua i meccanismi molecolari che portano alla formazione dell’idrogeno: uno strumento utilissimo per il PNNR sulle energie alternative.

 

Il gruppo di “Surface Science and Catalysis” del Dipartimento di Scienze Chimiche dell’Università di Padova ha sviluppato una nuova tecnica basata sul microscopio a effetto tunnel per visualizzare con precisione atomica diversi processi elettro-catalitici. I ricercatori padovani hanno applicato questo potente strumento di analisi a elettro-catalizzatori per la produzione di idrogeno riuscendo a mappare, con risoluzione mai raggiunta prima, i siti capaci di produrre idrogeno, a valutarne la loro efficienza e a determinare il tipo di meccanismo molecolare che porta alla formazione dell’idrogeno.

La ricerca dal titolo Atom-by-atom identification of catalytic active sites in operando conditions by quantitative noise detection coordinata da Stefano Agnoli del Dipartimento di Scienze Chimiche dell’Università di Padova è stata pubblicata sulla rivista «Joule», una sister journal di Cell, focalizzata nel campo delle energie alternative.  Nell’articolo vengono illustrati i principi teorici di questa tecnica innovativa e la loro applicazione a diversi materiali dimostrando come sia possibile visualizzare in tempo reale la formazione di idrogeno addirittura su un singolo atomo.

«La tecnica sviluppata dal nostro gruppo parte da un’intuizione del Premio Nobel Gerd Binnig, il primo a ipotizzare che il disturbo che normalmente si riverbera su alcune misure non sia una semplice imperfezione strumentale, ma che racchiuda in sé importanti informazioni connesse a reazioni chimiche. Partendo da questo concetto abbiamo sviluppato una tecnica capace di estrarre queste informazioni nascoste e ottenere uno sguardo diretto sui processi catalitici a livello atomico – dice Stefano Agnoli del Dipartimento di Scienze Chimiche dell’Università di Padova –. La nuova tecnica sviluppata a Padova è un potentissimo strumento per lo sviluppo di nuovi materiali per la catalisi, indispensabili a rendere il processo elettrochimico economico ed efficiente, e che sono essenziali per la produzione sostenibile di idrogeno a partire dall’acqua attraverso un processo elettrochimico a basso costo. L’idrogeno, sulla scena energetica, si sta candidando come vettore della transizione verso un futuro a zero emissioni di carbonio: tale tecnica potrà essere messa a servizio del nuovo piano PNNR nell’ambito delle tematiche per le energie alternative. Al momento il passaggio da combustibili fossili a energie rinnovabili è limitato dalla capacità di produrre e convertire in elettricità il cosiddetto idrogeno verde. Questo studio – conclude Agnoli – offre la possibilità di osservare con una risoluzione spaziale, fino ad oggi mai vista, questi processi consentendo non solo di identificare i materiali più efficaci, ma anche sviluppare le conoscenze necessarie per farne nascere di nuovi».

Stefano Agnoli idrogeno processi catalitici
Stefano Agnoli

Link alla ricerca https://doi.org/10.1016/j.joule.2022.02.010

Titolo: Atom-by-atom identification of catalytic active sites in operando conditions by quantitative noise detection – «Joule» – 2022

Autori: Marco Lunardon1, Tomasz Kosmala,1,2 Christian Durante,1 Stefano Agnoli*1 and Gaetano Granozzi1

1 Dipartimento di Scienze Chimiche and INSTM Research Unit, Università degli Studi di Padova,

2 Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland

 

Testo e foto dall’Ufficio Stampa Università degli Studi di Padova sulla rivoluzionaria tecnica che lancia uno sguardo sui processi catalitici dell’idrogeno.

IDROGENO VERDE

Ecco i singoli atomi al lavoro durante la sua produzione elettrochimica

Individuata una via razionale per il design di catalizzatori di nuova generazione

Idrogeno verde
Idrogeno verde. A sinistra schema della metodica usata A destra immagine con risoluzione atomica del sistema Fe-Grafene

Lo scenario attualmente più accreditato per uno sviluppo basato su fonti energetiche rinnovabili è quello che viene indicato sotto il nome di hydrogen economy. Perché tale ambizioso obiettivo possa essere raggiunto, la soluzione passa attraverso una produzione sostenibile di idrogeno a partire dall’acqua attraverso un processo elettrochimico a basso costo. Questo idrogeno viene usualmente chiamato idrogeno verde per il basso impatto ambientale e per la virtualmente infinita disponibilità della materia prima qualora si riuscisse ad impiegare l’acqua degli oceani.

Tutto ciò necessita però di un’ottimizzazione dei catalizzatori indispensabili a rendere il processo elettrochimico economico ed efficiente. Attualmente i ricercatori del campo stanno studiando un percorso razionale che permetta l’ottimizzazione dei materiali catalitici atti a raggiungere tale obiettivo.

Il Surface Science and Catalysis Group (SSCG) del Dipartimento di Scienze Chimiche (DiSC) dell’Università di Padova diretto dal prof. Gaetano Granozzi, in collaborazione con il gruppo teorico dell’Università di Milano Bicocca diretto dalla prof.ssa Cristiana Di Valentin, ha raggiunto uno straordinario risultato che sarà di forte impatto per gli sviluppi futuri nel campo della produzione di idrogeno.

Con il titolo Operando visualization of the hydrogen evolution reaction with atomic scale precision at different metal-graphene interfaces è stata pubblicata sulla rivista «Nature Catalysis» la ricerca coordinata da Stefano Agnoli del Dipartimento di Scienze Chimiche dell’Università di Padova in cui, attraverso una strumentazione estremamente sofisticata (Electrochemical Scanning Tunneling Microscopy, EC-STM) sviluppata a Padova in collaborazione con il gruppo di elettrochimica dello stesso Dipartimento, sono stati visti con risoluzione atomica i singoli siti catalitici durante il processo elettrochimico di produzione dell’idrogeno (tale metodologia è usualmente indicata con il termine in operando). Il metodo EC-STM è stato applicato a sistemi catalitici innovativi basati su materiali bidimensionali a base di grafene e metalli non nobili, che rappresentano una strada alternativa ai materiali standard usati attualmente per la decomposizione elettrochimica dell’acqua richiedenti l’uso di metalli nobili di alto costo e scarsa reperibilità. La qualità dei dati ottenuti è senza precedenti ed è stata interpretata attraverso metodi di simulazione quantomeccanica all’avanguardia sviluppati all’Università di Milano Bicocca.

Stefano Agnoli

«Il presente studio ha reso possibile identificare con precisione atomica la presenza di siti catalitici e valutare direttamente in situ la loro capacità di produrre idrogeno. Questa combinazione davvero unica di risoluzione spaziale e quantificazione dell’attività elettrocatalitica – dice Stefano Agnoli coordinatore dello studio – consente di stabilire in modo estremamente accurato le relazioni che legano la struttura della materia alla reattività chimica e quindi fornisce le informazioni necessarie per costruire atomo dopo atomo catalizzatori ad altissima efficienza».

Gaetano Granozzi

«L’ottenimento di questi risultati – sottolinea Gaetano Granozzi – è stato reso possibile dalla lunga esperienza maturata dal SSCG dell’Università di Padova operante nel campo sin dal tempo della sua fondazione avvenuta nel 1990».

Cristiana Di Valentin

«Le metodologie e le risorse computazionali attualmente disponibili – sostiene Cristiana Di Valentin – rendono possibile la simulazione di sistemi molto vicini al campione reale sperimentale con straordinario beneficio per l’interpretazione delle osservazioni in termini di proprietà atomiche della materia e meccanismi di reazione».

Link alla ricerca: https://doi.org/ 10.1038/s41929-021-00682-2

Titolo: Operando visualization of the hydrogen evolution reaction with atomic scale precision at different metal-graphene interfaces – «Nature Catalysis» – 2021

Autori: Tomasz Kosmala,1,2 Anu Baby,3 Marco Lunardon,1Daniele Perilli,3 Hongsheng Liu,3 Christian Durante,1 Cristiana Di Valentin,3 Stefano Agnoli*1 and Gaetano Granozzi1

1 Dipartimento di Scienze Chimiche and INSTM Research Unit, Università degli Studi di Padova,

2 Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland

3 Dipartimento di Scienza Dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy

Testo e foto dagli Uffici Stampa Università degli Studi di Padova e Università degli Studi di Milano-Bicocca