News
Ad
Ad
Ad
Tag

Fabrizio Tavecchio

Browsing

QUEL FOTONE CHE NON SAREBBE MAI DOVUTO ARRIVARE SULLA TERRA: UNA NUOVA INTERPRETAZIONE DI GRB 221009A

Un fotone di altissima energia associato al lampo gamma più potente finora registrato ha messo in crisi l’attuale modello che descrive questi violentissimi eventi celesti. Un gruppo tutto italiano composto da ricercatrici e ricercatori dell’INAF e dell’INFN prova a far luce su questo fotone che non sarebbe mai dovuto arrivare sulla Terra, proponendo un’interpretazione che contempla la presenza di una oscillazione tra fotoni e ALP, ipotetiche particelle previste dalla teoria delle stringhe.

GRB 221009A immagine artistica di un lampo di raggi gamma (GRB). Crediti: ESO/A. Roquette
immagine artistica di un lampo di raggi gamma (GRB). Crediti: ESO/A. Roquette

Un singolo fotone ma talmente energetico da mettere in crisi gli attuali modelli astrofisici sulla propagazione dei raggi gamma.  L’evento nel quale è stato osservato, chiamato BOAT (brightest of all time, ovvero il più luminoso di tutti i tempi), è il lampo di raggi gamma (gamma-ray burst, GRB) GRB 221009A, emesso da una galassia a oltre due miliardi di anni luce da noi e rivelato – da terra e nello spazio – il 9 ottobre 2022. Tra i fotoni gamma di altissima energia intercettati dal rivelatore cinese LHAASO in occasione di questo evento, ce n’era, appunto, uno di addirittura 18 TeV: l’energia più elevata mai registrata da un GRB. Un’interessante interpretazione di questa inaspettata osservazione viene fornita da uno studio interamente italiano, coordinato da INAF Istituto Nazionale di Astrofisica insieme a INFN Istituto Nazionale di Fisica Nucleare, con autori Giorgio Galanti, Lara Nava, Marco Roncadelli, Fabrizio Tavecchio e Giacomo Bonnoli, pubblicato oggi, 18 dicembre, su Physical Review Letters.

“Pochi minuti dopo aver avuto notizia dell’esplosione – ricorda Giorgio Galanti dell’INAF, primo autore dell’articolo – abbiamo intuito che questo GRB non solo poteva essere un evento astrofisico straordinario ma poteva anche rappresentare un’opportunità unica per studi di fisica fondamentale, in particolare riguardo alle axion-like particles”.

Secondo l’ipotesi avanzata dal gruppo di ricerca, quel fotone così energetico potrebbe essere un ‘fotone trasformista’: capace cioè di cambiare natura, oscillando da una ‘personalità’ all’altra mentre viaggia alla velocità della luce. E le ALP – le axion-like particles, ipotetiche particelle previste dalla teoria delle stringhe candidate per costituire la materia oscura fredda, simili ad altre particelle altrettanto ipotetiche, gli assioni – sarebbero una di queste personalità. Un po’ come Mr. Hyde, una ALP è infatti in grado di compiere azioni che un fotone, il Dr. Jekyll di questa strana storia, non riuscirebbe mai a portare a termine: attraversare indenne la cosiddetta EBL – l’extragalactic background light, la luce di fondo extragalattica, ovvero la luce emessa da tutte le stelle durante l’intera evoluzione dell’universo.

Quando un fotone di alta energia — diciamo superiore a 100 GeV — urta un fotone dell’EBL, c’è una probabilità che si formi una coppia elettrone-positrone, che fa scomparire il fotone di alta energia. E questo effetto diventa progressivamente più importante al crescere sia dell’energia, sia della distanza. Ritornando, quindi, al GRB 221009A, secondo la fisica convenzionale, i fotoni di energia superiore a circa 10 TeV verrebbero completamente assorbiti. Considerando il redshift della sorgente, e dunque l’enorme distanza percorsa dal lampo gamma, i fotoni a energie più elevate in teoria non sarebbero mai stati in grado di giungere fino a noi. Come è allora possibile che LHAASO, unico strumento per la rivelazione dei lampi gamma a non essere andato in saturazione quel 9 ottobre di un anno fa, abbia osservato fotoni del GRB 221009A a energie comprese fra 500 GeV e 18 TeV? È qui che entrano in gioco, appunto, le ALP.

“Secondo la nostra ipotesi, in presenza di campi magnetici, i fotoni si tramutano in ALP e viceversa, — spiega Marco Roncadelli, ricercatore associato all’INFN e all’INAF — rendendo così possibile raggiungere la Terra a un maggior numero di fotoni, perché le ALP sono invisibili ai fotoni del fondo extragalattico”.

Entrando un po’ più nel dettaglio, le ALP si accoppiano a due fotoni, ma non a un singolo fotone. Questo fatto implica che in presenza di un campo magnetico esterno – che, come è ben noto, è costituito da fotoni – si possono avere ‘oscillazioni fotone-ALP’. Queste sono molto simili alle oscillazioni dei neutrini massivi di tipo diverso, con la sola differenza che per le ALP l’esistenza del campo magnetico è essenziale al fine di garantire la conservazione del momento angolare, in quanto il fotone ha spin 1 mentre le ALP hanno spin 0: lo spin mancante o eccedente è compensato dal campo magnetico esterno.

L’oscillazione tra fotoni e ALP per aggirare l’opacità del fondo extragalattico ai fotoni di energia elevata non è un’idea inedita: è una soluzione proposta per la prima volta nel 2007 da Alessandro De Angelis, Oriana Mansutti e Marco Roncadelli. Ed è una soluzione a un problema più generale di quello posto da questo gamma-ray burst. Oltre ai lampi di raggi gamma, ci sono infatti altre sorgenti distanti che emettono fotoni a energie elevatissime eppure in grado di giungere fino a noi, in barba alla fisica standard. Sorgenti come i quasar di tipo FSRQ (flat spectrum radio quasar), dove la componente ‘opaca’ che intralcia la corsa dei fotoni ad alta energia, fino a renderne teoricamente impossibile la fuoriuscita, non è la ELB ma qualcosa di molto simile: un campo di radiazione ultravioletta all’interno della sorgente stessa. O i blazar di tipo BL Lac, il cui spettro – come mostrato da uno studio pubblicato nel 2020 dagli stessi Galanti, Roncadelli e De Angelis insieme a Giovanni F. Bignami – sarebbe in alcuni casi inspiegabile senza ricorrere a un meccanismo che consenta di aumentare la ‘trasparenza cosmica’, riducendo quindi l’assorbimento prodotto dall’EBL.

Fotoni da quasar FSRQ, fotoni da blazar BL Lac e ora fotoni da questo lampo gamma BOAT, dunque. Tutt’e tre apparentemente inconcepibili entro il perimetro della fisica standard. Ma tutt’e tre spiegabili se al posto di ‘semplici’ fotoni ci fossero particelle “Jekyll-Hyde” che oscillano da fotone ad ALP e viceversa. Per dare solidità a questa ipotesi, serviranno altre osservazioni, e saranno per questo di grande aiuto i nuovi osservatori astrofisici per alte energie – primi fra tutti CTA e l’italiano ASTRI – pronti a entrare in funzione nei prossimi anni.

L’articolo Observability of the very-high-energy emission from GRB 221009A di Giorgio Galanti, Lara Nava, Marco Roncadelli, Fabrizio Tavecchio, Giacomo Bonnoli viene pubblicato oggi sulla rivista Physical Review Letters.

 

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)

“ESSERE (POLARIZZATI) O NON ESSERE (POLARIZZATI)?”

La missione NASA-ASI IXPE svela i misteri di una storica supernova, Tycho

supernova Tycho
Immagine composita del resto di supernova Tycho con riprese dei raggi X delle missioni IXPE e Chandra e nel visibile del progetto NASA Digital Sky Survey. Crediti: X-ray: Chandra: Nasa/Cxc/Sao, Ixpe: Nasa/Msfc/Ferrazzoli et al.; Optical: Nasa/DSS

È una missione da record quella dell’osservatorio spaziale IXPE, nata dalla collaborazione tra la NASA e l’Agenzia Spaziale Italiana (ASI). La sonda sta sfornando nuove immagini che sono una fonte inesauribile di preziosi dati per i ricercatori di tutto il mondo. Infatti è stato proprio un team internazionale di scienziati che ha scoperto nuove informazioni sui resti di una stella esplosa nel 1572. I risultati hanno fornito nuovi indizi sulle condizioni fisiche presenti nelle onde d’urto create in queste titaniche esplosioni stellari chiamate supernove.

Il resto della supernova si chiama Tycho, in onore dell’astronomo danese Tycho Brahe che notò il bagliore luminoso di questa nuova “stella” situata in direzione della costellazione di Cassiopea più di 450 anni fa. Nel nuovo studio, gli astronomi hanno utilizzato l’Imaging X-Ray Polarimetry Explorer (IXPE) per studiare i raggi X polarizzati emessi dal resto della supernova Tycho, scoprendo nuove informazioni sulla geometria dei suoi campi magnetici che sono una componente essenziale per l’accelerazione di particelle ad alta energia.

Lanciata nello spazio il 9 dicembre 2021, IXPE è una missione interamente dedicata allo studio dell’Universo attraverso la misura della polarizzazione dei raggi X. Utilizza tre telescopi installati a bordo con rivelatori finanziati dall’ASI e sviluppati da un team di scienziati dell’Istituto Nazionale di Fisica Nucleare (INFN) e dell’Istituto Nazionale di Astrofisica (INAF), con il supporto industriale di OHB-Italia.

“L’importanza del resto di supernova di Tycho va al di là del suo interesse scientifico”, dice Riccardo Ferrazzoli, ricercatore presso l’INAF di Roma. “Essendo una delle cosiddette supernove storiche, Tycho è stata osservata dall’umanità in passato e ha avuto un duraturo impatto sociale e persino artistico. È emozionante essere qui, 450 anni dopo la sua prima apparizione nel cielo, rivedere questo oggetto con occhi nuovi e imparare da esso”. Ferrazzoli è il primo autore del lavoro che appare nell’ultimo numero della rivista The Astrophysical Journal.

La polarizzazione in banda X indica agli scienziati la direzione e l’ordine del campo magnetico della radiazione proveniente da una sorgente altamente energetica come Tycho. I raggi X polarizzati sono prodotti dagli elettroni che si muovono nel campo magnetico in un processo chiamato “emissione di sincrotrone”. La direzione di polarizzazione X può essere ricondotta alla direzione dei campi magnetici nel punto in cui sono stati generati i raggi X. Queste informazioni aiutano gli scienziati ad affrontare alcune delle più grandi domande in astrofisica, come il modo in cui Tycho e altri oggetti accelerano le particelle fino a velocità prossime a quelle della luce.

IXPE ha aiutato a mappare la forma del campo magnetico di Tycho con una chiarezza e un livello di dettaglio senza precedenti. L’osservatorio ha misurato la forma del campo magnetico a scale più piccole di un parsec ossia circa 3 anni luce – una dimensione enorme in termini umani, ma tra le più piccole mai raggiunte nelle osservazioni di queste sorgenti. Queste informazioni sono preziose per comprendere come le particelle vengano accelerate sulla scia dell’onda d’urto dell’esplosione iniziale.

I ricercatori hanno anche documentato somiglianze e differenze sorprendenti tra le scoperte di IXPE fra Tycho e il resto di supernova Cassiopea A, osservato in precedenza dall’osservatorio spaziale e studiato dal suo team scientifico. La forma complessiva del campo magnetico di entrambi i resti di supernova sembra essere radiale, estendendosi verso l’esterno. Ma Tycho ha prodotto un grado di polarizzazione dei raggi X molto più elevato rispetto a Cassiopea A, suggerendo che potrebbe possedere un campo magnetico più ordinato e meno turbolento.

“Dopo un anno di osservazioni, IXPE non smette di stupirci. Abbiamo osservato solo due resti di supernova, e già con così poco è emersa una diversità. La polarimetria X sta davvero aggiungendo tasselli mancanti alla nostra comprensione degli oggetti cosmici. Questo ci ripaga dell’investimento fatto sul lavoro di ricercatori e ricercatrici, che ha reso IXPE la magnifica realtà che è oggi” commenta Laura Di Gesu, ricercatrice ASI e co-autrice dell’articolo.

La supernova Tycho è classificata come tipo I-a, evento che si verifica quando una stella nana bianca in un sistema binario fa a pezzi la sua stella compagna, catturandone parte della massa ed innescando una violenta esplosione. L’annientamento della nana bianca scaglia i detriti nello spazio ad altissime velocità. Si ritiene comunemente che tali eventi siano la fonte della maggior parte dei raggi cosmici galattici trovati nello spazio, compresi quelli che bombardano continuamente l’atmosfera terrestre.

“Il processo mediante il quale un resto di supernova diventa un gigantesco acceleratore di particelle richiede una delicata danza tra ordine e caos”,

afferma l’astrofisico Patrick Slane dell’Harvard & Smithsonian Center for Astrophysics a Cambridge nel Massachusetts, Stati Uniti.

“Sono necessari campi magnetici forti e turbolenti, ma IXPE ci sta mostrando che è coinvolta anche un’uniformità o coerenza su larga scala, che si estende fino ai siti in cui si verifica l’accelerazione”.

L’esplosione della supernova stessa rilasciò un’energia pari a quella prodotta dal Sole nel corso di 10 miliardi di anni. Quella brillantezza rese la supernova di Tycho visibile ad occhio nudo qui sulla Terra nel 1572, quando fu avvistata da Brahe e da molti altri personaggi dell’epoca, incluso potenzialmente il giovanissimo William Shakespeare, che l’avrebbe poi descritta in un passaggio “dell’Amleto” all’inizio del XVII secolo.

“La Supernova Tycho è stata la sfida perfetta per gli strumenti di IXPE” conclude Enrico Costa dell’INAF, coautore dell’articolo: “I luoghi del fronte d’urto dove i Raggi Cosmici vengono accelerati vanno individuati con un’attenta analisi dell’immagine, dominata dall’emissione non polarizzata dei filamenti termalizzati. Ciò è possibile grazie alle buone proprietà di imaging dei rivelatori e all’eccellente qualità del telescopio, entrambi eccezionali per una piccola missione di massa così ridotta. Alla fine abbiamo trovato qualcosa di molto diverso dalle previsioni e questa è la migliore ricompensa per un astronomo”.

 

Per ulteriori informazioni:

L’articolo “X-ray polarimetry reveals the magnetic field topology on sub-parsec scales in Tycho’s supernova remnant“, di Riccardo Ferrazzoli, Patrick Slane, Dmitry Prokhorov, Ping Zhou, Jacco Vink, Niccolò Bucciantini, Enrico Costa, Niccolò Di Lalla, Alessandro Di Marco, Paolo Soffitta, Martin C. Weisskopf, Kazunori Asakura, Luca Baldini, Jeremy Heyl, Philip E. Kaaret, Frédéric Marin, Tsunefumi Mizuno, C.-Y. Ng, Melissa Pesce-Rollins, Stefano Silvestri, Carmelo Sgrò, Douglas A. Swartz, Toru Tamagawa, Yi-Jung Yang, Iván Agudo, Lucio A. Antonelli, Matteo Bachetti, Wayne H. Baumgartner, Ronaldo Bellazzini, Stefano Bianchi, Stephen D. Bongiorno, Raffaella Bonino, Alessandro Brez, Fiamma Capitanio, Simone Castellano, Elisabetta Cavazzuti, Chien-Ting Chen, Stefano Ciprini, Alessandra De Rosa, Ettore Del Monte, Laura Di Gesu, Immacolata Donnarumma, Victor Doroshenko, Michal Dovčiak, Steven R. Ehlert, Teruaki Enoto, Yuri Evangelista, Sergio Fabiani, Javier A. Garcia, Shuichi Gunji, Kiyoshi Hayashida, Wataru Iwakiri, Svetlana G. Jorstad, Fabian Kislat, Vladimir Karas, Takao Kitaguchi, Jeffery J. Kolodziejczak, Henric Krawczynski, Fabio La Monaca, Luca Latronico, Ioannis Liodakis, Simone Maldera, Alberto Manfreda, Andrea Marinucci, Alan P. Marscher, Herman L. Marshall, Giorgio Matt, Ikuyuki Mitsuishi, Fabio Muleri, Michela Negro, Stephen L. O’Dell, Nicola Omodei, Chiara Oppedisano, Alessandro Papitto, George G. Pavlov, Abel L. Peirson, Matteo Perri, Pierre-Olivier Petrucci, Maura Pilia, Andrea Possenti, Juri Poutanen, Simonetta Puccetti, Brian D. Ramsey, John Rankin, Ajay Ratheesh, Oliver Roberts, Roger W. Romani, Gloria Spandre, Fabrizio Tavecchio, Roberto Taverna, Yuzuru Tawara, Allyn F. Tennant, Nicholas E. Thomas, Francesco Tombesi, Alessio Trois, Sergey S. Tsygankov, Roberto Turolla, Kinwah Wu, Fei Xie, Silvia Zane è stato pubblicato sulla rivista The Astrophysical Journal.

 

Testo e immagine dagli Uffici Stampa Istituto Nazionale di Astrofisica (INAF) e Agenzia Spaziale Italiana (ASI).