News
Ad
Ad
Ad
Tag

Gabriele Bruni

Browsing

EINSTEIN PROBE: RIVELATA LA COMPLESSITÀ DEI FLASH DI RAGGI X NELL’EVENTO EP241021a

Un team di ricerca, con la guida e il contributo fondamentale dell’Istituto Nazionale di Astrofisica (INAF), ha di recente analizzato nel dettaglio l’evento EP241021a, una sorgente di raggi X nota come flash di raggi X (X-Ray Flash o XRF) scoperta il 21 ottobre 2024 dalla missione cinese Einstein Probe. La ricerca, frutto di un’imponente campagna osservativa multibanda accettata per la pubblicazione sulla rivista Astronomy & Astrophysics, getta nuova luce sull’origine e la natura di questi misteriosi e fugaci transienti cosmici, storicamente legati ai più noti lampi di raggi gamma (Gamma Ray Burst o GRB).

“Cugini” dei transienti veloci di raggi X (FXRT, dall’inglese fast X-ray transient), gli XRF sono brevissime esplosioni di raggi X, con durata che varia dai 10 secondi ai 10 minuti, prodotte da sorgenti extragalattiche. Identificati nei primi anni ’90 dal satellite italo-olandese BeppoSAX, questi eventi condividono molte caratteristiche con i lampi di raggi gamma, ma si differenziano per spettri più “soffici” e un picco energetico meno intenso. Lo strumento Wide-field X-ray Telescope (WXT) a bordo del satellite Einstein Probe, caratterizzato da una capacità unica di osservazione di vaste regioni del cielo in raggi X ad alta sensibilità, ha permesso di rivelare nuovi flash di raggi X e di studiarne in modo accurato la complessa emissione.

 Un disegno dello scenario proposto dal team di ricerca per EP241021a. A piccoli angoli polari viene prodotto un getto relativistico con un nucleo e ali ampie, mentre a grandi angoli polari il getto è circondato da un bozzolo strutturato. La linea di vista dell’osservatore si trova all’interno delle ali del getto. Crediti: G. Gianfagna (INAF) / A&A 2025
Un disegno dello scenario proposto dal team di ricerca per EP241021a. A piccoli angoli polari viene prodotto un getto relativistico con un nucleo e ali ampie, mentre a grandi angoli polari il getto è circondato da un bozzolo strutturato. La linea di vista dell’osservatore si trova all’interno delle ali del getto. Crediti: G. Gianfagna (INAF) / A&A 2025

EP241021a si distingue per la ricchezza delle sue componenti. Giulia Gianfagna, prima autrice dell’articolo e assegnista di ricerca presso l’INAF di Roma, spiega:

“EP241021a è probabilmente l’XRF scoperto dall’Einstein Probe che presenta nella sua emissione il maggior numero di componenti, e, di conseguenza, un grado di complessità nell’interpretazione fisica non indifferente. Ma, per lo stesso motivo, è l’evento che più dà informazioni sulla famiglia di questi oggetti”.

L’evento transiente presenta, infatti, la caratterizzazione di un getto strutturato che si evolve rapidamente e un ambiente stellare denso che ne modella la forma e la dinamica. Dopo l’emissione nei raggi X scoperta da Einstein Probe, osservazioni nel visibile e soprattutto nelle frequenze radio e millimetriche, grazie all’utilizzo di telescopi e network come ALMA, uGMRT, e-MERLIN e ATCA, hanno permesso di identificare le peculiarità.

“Tutte le componenti – dice Gianfagna – sono consistenti con il collasso di una stella massiccia: subito dopo il collasso, si è creato un sistema formato da un getto centrale stretto ed energetico (detto nucleo o core), circondato da ‘ali’ a più basse energie e meno veloci. Circonda le ali un ‘bozzolo’ sferico (detto cocoon), composto a sua volta da due componenti concentriche, con velocità che diminuisce verso l’esterno. L’emissione dei raggi gamma, quindi il lampo di raggi gamma, viene prodotta dal core del getto”.

Questa emissione gamma non è però visibile in quanto il getto punta lontano dalla Terra.

Rappresentazione artistica del telescopio spaziale Einstein Probe. Crediti: Chinese Academy of Sciences
Einstein Probe: rivelata la complessità dei flash di raggi X nell’evento EP241021a; lo studio accettato su Astronomy & Astrophysics. Rappresentazione artistica del telescopio spaziale Einstein Probe. Crediti: Chinese Academy of Sciences

Tali osservazioni sono un modello unificato secondo cui i flash di raggi X sono varianti dei lampi di raggi gamma, viste da angolazioni diverse o influenzate da condizioni ambientali peculiari, come la densità e la struttura del materiale espulso dalla stella progenitrice. EP241021a è inoltre il primo caso in cui tutte queste componenti si osservano simultaneamente con tale dettaglio.

“Terminata la missione BeppoSAX all’inizio degli anni 2000”, commenta Luigi Piro, dirigente di ricerca INAF e coautore dello studio, “osservare questi transienti è diventato molto più difficile a causa del ridotto campo di vista degli strumenti attivi. Einstein Probe, lanciato nel gennaio 2024, ha riportato in orbita un rilevatore con un ampio campo visivo e una sensibilità superiore. La capacità di osservare porzioni così ampie di cielo ci ha permesso, finalmente, di ricominciare a scoprire nuovi flash di raggi X”.

Gianfagna conclude: “Dimostrare che questo flash di raggi X può essere modellizzato come un lampo di raggi gamma, probabilmente con delle caratteristiche particolari, in un contesto più ampio porterebbe ad avere un’idea più chiara su come muoiono le stelle massicce e cosa producono dopo la loro morte”.

Lo studio in questione è il primo guidato da ricercatrici e ricercatori europei sull’analisi di eventi XRF con dati provenienti da Einstein Probe, segnando una tappa fondamentale nella collaborazione internazionale e nello studio delle esplosioni cosmiche.

 

Riferimenti bibliografici:

L’articolo di Giulia Gianfagna, Luigi Piro, Gabriele Bruni, Aishwarya Linesh Thakur, Hendrik Van Eerten, Alberto Castro-Tirado, Yong Chen, Ye-hao Cheng, Han He, Shumei Jia, Zhixing Ling, Elisabetta Maiorano, Rosita Paladino, Roberta Tripodi, Andrea Rossi, Shuaikang Yang, Jianghui Yuan, Weimin Yuan, Chen Zhang, “The soft X-ray transient EP241021A: a cosmic explosion with a complex off-axis jet and cocoon from a massive progenitor”, è stato accettato per la pubblicazione sulla rivista Astronomy & Astrophysics.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

QUANDO UN BUCO NERO SI È RISVEGLIATO: LAMPI DI RAGGI X DA ANSKY

Un buco nero supermassiccio si è recentemente risvegliato, emettendo potenti lampi di raggi X. Grazie alle osservazioni del telescopio XMM-Newton, un team internazionale a cui partecipa anche l’Istituto Nazionale di Astrofisica, ha studiato questo raro fenomeno, offrendo nuove e preziose informazioni sul comportamento dei buchi neri supermassicci.

Un buco nero supermassiccio al centro della galassia SDSS1335+0728, situata a 300 milioni di anni luce dalla Terra, ha recentemente iniziato a rilasciare intensi e regolari lampi di raggi X, attirando l’attenzione degli astrofisici. Dopo decenni di inattività, questo colosso dalla smisurata forza di attrazione gravitazionale si è improvvisamente “risvegliato”, dando vita a un fenomeno raro che offre una straordinaria opportunità per studiare il comportamento di un buco nero in tempo reale. L’osservazione di questi lampi, resa possibili grazie al telescopio spaziale XMM-Newton dell’Agenzia Spaziale Europea (ESA), ha portato a scoperte senza precedenti sugli eventi energetici generati dai buchi neri supermassicci. I risultati del lavoro condotto da un team di ricercatrici e ricercatori internazionali, di cui fa parte anche l’Istituto Nazionale di Astrofisica (INAF), è stato pubblicato oggi sulla rivista Nature Astronomy.

Sebbene i buchi neri supermassicci (con masse di milioni o addirittura miliardi pari a quella del nostro Sole) siano noti per nascondersi al centro della maggior parte delle galassie, la loro stessa natura li rende difficili da individuare e quindi studiare. In contrasto con l’idea popolare che i buchi neri “divorino” continuamente materia, questi mostri gravitazionali possono passare lunghi periodi in una fase dormiente. Questo è stato il caso del buco nero al centro di SDSS1335+0728, soprannominato Ansky, che per decenni è rimasto inattivo. Nel 2019 qualcosa cambia, quando gli astronomi osservano un’improvvisa “accensione” della galassia, seguita da straordinari lampi di raggi X. Questi segnali hanno portato alla conclusione che il buco nero fosse entrato in una nuova fase attiva, trasformando la galassia che lo ospita in un nucleo galattico attivo.

Nel febbraio 2024, il team di ricerca guidato da Lorena Hernández-García, ricercatrice presso l’Università di Valparaíso in Cile, ha iniziato a osservare i lampi regolari di raggi X provenienti da Ansky.

“Questo raro evento ci permette di osservare il comportamento di un buco nero in tempo reale, utilizzando i telescopi spaziali XMM-Newton e quelli della NASA NICER, Chandra e Swift”, spiega. “Questo fenomeno è conosciuto come eruzione quasi periodica (in inglese Quasiperiodic Eruption, QPE) di breve durata ed è la prima volta che osserviamo un tale evento in un buco nero che sembra essersi risvegliato”.

Tali fenomeni sono stati finora associati a piccole stelle od oggetti che interagiscono con la materia in orbita attorno al buco nero stesso, il cosiddetto disco di accrescimento, ma nel caso di Ansky, non ci sono prove che una stella sia stata distrutta. Gli astronomi ipotizzano che i lampi possano derivare da oggetti più piccoli che disturbano ripetutamente il materiale del disco di accrescimento, generando potenti shock che liberano enormi quantità di energia. Ognuna di queste eruzioni sta rilasciando cento volte più energia rispetto alle eruzioni quasi periodiche tipiche: sono infatti dieci volte più lunghe e luminose, e con una cadenza mai osservata prima di circa 4,5 giorni, che mette alla prova i modelli teorici esistenti sui buchi neri.

Rappresentazione artistica del disco di accrescimento attorno al buco nero massiccio Ansky e della sua interazione con un piccolo oggetto celeste (crediti ESA)
Rappresentazione artistica del disco di accrescimento attorno al buco nero massiccio Ansky e della sua interazione con un piccolo oggetto celeste (crediti ESA)

Osservare l’evoluzione di Ansky in tempo reale offre agli astronomi un’opportunità unica per approfondire la comprensione dei buchi neri e degli eventi energetici che li alimentano. Attualmente, esistono ancora più modelli che dati sulle eruzioni quasi periodiche, e saranno quindi necessarie ulteriori osservazioni per comprendere a pieno il fenomeno.

“Nonostante la notevole attività nella banda dei raggi X, Ansky risulta ancora sopito nella banda radio”, commenta Gabriele Bruni, ricercatore dell’INAF e co-autore del lavoro pubblicato. “Infatti, né le nostre osservazioni con il radiotelescopio australiano ATCA, né le campagna osservativa radio che hanno osservato la sua regione di cielo negli ultimi anni hanno rilevato emissione dalla sua direzione, escludendo così la presenza di un getto relativistico prodotto durante la riattivazione del buco nero. Nei prossimi mesi continueremo a tenere d’occhio Ansky per scovare la possibile nascita di un getto come già verificato in altri casi di nuclei galattici attivi riattivati”.

Le eruzioni ripetitive di Ansky potrebbero anche essere associate alle onde gravitazionali, obiettivo dalla futura missione LISA dell’ESA. L’analisi di questi dati nei raggi X, insieme agli studi sulle onde gravitazionali, aiuterà a risolvere il mistero di come i buchi neri massicci evolvono e interagiscono con l’ambiente circostante.


Riferimenti bibliografici:

L’articolo “Discovery of extreme Quasi-Periodic Eruptions in a newly accreting massive black hole”, di Lorena Hernández-García, Joheen Chakraborty, Paula Sánchez-Sáez, Claudio Ricci, Jorge Cuadra, Barry McKernan, K.E. Saavik Ford, Arne Rau, Riccardo Arcodia, Patricia Arevalo, Erin Kara, Zhu Liu,Andrea Merloni, Gabriele Bruni, Adelle Goodwin, Zaven Arzoumanian, Roberto Assef, Pietro Baldini, Amelia Bayo, Franz Bauer, Santiago Bernal, Murray Brightman, Gabriela Calistro Rivera, Keith Gendreau,  David Homan, Mirko Krumpe, Paulina Lira, Mary Loli Martínez-Aldama, Mara Salvato e Belén Sotomayor è stato pubblicato online sulla rivista Nature Astronomy, (2025), DOI: https://doi.org/10.1038/s41550-025-02523-9

Testo e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica – INAF

AT 2021hdr, NUBE DI GAS DISTRUTTA DA UNA COPPIA DI BUCHI NERI SUPERMASSICCI AFFAMATI

Caotici e voraci, caratteristiche che potrebbero descrivere perfettamente due buchi neri mostruosi scoperti con l’Osservatorio Neil Gehrels Swift della NASA, satellite con una importante partecipazione italiana dell’Agenzia Spaziale Italiana (ASI) e dell’Istituto Nazionale di Astrofisica (INAF). Un gruppo di ricerca ha infatti rilevato, pubblicando i risultati oggi sulla rivista Astronomy and Astrophysics, per la prima volta un evento transiente di distruzione mareale in cui una coppia di buchi neri supermassivi sta interagendo con una nube di gas nel centro di una galassia distante. Il segnale di questo fenomeno, noto come AT 2021hdr, si ripete periodicamente, offrendo agli astronomi un’opportunità unica di studiare il comportamento di questi oggetti cosmici estremi. Tra gli enti di ricerca coinvolti nello studio c’è anche l’Istituto Nazionale di Astrofisica (INAF).

“È un evento molto strano, chiamato AT 2021hdr, che si ripete ogni pochi mesi”, spiega Lorena Hernández-García, ricercatrice presso il Millennium Institute of Astrophysics e il Millennium Nucleus for Transversal Research and Technology to explore Supermassive Black Holes, prima autrice dello studio e leader del team di ricerca. “Crediamo che una nube di gas abbia inghiottito i buchi neri; mentre orbitano l’uno attorno all’altro, i buchi neri interagiscono con la nube, perturbando e consumando il suo gas. Questo produce oscillazioni che si osservano nella luce del sistema”.

AT 2021hdr è stato scoperto grazie all’ALeRCE broker e osservato per la prima volta nel 2021 con lo ZTF (Zwicky Transient Facility) presso l’Osservatorio Palomar in California.

Rappresentazione artistica in cui si vede una coppia di buchi neri supermassivi che vortica in una nube di gas. L’evento si chiama AT 2021hdr, un brillamento ricorrente studiato dal Neil Gehrels Swift Observatory della NASA e dal ZTF Transient Facility presso l'Osservatorio Palomar in California. Crediti: NASA/Aurore Simonnet (Sonoma State University)
Rappresentazione artistica in cui si vede una coppia di buchi neri supermassivi che vortica in una nube di gas. L’evento si chiama AT 2021hdr, un brillamento ricorrente studiato dal Neil Gehrels Swift Observatory della NASA e dal ZTF Transient Facility presso l’Osservatorio Palomar in California. Crediti: NASA/Aurore Simonnet (Sonoma State University)

Cosa provoca questo fenomeno? Dopo aver esaminato diversi modelli per spiegare ciò che vedevano nei dati, i ricercatori hanno dapprima considerato l’ipotesi di un evento di distruzione mareale (in inglese tidal disruption event), vale a dire la distruzione di una stella che si era avvicinata troppo a uno dei buchi neri, per poi convergere su un’altra possibilità: la distruzione mareale di una nube di gas, più grande del binario stesso. Analizzando i dati raccolti, la dinamica è apparsa subito chiara: quando la nube si è scontrata con i due buchi neri, la loro forza di attrazione gravitazionale l’ha fatta a pezzi, formando filamenti attorno alla coppia. La nube si è poi riscaldata per attrito, il gas è diventato particolarmente denso e caldo vicino ai buchi neri, mentre la complessa interazione di forze ha fatto sì che parte del gas venisse espulso dal sistema a ogni rotazione.

ZTF ha rilevato esplosioni da AT 2021hdr ogni 60-90 giorni dal primo brillamento. Il gruppo di Hernández-García ha osservato la sorgente con Swift da novembre 2022. Il satellite americano Swift li ha aiutati a determinare che la coppia di buchi neri produce oscillazioni nella luce ultravioletta e nei raggi X simultaneamente a quelle viste nella luce visibile.

“È la prima volta che si osserva un evento di distruzione mareale di una nube di gas da parte di una coppia di buchi neri supermassivi”, afferma Gabriele Bruni, ricercatore presso l’INAF di Roma. “In particolare, l’oscillazione periodica misurata in banda ottica, ultravioletta, e raggi X ha una durata mai osservata in precedenza per un evento di distruzione mareale. Grazie al monitoraggio costante di ZTF è stato possibile scoprire questo peculiare sistema, e avviare osservazioni in diverse bande. La survey dello ZTF infatti copre il cielo intero ogni 3 giorni, permettendo per la prima volta di scoprire un grande numero di questi fenomeni astrofisici transitori”.

“I fenomeni transienti permettono di studiare ‘in diretta’ l’evoluzione dei sistemi di accrescimento su buchi neri supermassicci, dove la gravità e il campo magnetico si trovano a un regime energetico estremo. Sono quindi laboratori che non riusciremo mai a riprodurre sulla terra, dove testare nuove leggi della fisica”, sostiene Francesca Panessa, ricercatrice presso l’INAF di Roma.

I due buchi neri protagonisti della scoperta si trovano nel centro di una galassia chiamata 2MASX J21240027+3409114, situata a 1 miliardo di anni luce di distanza in direzione della costellazione del Cigno. I due buchi neri sono separati da circa 26 miliardi di chilometri e insieme contengono 40 milioni di volte la massa del Sole. Gli scienziati stimano che i buchi neri completino un’orbita ogni 130 giorni e che si fonderanno tra circa 70 mila anni.

Bruni sottolinea che “finora sono pochi i fenomeni transienti osservati che presentano un oscillazione nella curva di luce come questo”. E conclude: “Le coppie di buchi neri supermassicci sono ancora un fenomeno raramente osservato, e ne vedremo molti di più con la prossima generazione di antenne gravitazionali a bassa frequenza (come LISA – Laser Interferometer Space Antenna). Inoltre, si aspettiamo di scoprire altri casi come questo nei prossimi anni, anche con l’accensione del Vera Rubin Telescope, che sarà in grado di scrutare ancora più a fondo l’universo”.

 Da sinistra: Francesca Panessa (INAF Roma), Lorena Hernández-García (Millennium Institute of Astrophysics), Gabriele Bruni (INAF Roma). Crediti: L. Sidoli / INAF
Da sinistra: Francesca Panessa (INAF Roma), Lorena Hernández-García (Millennium Institute of Astrophysics), Gabriele Bruni (INAF Roma). Crediti: L. Sidoli / INAF

 

Riferimenti bibliografici:

L’articolo “AT 2021hdr: A candidate tidal disruption of a gas cloud by a binary super massive black hole system”, di L. Hernández-García et al., è stato pubblicato sulla rivista Astronomy & Astrophysics.

Testo,  video e immagini dall’Ufficio Stampa INAF, Istituto Nazionale di Astrofisica,

L’origine dell’emissione persistente osservata in alcuni lampi radio veloci: sarebbe una bolla di plasma a generare questa radiazione

Un nuovo studio internazionale guidato dall’Istituto Nazionale di Astrofisica (INAF), con la partecipazione di diversi atenei italiani, ha scoperto l’origine dell’emissione persistente osservata in alcuni lampi radio veloci: sarebbe una bolla di plasma a generare questa radiazione. Questi dati permettono anche di circoscrivere la natura del “motore” alla base di queste misteriose sorgenti. I risultati pubblicati oggi su Nature.

Illustrazione artistica di una magnetar, circondata dalla bolla di plasma responsabile dell’emissione persistente osservata in alcuni lampi radio veloci.Crediti: NSF/AUI/NRAO/S. Dagnello
Illustrazione artistica di una magnetar, circondata dalla bolla di plasma responsabile dell’emissione persistente osservata in alcuni lampi radio veloci.
Crediti: NSF/AUI/NRAO/S. Dagnello

I Fast Radio Burst (FRB), o lampi radio veloci, sono uno dei misteri aperti più recenti dell’astrofisica moderna: in pochi millisecondi rilasciano una quantità di energia tra le più alte osservabili nei fenomeni cosmici. Scoperti poco più di dieci anni fa, questi forti lampi in banda radio provengono da sorgenti per lo più extragalattiche, ma la loro origine è ancora incerta e molti sono gli sforzi della comunità astrofisica di tutto il mondo per cercare di comprendere i processi fisici alla loro origine.

In pochissimi casi, il rapido lampo che caratterizza i fast radio burst coincide con un’emissione persistente, sempre in banda radio. Una nuova ricerca guidata dall’Istituto Nazionale di Astrofisica (INAF) ha registrato l’emissione radio persistente più debole mai rilevata finora per un FRB. Si tratta di FRB20201124A, un lampo radio veloce scoperto nel 2020, la cui sorgente si trova a circa 1,3 miliardi di anni luce da noi. Oltre al lavoro di ricercatori e ricercatrici INAF, lo studio vede la collaborazione delle Università di Bologna, Trieste e della Calabria, e la partecipazione internazionale di istituti di ricerca e università in Cina, Stati Uniti, Spagna e Germania.

Le osservazioni – rese possibili dal radiotelescopio più sensibile al mondo, il Very Large Array (VLA) negli Stati Uniti – hanno permesso di verificare la predizione teorica che prevede una bolla di plasma all’origine dell’emissione radio persistente dei lampi radio veloci. I risultati sono pubblicati oggi sulla rivista Nature.

“Siamo riusciti a verificare tramite osservazioni che l’emissione persistente che accompagna alcuni fast radio burst si comporta come previsto dal modello di emissione nebulare, ovvero una ‘bolla’ di gas ionizzato che circonda il motore centrale” spiega Gabriele Bruni, ricercatore INAF a Roma e primo autore dell’articolo. “In particolare, tramite l’osservazione in banda radio di uno dei lampi più vicini, siamo riusciti a misurare la debole emissione persistente proveniente dalla stessa posizione del FRB, estendendo di due ordini di grandezza l’intervallo di flusso radio esplorato finora per questi oggetti”.

Il nuovo lavoro aiuta anche a circoscrivere la natura del motore di questi misteriosi lampi. Secondo i nuovi dati, alla base del fenomeno risiederebbe una magnetar (stella di neutroni fortemente magnetizzata) oppure una binaria a raggi X con regime di accrescimento molto alto, ovvero un sistema binario formato da una stella di neutroni o da un buco nero che accresce materiale da una stella compagna a ritmi molto intensi. Sarebbero infatti i venti prodotti dalla magnetar, oppure dal sistema binario X, a “gonfiare” la bolla di plasma che dà origine all’emissione radio persistente. C’è quindi una relazione fisica diretta tra il “motore” del FRB e la bolla, che si trova nelle sue immediate vicinanze.

La campagna osservativa è stata condotta a seguito di un altro lavoro guidato da Luigi Piro dell’INAF, coautore del nuovo articolo, nel quale era stata individuata l’emissione persistente nella galassia ospite di questo FRB, ma non ancora con una determinazione della posizione sufficientemente precisa da permettere di associare tra loro i due fenomeni.

“In questo nuovo lavoro, abbiamo condotto una campagna a risoluzione spaziale più elevata con il VLA, accompagnata anche da osservazioni in diverse bande con l’interferometro NOEMA e il Gran Telescopio Canarias (GranTeCan), che ci hanno permesso di ricostruire il quadro generale della galassia e scoprire la presenza di una sorgente radio compatta – la bolla di plasma del FRB –  immersa nella regione di formazione stellare” aggiunge Piro. “Nel frattempo, è stato pubblicato anche il modello teorico sulla nebulosa, permettendoci di testarne la validità e, infine, di confermare il modello stesso”.

Gran parte del lavoro è stato dedicato a escludere che l’emissione radio persistente provenisse proprio da una regione di formazione stellare, e che quindi non fosse legata fisicamente alla sorgente del FRB. A questo scopo, le osservazioni fatte con NOEMA in banda millimetrica hanno misurato la quantità di polveri, che tracciano le regioni di formazione stellare “oscurate”, e quelle fatte con il GranTeCan in banda ottica hanno misurato l’emissione da idrogeno ionizzato, anch’esso un tracciante del tasso di formazione di stelle.

“Le osservazioni ottiche sono state un elemento importante per studiare la regione del FRB a una risoluzione spaziale simile al radio” nota la coautrice Eliana Palazzi dell’INAF di Bologna. “Poter mappare l’emissione dell’idrogeno con questo dettaglio ci ha permesso di derivare un tasso di formazione locale di stelle che è risultato essere troppo basso per giustificare l’emissione radio continua”.

La maggior parte dei fast radio burst non presenta emissione persistente. Finora, questo tipo di emissione era stata associata soltanto a due FRB, ma a un regime di luminosità che non permetteva di verificare il modello proposto. Nel caso di FRB20201124A, invece, la sua distanza sì grande ma non eccessiva ha permesso di misurare l’emissione persistente nonostante la bassa luminosità. Capire la natura dell’emissione persistente permette di aggiungere una tessera al puzzle sulla natura di queste misteriose sorgenti cosmiche.

 


 

Per ulteriori informazioni:

L’articolo “A nebular origin for the persistent radio emission of fast radio bursts”, di Gabriele Bruni, Luigi Piro, Yuan-Pei Yang, Salvatore Quai, Bing Zhang, Eliana Palazzi, Luciano Nicastro, Chiara Feruglio, Roberta Tripodi, Brendan O’Connor, Angela Gardini, Sandra Savaglio, Andrea Rossi, A. M. Nicuesa Guelbenzu, Rosita Paladino, è stato pubblicato online sulla rivista Nature.

Testo e immagine dall’Ufficio stampa Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF).