News
Ad
Ad
Ad
Tag

Francesco Tombesi

Browsing

LA VIOLENTISSIMA TEMPESTA COSMICA NEL CUORE DEL QUASAR PDS 456, PRODOTTA DA UN BUCO NERO SUPERMASSICCIO

Roma, 14 maggio 2025 – Immaginate una tempesta colossale che si scatena appena al di fuori di un buco nero supermassiccio: è proprio ciò che ha rivelato Resolve, il nuovo spettrometro ad altissima risoluzione nei raggi X a bordo del satellite XRISM, nel contesto di una missione spaziale guidata dall’agenzia spaziale JAXA (Giappone), con la partecipazione di NASA (Stati Uniti) ed ESA (Europa).

Grazie ai dati ad altissima precisione di XRISM, è stato possibile – per la prima volta – identificare cinque componenti distinte di questo vento nel cuore del quasar PDS 456, ognuna espulsa dal buco nero centrale a velocità relativistiche, comprese tra il 20% e il 30% della velocità della luce.  Per fare un confronto, basti pensare che le tempeste più violente sulla Terra – come un uragano di categoria 5 – raggiungono al massimo 300 km/h. Questa “tempesta cosmica” è milioni di volte più veloce.

Lo studio nato da questa collaborazione internazionale (JAXA, NASA, ESA) nell’ambito della missione XRISM, a cui partecipano anche ricercatrici e ricercatori dell’Università di Roma Tor Vergata e dell’Istituto Nazionale di Astrofisica (INAF), è pubblicato oggi sulla rivista internazionale Nature, con un articolo dal titolo “Structured ionized winds shooting out from a quasar at relativistic speeds”, che evidenzia la scoperta di cinque distinti flussi di plasma che fuoriescono dal disco di accrescimento del buco nero centrale a velocità estreme, pari al 20–30% di quella della luce.

“Il nostro gruppo ha giocato un ruolo chiave nell’interpretazione di questi dati, grazie a tecniche spettroscopiche avanzate nei raggi X e a modelli teorici innovativi per la fisica dei venti prodotti dai buchi neri.  Questi risultati aprono una nuova finestra sullo studio dell’universo estremo, e gettano le basi per comprendere meglio come i buchi neri influenzano l’evoluzione delle galassie”.  Commenta così Francesco Tombesi, professore associato di Astrofisica presso il dipartimento di Fisica dell’università di Roma Tor Vergata e associato INAF. In qualità di XRISM Guest Scientist selezionato dall’ESA (uno dei soli due in Italia insieme a James Reeves, associato INAF), Tombesi ha partecipato alla pianificazione e all’analisi dell’osservazione del quasar PDS 456, il più luminoso dell’universo locale, utilizzando il nuovo spettrometro ad alta risoluzione Resolve.

“Roma Tor Vergata ha avuto un ruolo di primo piano – prosegue Tombesi – anche grazie al contributo di due giovani ricercatori cresciuti all’interno del nostro Ateneo: Pierpaolo Condò, dottorando al secondo anno del PhD in Astronomy, Astrophysics and Space Science (AASS), e Alfredo Luminari, ricercatore post-doc presso INAF ed ex dottorando AASS”.

Un’energia così enorme e una struttura così complessa rivoluzionano la nostra comprensione dell’ambiente estremo intorno ai buchi neri supermassicci e mettono in seria discussione i modelli attuali di feedback tra buco nero e galassia. “Le teorie finora accettate – conclude Tombesi – non riescono a spiegare una simile combinazione di forza e frammentazione: è chiaro che serviranno nuovi modelli per descrivere questi mostri cosmici”.

“PDS456 è un laboratorio prezioso per studiare nell’universo locale i potentissimi venti prodotti dai buchi neri supermassivi. Questa  nuova osservazione ci ha permesso di misurare la geometria e distribuzione in velocità del vento con un livello di dettagli impensabile prima dell’avvento di XRISM”, aggiunge Valentina Braito, ricercatrice INAF a Milano.

Un ruolo vincente all’interno della campagna osservativa di PDS456 lo ha avuto ancora una volta l’osservatorio spaziale Neil Gehrels Swift, satellite NASA con una importante partecipazione dell’INAF con l’Agenzia Spaziale Italiana (ASI). È stato infatti grazie a un programma osservativo Swift – ottenuto da Valentina Braito – che il team è riuscito a costruire i modelli specifici per PDS456 utilizzati nell’analisi dei dati XRISM.

 

Riferimenti bibliografici:

XRISM collaboration, Structured ionized winds shooting out from a quasar at relativistic speeds, Nature (2025), DOI: https://doi.org/10.1038/s41586-025-08968-2

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

“ESSERE (POLARIZZATI) O NON ESSERE (POLARIZZATI)?”

La missione NASA-ASI IXPE svela i misteri di una storica supernova, Tycho

supernova Tycho
Immagine composita del resto di supernova Tycho con riprese dei raggi X delle missioni IXPE e Chandra e nel visibile del progetto NASA Digital Sky Survey. Crediti: X-ray: Chandra: Nasa/Cxc/Sao, Ixpe: Nasa/Msfc/Ferrazzoli et al.; Optical: Nasa/DSS

È una missione da record quella dell’osservatorio spaziale IXPE, nata dalla collaborazione tra la NASA e l’Agenzia Spaziale Italiana (ASI). La sonda sta sfornando nuove immagini che sono una fonte inesauribile di preziosi dati per i ricercatori di tutto il mondo. Infatti è stato proprio un team internazionale di scienziati che ha scoperto nuove informazioni sui resti di una stella esplosa nel 1572. I risultati hanno fornito nuovi indizi sulle condizioni fisiche presenti nelle onde d’urto create in queste titaniche esplosioni stellari chiamate supernove.

Il resto della supernova si chiama Tycho, in onore dell’astronomo danese Tycho Brahe che notò il bagliore luminoso di questa nuova “stella” situata in direzione della costellazione di Cassiopea più di 450 anni fa. Nel nuovo studio, gli astronomi hanno utilizzato l’Imaging X-Ray Polarimetry Explorer (IXPE) per studiare i raggi X polarizzati emessi dal resto della supernova Tycho, scoprendo nuove informazioni sulla geometria dei suoi campi magnetici che sono una componente essenziale per l’accelerazione di particelle ad alta energia.

Lanciata nello spazio il 9 dicembre 2021, IXPE è una missione interamente dedicata allo studio dell’Universo attraverso la misura della polarizzazione dei raggi X. Utilizza tre telescopi installati a bordo con rivelatori finanziati dall’ASI e sviluppati da un team di scienziati dell’Istituto Nazionale di Fisica Nucleare (INFN) e dell’Istituto Nazionale di Astrofisica (INAF), con il supporto industriale di OHB-Italia.

“L’importanza del resto di supernova di Tycho va al di là del suo interesse scientifico”, dice Riccardo Ferrazzoli, ricercatore presso l’INAF di Roma. “Essendo una delle cosiddette supernove storiche, Tycho è stata osservata dall’umanità in passato e ha avuto un duraturo impatto sociale e persino artistico. È emozionante essere qui, 450 anni dopo la sua prima apparizione nel cielo, rivedere questo oggetto con occhi nuovi e imparare da esso”. Ferrazzoli è il primo autore del lavoro che appare nell’ultimo numero della rivista The Astrophysical Journal.

La polarizzazione in banda X indica agli scienziati la direzione e l’ordine del campo magnetico della radiazione proveniente da una sorgente altamente energetica come Tycho. I raggi X polarizzati sono prodotti dagli elettroni che si muovono nel campo magnetico in un processo chiamato “emissione di sincrotrone”. La direzione di polarizzazione X può essere ricondotta alla direzione dei campi magnetici nel punto in cui sono stati generati i raggi X. Queste informazioni aiutano gli scienziati ad affrontare alcune delle più grandi domande in astrofisica, come il modo in cui Tycho e altri oggetti accelerano le particelle fino a velocità prossime a quelle della luce.

IXPE ha aiutato a mappare la forma del campo magnetico di Tycho con una chiarezza e un livello di dettaglio senza precedenti. L’osservatorio ha misurato la forma del campo magnetico a scale più piccole di un parsec ossia circa 3 anni luce – una dimensione enorme in termini umani, ma tra le più piccole mai raggiunte nelle osservazioni di queste sorgenti. Queste informazioni sono preziose per comprendere come le particelle vengano accelerate sulla scia dell’onda d’urto dell’esplosione iniziale.

I ricercatori hanno anche documentato somiglianze e differenze sorprendenti tra le scoperte di IXPE fra Tycho e il resto di supernova Cassiopea A, osservato in precedenza dall’osservatorio spaziale e studiato dal suo team scientifico. La forma complessiva del campo magnetico di entrambi i resti di supernova sembra essere radiale, estendendosi verso l’esterno. Ma Tycho ha prodotto un grado di polarizzazione dei raggi X molto più elevato rispetto a Cassiopea A, suggerendo che potrebbe possedere un campo magnetico più ordinato e meno turbolento.

“Dopo un anno di osservazioni, IXPE non smette di stupirci. Abbiamo osservato solo due resti di supernova, e già con così poco è emersa una diversità. La polarimetria X sta davvero aggiungendo tasselli mancanti alla nostra comprensione degli oggetti cosmici. Questo ci ripaga dell’investimento fatto sul lavoro di ricercatori e ricercatrici, che ha reso IXPE la magnifica realtà che è oggi” commenta Laura Di Gesu, ricercatrice ASI e co-autrice dell’articolo.

La supernova Tycho è classificata come tipo I-a, evento che si verifica quando una stella nana bianca in un sistema binario fa a pezzi la sua stella compagna, catturandone parte della massa ed innescando una violenta esplosione. L’annientamento della nana bianca scaglia i detriti nello spazio ad altissime velocità. Si ritiene comunemente che tali eventi siano la fonte della maggior parte dei raggi cosmici galattici trovati nello spazio, compresi quelli che bombardano continuamente l’atmosfera terrestre.

“Il processo mediante il quale un resto di supernova diventa un gigantesco acceleratore di particelle richiede una delicata danza tra ordine e caos”,

afferma l’astrofisico Patrick Slane dell’Harvard & Smithsonian Center for Astrophysics a Cambridge nel Massachusetts, Stati Uniti.

“Sono necessari campi magnetici forti e turbolenti, ma IXPE ci sta mostrando che è coinvolta anche un’uniformità o coerenza su larga scala, che si estende fino ai siti in cui si verifica l’accelerazione”.

L’esplosione della supernova stessa rilasciò un’energia pari a quella prodotta dal Sole nel corso di 10 miliardi di anni. Quella brillantezza rese la supernova di Tycho visibile ad occhio nudo qui sulla Terra nel 1572, quando fu avvistata da Brahe e da molti altri personaggi dell’epoca, incluso potenzialmente il giovanissimo William Shakespeare, che l’avrebbe poi descritta in un passaggio “dell’Amleto” all’inizio del XVII secolo.

“La Supernova Tycho è stata la sfida perfetta per gli strumenti di IXPE” conclude Enrico Costa dell’INAF, coautore dell’articolo: “I luoghi del fronte d’urto dove i Raggi Cosmici vengono accelerati vanno individuati con un’attenta analisi dell’immagine, dominata dall’emissione non polarizzata dei filamenti termalizzati. Ciò è possibile grazie alle buone proprietà di imaging dei rivelatori e all’eccellente qualità del telescopio, entrambi eccezionali per una piccola missione di massa così ridotta. Alla fine abbiamo trovato qualcosa di molto diverso dalle previsioni e questa è la migliore ricompensa per un astronomo”.

 

Per ulteriori informazioni:

L’articolo “X-ray polarimetry reveals the magnetic field topology on sub-parsec scales in Tycho’s supernova remnant“, di Riccardo Ferrazzoli, Patrick Slane, Dmitry Prokhorov, Ping Zhou, Jacco Vink, Niccolò Bucciantini, Enrico Costa, Niccolò Di Lalla, Alessandro Di Marco, Paolo Soffitta, Martin C. Weisskopf, Kazunori Asakura, Luca Baldini, Jeremy Heyl, Philip E. Kaaret, Frédéric Marin, Tsunefumi Mizuno, C.-Y. Ng, Melissa Pesce-Rollins, Stefano Silvestri, Carmelo Sgrò, Douglas A. Swartz, Toru Tamagawa, Yi-Jung Yang, Iván Agudo, Lucio A. Antonelli, Matteo Bachetti, Wayne H. Baumgartner, Ronaldo Bellazzini, Stefano Bianchi, Stephen D. Bongiorno, Raffaella Bonino, Alessandro Brez, Fiamma Capitanio, Simone Castellano, Elisabetta Cavazzuti, Chien-Ting Chen, Stefano Ciprini, Alessandra De Rosa, Ettore Del Monte, Laura Di Gesu, Immacolata Donnarumma, Victor Doroshenko, Michal Dovčiak, Steven R. Ehlert, Teruaki Enoto, Yuri Evangelista, Sergio Fabiani, Javier A. Garcia, Shuichi Gunji, Kiyoshi Hayashida, Wataru Iwakiri, Svetlana G. Jorstad, Fabian Kislat, Vladimir Karas, Takao Kitaguchi, Jeffery J. Kolodziejczak, Henric Krawczynski, Fabio La Monaca, Luca Latronico, Ioannis Liodakis, Simone Maldera, Alberto Manfreda, Andrea Marinucci, Alan P. Marscher, Herman L. Marshall, Giorgio Matt, Ikuyuki Mitsuishi, Fabio Muleri, Michela Negro, Stephen L. O’Dell, Nicola Omodei, Chiara Oppedisano, Alessandro Papitto, George G. Pavlov, Abel L. Peirson, Matteo Perri, Pierre-Olivier Petrucci, Maura Pilia, Andrea Possenti, Juri Poutanen, Simonetta Puccetti, Brian D. Ramsey, John Rankin, Ajay Ratheesh, Oliver Roberts, Roger W. Romani, Gloria Spandre, Fabrizio Tavecchio, Roberto Taverna, Yuzuru Tawara, Allyn F. Tennant, Nicholas E. Thomas, Francesco Tombesi, Alessio Trois, Sergey S. Tsygankov, Roberto Turolla, Kinwah Wu, Fei Xie, Silvia Zane è stato pubblicato sulla rivista The Astrophysical Journal.

 

Testo e immagine dagli Uffici Stampa Istituto Nazionale di Astrofisica (INAF) e Agenzia Spaziale Italiana (ASI).