News
Ad
Ad
Ad
Tag

Fabio Sciarrino

Browsing

Un nuovo approccio fotonico alla manipolazione della casualità nei computer quantistici
Un gruppo di ricercatori guidati dal Quantum Lab group della Sapienza Università di Roma ha sviluppato nuove configurazioni per la manipolazione delle variabili casuali in computer quantistici fotonici. I risultati, contenuti in due paper di recente pubblicazione, sono stati ottenuti nell’ambito di ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data e Quantum Computing e dei progetti europei “PHOQUSING – PHotonic QUantum SamplING Machine” e “QU-BOSS”.

Sfruttare le caratteristiche dei computer quantistici, come quella di rappresentare ed elaborare contemporaneamente stati di informazioni diversi grazie ai qubit, per riuscire a generare in maniera più efficace serie di numeri casuali costituisce un requisito fondamentale per avere delle applicazioni vantaggiose nei contesti di simulazione computazionale di sistemi fisici come nella crittografia. Questo è quanto sostenuto in due studi svolti nell’ambito di ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data e Quantum Computing e dei progetti europei “PHOQUSING – PHotonic QUantum SamplING Machine” e “QU-BOSS” dal gruppo Quantum Lab della Sapienza Università di Roma, in collaborazione con l’International Iberian Nanotechnology Labs (INL) e l’Istituto di Fotonica e Nanotecnologie – Consiglio Nazionale delle Ricerche (IFN-CNR). I risultati dei due lavori, apparsi di recente sulle prestigiose riviste scientifiche Nature Photonics e Science Advances, dimostrano come una piattaforma quantistica di tipo fotonico adeguatamente progettata e controllata sia in grado di implementare l’algoritmo della Bernoulli Factory. Quest’ultimo è un noto algoritmo utilizzato per la generazione di serie di variabili casuali, definendo così una nuova tecnica per la manipolazione delle variabili aleatorie che utilizza la meccanica quantistica chiamata “quantum-to-quantum Bernoulli Factory”.

Un nuovo approccio fotonico alla manipolazione della casualità nei computer quantistici; due studi su Nature Photonics e Science Advances. Gallery

Facendo ricorso all’esempio della serie di risultati derivanti dal lancio di una moneta, l’algoritmo Bernoulli factory, che svolge un ruolo centrale nell’integrazione numerica e nei metodi Monte Carlo utilizzati nei calcoli probabilistici, consente, a partire da una distribuzione di probabilità di lanci nota utilizzata in input, di generare come output lanci di moneta con una diversa distribuzione.

“Se abbiamo per esempio come obiettivo quello di creare una nuova moneta che mostri testa con una probabilità diversa da quella nota rivelata dai lanci effettuati”, spiega Fabio Sciarrino, responsabile del Quantum Lab group della Sapienza e responsabile della piattaforma fotonica per lo Spoke 10 ‘Quantum Computing’ di ICSC, “ l’algoritmo della Bernoulli factory ci permette astutamente di lanciare la moneta originale più volte e di sfruttare i vari risultati per simulare i lanci di una nuova moneta con la distribuzione di probabilità desiderata. Nel quadro della meccanica quantistica, questo procedimento è stato tradotto codificando le distribuzioni di probabilità come stati quantistici sia in input che in output. Da qui il nome ‘quantum-to-quantum Bernoulli factory’.

Le caratteristiche uniche delle Bernoulli factory hanno quindi spinto la collaborazione tra i gruppi di ricerca autori dei due studi a esplorare vari metodi per implementare queste ‘fabbriche di casualità’ realizzando piattaforme ottiche all’interno delle quali, modificando la configurazione dei circuiti, è stato possibile far evolvere nella maniera voluta la dinamica dei fotoni e degli stati di informazione quantistica di cui sono portatori. Dato il comportamento statistico che li caratterizza, l’evoluzione dei fotoni all’interno di questi dispositivi riesce perciò a generare più efficacemente una distribuzione di risultati casuale rispetto a quanto possa fare una simulazione effettuata da un computer classico.

“Al fine di implementare gli algoritmi Bernoulli factory”, prosegue Sciarrino, “abbiamo sviluppato due piattaforme che manipolano distinti gradi di libertà degli stati a singolo fotone. La prima, sviluppata in collaborazione con INL e IFN-CNR e che ha portato alla pubblicazione dell’articolo su Nature Photonics, lavora con i cosiddetti qubit codificati nel cammino, in cui l’informazione è scritta nel percorso di ciascun fotone. Ciò è stata reso possibile grazie all’elevato controllo e precisione ottenibile nella programmazione dei circuiti fotonici integrati in vetro realizzati da CNR-IFN, la riproducibilità dei quali è garantita dai sistemi automatizzati adottati, che agevolano l’utilizzo di questi dispositivi anche per l’implementazione di algoritmi con complessità maggiori. Nella seconda piattaforma, sviluppata in collaborazione con INL, i qubit sono invece codificati negli stati di polarizzazione di singoli fotoni. Con entrambe le piattaforme siamo stati in grado dimostrare tutti i passaggi necessari per realizzare genuini algoritmi di Bernoulli Factory quantistiche.”

Questi progressi rappresentano passi in avanti significativi nell’ambito di ricerca volto a comprendere come elaborare l’informazione sfruttando le proprietà quantistiche della luce. Le quantum-to-quantum Bernoulli Factories rappresentano inoltre un’ulteriore prova a favore dei vantaggi che i dispositivi quantistici possono garantire rispetto ai loro omologhi classici. Sfruttando le proprietà uniche della luce quantistica, i ricercatori potranno infatti ricercare nuove possibilità per un calcolo efficiente e una sofisticata manipolazione delle variabili casuali, aprendo la strada ad applicazioni innovative in vari campi, dalla crittografia, al calcolo e alla simulazione.

“Da un lato, l’architettura utilizzata per la codifica su percorso dei qubit, che vengono manipolati attraverso dispositivi di ottica integrata, rappresenta la soluzione ideale per l’implementazione delle Bernoulli Factories nel contesto della computazione quantistica, potendo per esempio essere impiegata come componente di un hardware fotonico quantistico più complesso” commenta Francesco Hoch, post-doc e primo autore dell’articolo su Nature Photonics. “Dall’altro lato, la seconda piattaforma che opera sugli stati di polarizzazione dei fotoni, realizzata attraverso elementi ottici che operano sia in aria che in fibra, risulta particolarmente adatta per interfacciare il dispositivo con le reti quantistiche e, più in generale, con i complessi protocolli di comunicazione e crittografia quantistica esistenti”, conclude Giovanni Rodari, dottorando e primo autore dell’articolo su Science Advances.

APPROFONDIMENTI:
Quantum Lab – Dipartimento di Fisica, Sapienza
www.quantumlab.itICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data e Quantum Computing
https://www.supercomputing-icsc.it/en/icsc-home/F. Hoch, et al., Modular quantum-to-quantum Bernoulli factory in an integrated photonic processor, Nature Photonics (2024).
https://www.nature.com/articles/s41566-024-01526-8G. Rodari, et al. Polarization-encoded photonic quantum-to-quantum Bernoulli factory based on a quantum dot source, Science Advances 10, 30 (2024).
https://www.science.org/doi/10.1126/sciadv.ado6244

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma e dall’Ufficio Comunicazione ICSC – Centro Nazionale di Ricerca in HPC, Big Data e Quantum Computing
Al via EPIQUE, per sviluppare il computer quantistico fotonico europeo

Progetto europeo da 10 milioni di euro guidato da Sapienza Università di Roma con 18 partner, tra cui il Consiglio Nazionale delle Ricerche e l’Università degli Studi di Firenze.

EPIQUE

(17/01/2024) – Fare da apripista per un computer quantistico europeo basato su fotoni, i quanti di luce: è la sfida di EPIQUE, il progetto di ricerca finanziato con 10.340.000 di euro dalla Commissione Europea realizzato da 18 partner di 12 Paesi e guidati da Sapienza Università di Roma e che prende il via oggi con il kick-off meeting.

“L’importante risultato ottenuto con il finanziamento del progetto EPIQUE coordinato dal professor Fabio Sciarrino, a cui vanno i più sinceri complimenti per il prestigioso riconoscimento ottenuto, è una ulteriore conferma – dichiara la Rettrice della Sapienza Antonella Polimeni – dell’impegno dell’Ateneo nell’ambito delle tecnologie quantistiche. Questo progetto si aggiunge ad altre iniziative che vedono Sapienza quale centro di eccellenza del settore, come leader dello Spoke sulle tecnologie fotoniche nell‘ambito del partenariato finanziato dal PNRR sulle quantum technologies, e come partner dello Spoke sul Quantum Computing della fondazione ICSC. Un nuovo successo per la nostra comunità che conferma la sempre crescente attenzione verso l’ecosistema europeo della ricerca.”

I computer quantistici sono una delle più promettenti tecnologie del futuro, macchine potenzialmente capaci di risolvere problemi impossibili anche per i più potenti super computer, ma si tratta di dispositivi in fase prototipale e sono ancora molte le possibili strade di sviluppo. Tra le più promettenti c’è quella basata sulla luce: l’uso di fotoni nel ruolo di qubit. Proprio per studiare in modo approfondito il potenziale offerto dallo sviluppo di piattaforme di calcolo quantistico fotonico nasce EPIQUE – European Photonic Quantum Computer, un progetto che punta a fare da apripista in un ambito con ampi margini di sviluppo.

Prototipi di computer quantistici basati su tecnologie fotoniche hanno dimostrato in questi anni importanti punti di forza, in particolare quelli di avere una bassa decoerenza dei qubit che permette di minimizzare la perdita dell’informazione, una semplice infrastruttura che non richiede di operare a temperature vicine allo zero come nei processori a superconduttori e una naturale integrazione con i sistemi di comunicazione a fibra ottica per la creazione di reti. Ben 3 delle 4 dimostrazioni ad oggi pubblicate di quantum advantage – ossia la capacità di eseguire un processo di calcolo di fatto impossibile per un computer tradizionale – sono state ottenute usando tecnologie fotoniche.

Tuttavia, i risultati esistenti sono stati spesso limitati da apparati ingombranti e difficili da scalare. Riconoscendo il potenziale di questo percorso tecnologico, EPIQUE punta ora a raccogliere le tante realtà europee, sia il mondo accademico che le Piccole e Medie Imprese, già oggi tra i leader al mondo in vari settori delle tecnologie fotoniche, per arrivare alla realizzazione di una piattaforma quantistica fotonica di uso generale. EPIQUE punterà allo sviluppo di 3 diversi prototipi dimostrativi di computer quantistici fotonici a decine di qubits e ad aprire la strada verso una più ambiziosa piattaforma quantistica di oltre 1.000 qubits.

“Il lavoro di EPIQUE è pronto a stabilire un nuovo standard europeo nella ricerca sul calcolo quantistico fotonico”, afferma Fabio Sciarrino della Sapienza, coordinatore di EPIQUE. “Integrando i progressi sia nelle tecnologie che sugli algoritmi – aggiunge – ci concentreremo sullo sviluppo di un percorso verso una piattaforma innovativa di calcolo quantistico. L’impatto delle tecnologie che svilupperemo potrà anche influenzare altre aree di applicazione delle tecnologie quantistiche, come il rilevamento quantistico e la metrologia”.

“I computer classici funzionano grazie al flusso di elettroni attraverso circuiti microelettronici. Una dinamica simile si rispecchia nei computer quantistici fotonici, che si avvalgono di circuiti fotonici integrati. In questi circuiti, i singoli fotoni sono incaricati di realizzare calcoli complessi”, spiega Roberto Osellame, Direttore di Ricerca al CNR-IFN di Milano. “Al CNR – aggiunge – noi creiamo questi circuiti fotonici incidendoli nel vetro mediante l’uso di laser. Grazie al progetto EPIQUE, prevediamo di elevare la complessità di questi dispositivi a livelli mai raggiunti prima, superando gli attuali standard tecnologici”.

EPIQUE è uno dei sei progetti, sulla base di altrettante soluzioni tecnologiche, ideati per sviluppare fisicamente un computer quantistico europeo nell’ambito della Quantum Flagship lanciata dalla Commissione Europea nel 2018 e finanziata con circa 1 miliardo di euro.

 

I partner di EPIQUE sono:

– Sapienza Università di Roma (Uniroma1) Italy

– Consiglio Nazionale delle Ricerche (CNR) Italy

– Università degli Studi di Firenze (Unifi) Italy

– Centre National de la Recherche Scientifique (CNRS) France

– Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA) France

– Quandela France

– Single Quantum Bv (Single Quantum) Netherlands

– Universitaet Paderborn (UPB) Germany

– Ruprecht-Karls-Universitaet Heidelberg (UHEI) Germany

– Qubig Gmbh (Qubig) Germany

– Universitat Wien (UniVie) Austria

– Danmarks Tekniske Universitet (DTU) Denmark

– Nkt Photonics A/S Denmark.

– Laboratorio Iberico Internacional de Nanotecnologia Lin (INL) Portugal

– Naukowa I Akademicka Siec Komputerowa – Panstwowy Instytut (NASK) Poland

– Ceske Vysoke Uceni Technicke V Praze (CVUT) Czechia

– Tyndall, University College Cork – National University of Ireland, Cork (UCC) Ireland

– Interuniversitair Micro-Electronica Centrum (IMEC) Belgium

Maggiori informazioni sono disponibili al sito web https://cordis.europa.eu/project/id/101135288

 

Testo e imagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Un cloud quantistico sicuro: da oggi è possibile proteggere la privacy di gruppi di utenti che effettuano calcoli contemporaneamente su server distanti  

Un gruppo di ricerca internazionale ha ideato e dimostrato che è possibile effettuare calcoli da remoto su processori quantistici mantenendo intatta la privacy di tutti gli utenti coinvolti. I risultati dell’esperimento, condotto presso il Quantum Lab dell’Università Sapienza di Roma, sono stati pubblicati sulla rivista Nature Communications e costituiscono un passo in avanti fondamentale verso la realizzazione di reti quantistiche sicure.

Un numero crescente di aziende e laboratori in tutto il mondo sta mettendo a disposizione degli utenti diverse tipologie di prototipi di processori quantistici. Infatti, con le tecnologie attuali, i costi di acquisto e manutenzione di questi dispositivi sono inaccessibili per utenti comuni. Invece, tramite un approccio di cloud computing, chiunque può “mettersi in fila” per prenotare l’utilizzo di un piccolo processore e poter fare il proprio esperimento di calcolo quantistico. Il problema di mantenere la privacy di questi utenti costituisce di conseguenza un’importante sfida da affrontare.

Nonostante fosse già noto come mantenere la privacy di un singolo utente connesso a un server remoto, rimaneva comunque aperto il problema di proteggere la privacy di un gruppo di utenti che collaborino allo stesso calcolo. Questo potrebbe essere il caso, ad esempio, di un gruppo di banche che puntano ad elaborare in modo congiunto i dati dei propri clienti per sviluppare un modello finanziario comune, ma senza che né le altre banche partecipanti, né i gestori del processore remoto possano carpire alcuna informazione sui dati dei loro clienti.

In un nuovo studio, pubblicato sulla rivista Nature Communications, è stato dimostrato un protocollo di crittografia adattabile a piattaforme di crescente complessità e grandezza, che permette a più utenti di portare avanti un calcolo in comune mantenendo intatta la sicurezza dei loro dati e proteggendo tutti i dettagli del calcolo.

Questo è stato il risultato di una collaborazione scientifica nel campo di protocolli di computazione e crittografia quantistica tra la Sapienza Università di Roma, l’università La Sorbona di Parigi, il Centro Nazionale della Ricerca Scientifica (CNRS) francese e l’impresa VeriQloud.

Le piattaforme basate su stati di luce quantistica sono tra le principali candidate per la realizzazione di reti quantistiche densamente interconnesse, che possano mettere in comunicazione più utenti, sia tra di loro che con server dotati di potenza di calcolo. Infatti, le sue proprietà fisiche la rendono un sistema molto promettente per la trasmissione di informazioni su lunga distanza, come hanno dimostrato alcuni esperimenti di comunicazione quantistica tra stazioni terrestri e satelliti in orbita.

L’esperimento guidato da Fabio Sciarrino e condotto presso il Quantum Lab del Dipartimento di Fisica della Sapienza ha dimostrato, per la prima volta, un protocollo in cui due utenti elaborano un calcolo quantistico su un server distante, pur assicurando la totale sicurezza dei dati relativi al calcolo. La piattaforma sperimentale sfrutta fibre ottiche per collegare i clienti tra loro e con il server, dimostrando la sicurezza e l’efficacia del protocollo anche nel caso in cui i partecipanti al protocollo si trovino a distanza.

Il protocollo e la sua sicurezza sono stati ideati e dimostrati da gruppi di ricerca diretti da Elham Kashefi e Marc Kaplan ed affiliati rispettivamente all’Università La Sorbona di Parigi e all’azienda VeriQloud.

“Il nostro lavoro – commenta Beatrice Polacchi, dottoranda del team Quantum Lab – è la prima dimostrazione sperimentale di un protocollo sicuro di delegazione di calcolo quantistico che coinvolge più di un cliente, e costituisce pertanto un mattoncino per la costruzione di reti quantistiche più grandi e sicure.”

Un altro importante risultato di questa collaborazione è la possibilità di continuare su questa strada per dimostrare protocolli di computazione sempre più sicuri e investigare reti quantistiche di crescente dimensione e connettività.

“I nostri risultati – conclude Fabio Sciarrino, responsabile del Quantum Lab – motivano la ricerca volta ad identificare nuovi protocolli sicuri calcolo quantistico delegato e nuove architetture modulari per le reti quantistiche. Ci aspettiamo che questo lavoro fornirà uno stimolo significativo alla ricerca sulla futura realizzazione di un cloud quantistico”.

Questa linea di ricerca è supportata dal programma europeo per la ricerca e l’innovazione “European Union’s Horizon 2020” attraverso il progetto FET “PHOQUSING”: www.phoqusing.eu.

Riferimenti bibliografici: 

Multi-client distributed blind quantum computation with the Qline architecture – Beatrice Polacchi, Dominik Leichtle, Leonardo Limongi, Gonzalo Carvacho, Giorgio Milani, Nicolò Spagnolo, Marc Kaplan, Fabio Sciarrino & Elham Kashefi – Nature Communications 14, 7743 (2023). https://doi.org/10.1038/s41467-023-43617-0

cloud computing quantistico privacy
Immagine di Pete Linforth

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Fisica quantistica: ora è possibile certificare le proprietà dei dispositivi ottici integrati programmabili

Un team di ricerca internazionale ha identificato nuove tecniche per quantificare le risorse computazionali fornite dalla meccanica quantistica nei dispositivi ottici.  Gli esperimenti, condotti presso il gruppo Quantum Lab del Dipartimento della Sapienza di Roma, hanno coinvolto anche l’Istituto di fotonica e nanotecnologie del Cnr. I risultati, pubblicati sulla rivista Science Advances, serviranno a implementare le future applicazioni nei campi della metrologia, crittografia e della computazione.

Foto del chip integrato, insieme all'elettronica di controllo. Speciali stati quantistici della luce, ovvero stati a singolo fotone, vengono inviati nel chip e manipolati attraverso le guide d'onda, in modo da certificare le proprietà quantistiche considerando porzioni sempre più grandi del chip
Foto del chip integrato, insieme all’elettronica di controllo. Speciali stati quantistici della luce, ovvero stati a singolo fotone, vengono inviati nel chip e manipolati attraverso le guide d’onda, in modo da certificare le proprietà quantistiche considerando porzioni sempre più grandi del chip

Man mano che i nuovi dispositivi quantistici crescono in dimensioni e complessità, risulta fondamentale sviluppare metodi affidabili per certificare e individuare le risorse quantistiche che forniscono un effettivo vantaggio computazionale, al fine di delineare il modo migliore di utilizzarle.

In un nuovo studio, pubblicato sulla rivista Science Advances è stato mostrato proprio come certificare le varie proprietà quantistiche di dispositivi fotonici integrati di crescente complessità.

Il risultato è frutto di una collaborazione scientifica di lunga data nel campo della certificazione quantistica tra la Sapienza di Roma, l’Istituto di fotonica e nanotecnologie del Consiglio nazionale delle ricerche di Milano (Cnr-Ifn), il Politecnico di Milano e il Laboratorio Internazionale di Nanotecnologia iberica (INL).

I circuiti ottici integrati programmabili sono tra le principali piattaforme candidate per l’elaborazione dell’informazione quantistica basata sui qubits. Essi infatti consentono da un lato di effettuare esperimenti finalizzati a verificare le proprietà fondamentali della meccanica quantistica, dall’altro di implementare i dispositivi per future applicazioni nel campo della metrologia, crittografia e della computazione.

Team Quantum Lab della Sapienza Università di Roma
Team Quantum Lab della Sapienza Università di Roma

Gli esperimenti, guidati da Fabio Sciarrino della Sapienza e condotti presso il gruppo Quantum Lab dell’Ateneo, hanno certificato la presenza di caratteristiche quantistiche autentiche come la contestualità e la coerenza in un circuito ottico integrato programmabile.

La metodologia seguita è stata quella sviluppata dal team teorico guidato da Ernesto Galvão dell’INL in Portogallo.

“L’utilizzo di un chip fotonico completamente integrato e programmabile migliora la precisione e la coerenza del processo di caratterizzazione, offrendo il potenziale per l’implementazione di questi dispositivi in applicazioni pratiche”, commenta il Dott. Roberto Osellame, direttore di ricerca presso CNR-IFN.

“Il nostro lavoro – aggiunge Taira Giordani, ricercatrice presso la Sapienza e membro del team Quantum Lab – è la prima applicazione sperimentale di tale tecnica per quantificare le risorse computazionali fornite dalla meccanica quantistica nei dispositivi ottici”.

Le tecniche sviluppate hanno permesso però di verificare anche il vantaggio quantistico in applicazioni pratiche come il quantum imaging. I sistemi di imaging, grazie a determinate correlazioni quantistiche, permettono di ottenere una risoluzione che supera i limiti dell’ottica classica, trovando applicazione in diversi campi della metrologia e dei sensori.

“I nostri risultati – conclude Fabio Sciarrino, capogruppo del Quantum Lab della Sapienza – motivano la ricerca per nuove tecniche per lo studio delle risorse non classiche. Ci aspettiamo che questo lavoro stimolerà la ricerca sulla futura certificazione di dispositivi ottici che sfruttano stati quantistici della luce sempre più complessi”.

Questa linea di ricerca è supportata dal National Quantum Science and Technology Institute (NQSTI), il finanziamento italiano per la ricerca fondamentale sulle tecnologie quantistiche, dall’ERC Advanced Grant QU-BOSS, dal progetto Horizon Europe FoQaCiA e dalla FCT – Fundação para a Ciência e a Tecnologia del Portogallo.

Rappresentazione del chip fotonico integrato programmabile utilizzato utilizzato nel lavoro. Le guide d'onda vengono create mediante la scrittura laser a femtosecondo sul vetro. Le operazioni del circuito sono controllate applicando correnti su vari resistori disposti sulla superficie del chip
ora è possibile certificare le proprietà dei dispositivi ottici integrati programmabili. Rappresentazione del chip fotonico integrato programmabile utilizzato utilizzato nel lavoro. Le guide d’onda vengono create mediante la scrittura laser a femtosecondo sul vetro. Le operazioni del circuito sono controllate applicando correnti su vari resistori disposti sulla superficie del chip

Riferimenti bibliografici:

Experimental certification of contextuality, coherence, and dimension in a programmable universal photonic processor – Giordani T, Wagner R, Esposito C, Camillini A, Hoch F, Carvacho G, Pentangelo C, Ceccarelli F, Piacentini S, Crespi A, Spagnolo N, Osellame R, Galvão EF, Sciarrino F. – Sci Adv. 2023. doi: 10.1126/sciadv.adj4249

 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Individuare fenomeni quantistici attraverso rapporti di causa-effetto

Per comprendere la relazione quantistica fra due eventi, un team di ricercatori del QuantumLab della Sapienza ha sviluppato un nuovo metodo basato sulla misura della forza dei rapporti causa-effetto tra le variabili. La tecnica, eseguita sperimentalmente nei laboratori dell’Ateneo, potrà essere utilizzata per verificare il corretto funzionamento di nuove tecnologie quantistiche

Individuare fenomeni quantistici attraverso rapporti di causa-effetto: un nuovo su Science Advances

“Qual è il motivo?”, “Perché sta succedendo?” sono domande molto frequenti nella vita quotidiana, in cui spesso si è portarti a chiedersi la causa degli eventi che succedono, cercando motivi più o meno diretti o astratti. La strategia intuitivamente più efficace per capire se due eventi siano l’uno la causa dell’altro è verificare la loro correlazione, ovvero chiedersi: l’evento A succede sempre quando succede l’evento B? Come quando ogni volta che viene spinto un interruttore (evento A) si accende una lampadina (evento B). Tuttavia, questo processo, apparentemente così semplice e immediato, nasconde una grande insidia: quando due eventi sono correlati, possono sia essere la causa l’uno dell’altro ma possono anche essere influenzati da una causa comune, di cui spesso non si tiene conto. Per esempio, ogni anno, in estate, aumentano parallelamente il consumo di gelati e il numero di persone che soffrono di cali di pressione. Questi due eventi sono indubbiamente correlati, ma non sono l’uno la causa dell’altro. Avvengono simultaneamente solo perché hanno una causa comune: l’aumento delle temperature.

Comprendere se due eventi siano causati da un fattore comune o se siano direttamente collegati non è affatto semplice, per cui tali relazioni sono da sempre una sfida per gli scienziati. Secondo la fisica classica è possibile comprendere appieno la relazione causa-effetto tra due eventi effettuando una serie di opportune misurazioni. Molto più difficile è quando entrano in gioco effetti quantistici, perché i rapporti di causa-effetto tra un evento A e un evento B hanno conseguenze diverse se questi hanno una causa comune non classica. Tuttavia, la discrepanza tra predizioni classiche e quantistiche può tornare utile proprio per rilevare la presenza di fenomeni quantistici, come avviene nei cosiddetti test di Bell, effettuati per misurare le proprietà di particelle fisicamente separate ma correlate in maniera non classica.

fenomeni quantistici causa-effetto

Il gruppo QuantumLab (https://www.quantumlab.it/) della Sapienza Università di Roma ha presentato, in un lavoro recentemente pubblicato sulla rivista Science Advances, un metodo altamente innovativo che è basato sulla misura della forza dei rapporti causa-effetto tra due variabili. Lo studio è nato nell’ambito di una collaborazione internazionale dell’Ateneo romano con l’International Institute of Physics di Natal (Brasile), l’Università di Colonia (Germania) e l’Università di Gdansk (Polonia).

Il team di fisici, da tempo impegnato nello studio di questi fenomeni con l’obiettivo di creare tecniche per rilevare la presenza di fenomeni quantistici, è partito dal caso in cui un evento A è causa di un evento B e, in più, questi hanno una causa comune quantistica. In tale situazione, si può dimostrare che, per ottenere determinati effetti su B, c’è bisogno di un’influenza causale più debole da parte di A, rispetto al caso classico. Quindi, misurando la forza del rapporto causa-effetto tra A e B, è possibile capire se il processo che stiamo osservando è quantistico oppure puramente classico.

“La novità di questo approccio – afferma Iris Agresti della Sapienza – sta nel fatto che permette di individuare comportamenti quantistici del tutto nuovi, che non potevano essere individuati con le tecniche note finora”.

Per mostrare queste nuove tracce di fenomeni quantistici è stato riprodotto nei laboratori di ottica e informazione quantistica della Sapienza lo schema di rapporti causa-effetto menzionato (chiamato processo strumentale) su una piattaforma fotonica.

In dettaglio, nell’esperimento, gli eventi A e B erano i risultati di due misure su fotoni, mentre la causa comune era una sorgente di stati quantistici.

“Abbiamo generato coppie di fotoni entangled (cioè correlati quantisticamente) e abbiamo implementato il rapporto di causa-effetto tra le misure A e B, scegliendo la misura B in base al risultato di A” – spiega Fabio Sciarrino, coordinatore del gruppo. “Siccome i due fotoni da misurare vengono generati nello stesso istante, per avere il tempo di eseguire la misura A, abbiamo dovuto ritardare il fotone misurato in B tramite una fibra lunga più di 100 metri e abbiamo sfruttato un dispositivo elettro-ottico per cambiare la misura B in pochi nanosecondi”.

Questa tecnica che si basa sulla misura della forza dell’influenza causale tra due eventi per dimostrare la presenza di fenomeni quantistici, che è stata eseguita sperimentalmente dai ricercatori del QuantumLab, ha dei risvolti sia dal punto di vista applicativo, perché potrà essere utilizzata per verificare il corretto funzionamento di nuove tecnologie quantistiche, sia teorico, perché ha permesso di individuare nuove tipologie di comportamenti non classici.

Riferimenti:

Experimental test of quantum causal influences – Iris Agresti, Davide Poderini, Beatrice Polacchi, Nikolai Miklin, Mariami Gachechiladze, Alessia Suprano, Emanuele Polino, Giorgio Milani, Gonzalo Carvacho, Rafael Chaves and Fabio Sciarrino – Science Advances, Vol 8, Issue 8 https://doi.org/10.1126/sciadv.abm1515 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili

Un nuovo studio Sapienza, frutto della collaborazione tra due gruppi sperimentali del Dipartimento di Fisica, dimostra come, attraverso l’impiego di un nuovo tipo di emettitori di fotoni, i quantum dots, sia possibile garantire un ulteriore livello di sicurezza per i dati trasmessi in un canale di comunicazione, sia che si tratti di una conversazione telefonica che una transazione bancaria. La ricerca, pubblicata su Science Advances, ha previsto lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici all’interno del campus Sapienza.

Comunicare a distanza è diventata la regola nella vita di tutti i giorni sia per contattare privatamente amici o conoscenti, che per inviare dati sensibili, come ad esempio nelle transazioni bancarie.

Diventa quindi di fondamentale importanza creare un apparato di protezione che renda sicuro lo scambio di dati, salvaguardandoli da potenziali intrusi. Infatti gli attuali mezzi di comunicazione sono intrinsecamente vulnerabili e il loro livello di sicurezza dipende esclusivamente dalle capacità tecnologiche dell’intruso.

conversazioni crittografate fisica quantistica dati sensibili
Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

Una soluzione a questo problema è stata individuata nella meccanica quantistica, che fornisce sistemi oggi conosciuti con la denominazione di “distribuzione a chiave quantistica”, in cui la sicurezza della comunicazione è garantita dalle leggi della fisica stessa: in una comunicazione crittografata, due utenti usano una chiave segreta per codificare un qualsiasi messaggio che diventa incomprensibile all’esterno. Questa chiave viene trasmessa, come suggerisce il nome, utilizzando segnali quantistici.

La sicurezza di tali protocolli è garantita dalla impossibilità di duplicare esattamente uno stato quantistico sconosciuto, una peculiare proprietà che rende visibile la presenza di un eventuale intruso nel canale di comunicazione. Nonostante questo tipo di soluzione sia già stata studiata e implementata sperimentalmente negli ultimi anni grazie all’aiuto delle tecnologie ottiche, una delle sfide più difficili da affrontare è quella di ottimizzare la generazione dei portatori di informazione quantistica per tale scopo, ovvero i singoli fotoni, e la loro peculiare proprietà di correlazione a distanza, l’entanglement quantistico.

Foto del gruppo Nanophotonics

Oggi un nuovo studio della Sapienza Università di Roma, frutto della collaborazione sinergica tra due gruppi sperimentali del Dipartimento di Fisica, il gruppo Nanophotonics coordinato da Rinaldo Trotta e il gruppo Quantum Lab coordinato da Fabio Sciarrino, dimostra come sia possibile garantire un ulteriore livello di sicurezza per i dati trasmessi in un canale di comunicazione attraverso l’impiego di un nuovo tipo di emettitori di fotoni, i quantum dots.

Foto del gruppo Quantum Lab

I quantum dots, o punti quantici, sono nanostrutture le cui dimensioni sono migliaia di volte più piccole di un capello umano ed è stato dimostrato che, sotto opportune condizioni, sono in grado di generare coppie di fotoni entangled di altissima qualità.

conversazioni crittografate fisica quantistica dati sensibili
Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

Per raggiungere i risultati pubblicati sulla rivista Science Advances, i giovani ricercatori hanno realizzato il primo canale di comunicazione quantistica sviluppato all’interno del campus della Sapienza, un’infrastruttura per la distribuzione in aria di una chiave crittografata tra due strutture del Dipartimento di Fisica, l’edificio Marconi e l’edificio Fermi, distanti oltre 250 metri: il “mittente Marconi”, con un dispositivo a quantum dot, produce coppie di fotoni entangled, usate per creare a distanza due copie uniche di una chiave segreta e il “destinatario Fermi” che riceve una sequenza di fotoni singoli da cui estrae la sua copia della chiave segreta. Questa può essere utilizzata per inviare messaggi privati, come avviene nelle comuni conversazioni sul sistema di messaggistica WhatsApp.

Schema di network quantistico

La realizzazione di un tale canale in aria ha comportato la necessità di contrastare gli effetti ambientali di disallineamento. Difficoltà risolta con successo attraverso l’applicazione di un metodo di stabilizzazione attiva della luce.

“Uno degli aspetti più affascinanti di questo esperimento – commenta Francesco Basso Basset, assegnista di ricerca del gruppo Nanophotonics – è stata la realizzazione del sistema trasmissione-ricezione in aria tra i due edifici, cosa nuova per noi, abituati a portare avanti la ricerca solitamente nella stessa stanza di laboratorio”.

Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

Durante l’esperimento, una coppia di singoli fotoni entangled è stata infatti separata e mandata alle due estremità del canale, permettendo così la condivisione di una chiave segreta grazie alla correlazione quantistica.

“In questo protocollo, è possibile condividere una stringa di bit, che forma la chiave segreta, sfruttando l’entanglement quantistico che è presente nei due singoli fotoni – spiega Mauro Valeri, dottorando del gruppo QuantumLab. “Un altro aspetto rilevante sta nel fatto che la meccanica quantistica ci fornisce gli strumenti per capire se ci sono eventuali intrusi nel canale: se un intruso vuole appropriarsi dei segnali inviati, possiamo immediatamente identificarlo misurando nei nostri laboratori l’avvenuta perdita dell’entanglement”.

conversazioni crittografate fisica quantistica dati sensibili
Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

“La novità di questo studio – aggiunge Fabio Sciarrino – è costituita dall’introduzione dei punti quantici nel campo della comunicazione quantistica; infatti, a differenza delle soluzioni del passato, questi dispositivi non si basano su un processo fisico probabilistico e possono ambire a fornire fotoni “on demand”, fattore di rilevanza fondamentale per la realizzazione sperimentale di molti protocolli di comunicazione quantistica a distanza.”

conversazioni crittografate fisica quantistica dati sensibili
Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

“Il quantum dot – conclude Rinaldo Trotta – ha tutti i requisiti per essere tra i più promettenti emettitori di segnali ottici nel campo della comunicazione quantistica, e questo esperimento dimostra che un suo utilizzo nei network quantistici del futuro è possibile. Siamo convinti che questa sia solamente la punta dell’iceberg e molte altre scoperte verranno fatte partendo da questo studio; il prossimo passo da fare sarà l’aumento della velocità di trasmissione, realizzando quantum dot con una efficienza di emissione sempre più alta. L’obiettivo è di condurre questa tecnologia ad una implementazione su scala globale.”

Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

Riferimenti:

Quantum key distribution with entangled photons generated on-demand by a quantum dot – Francesco Basso Basset, Mauro Valeri, Emanuele Roccia, Valerio Muredda, Davide Poderini, Julia Neuwirth, Nicolò Spagnolo, Michele B. Rota, Gonzalo Carvacho, Fabio Sciarrino and Rinaldo Trotta – Science Advances (2021) DOI: 10.1126/sciadv.abe6379

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

I giovani ricercatori del QuantumLab della Sapienza, coordinato da Fabio Sciarrino, hanno realizzato la prima rete quantistica in grado di generare correlazioni non-locali tra cinque laboratori distinti. L’articolo è stato pubblicato su Nature Communications

rete quantistica Quantum Lab

Dodici giovanissimi ricercatori, cinque laboratori da coordinare e una rete da formare.

Così l’esperienza interdisciplinare del gruppo del Quantum Information Lab della Sapienza, guidato da Fabio Sciarrino e composto da un laureando magistrale, sei studenti di dottorato, un tecnico elettronico, un assegnista e un ricercatore, con il supporto del fisico brasiliano Rafael Chaves, ha portato alla realizzazione di una rete quantistica formata da cinque diversi nodi, che ha permesso di mostrare correlazioni quantistiche condivise da più di tre parti distinte, il massimo mai raggiunto finora.

Le tecnologie basate sulle leggi della meccanica quantistica sono sempre più diffuse ed i potenziali vantaggi legati al loro utilizzo sono ormai riconosciuti in tutti i campi, dalla comunicazione alla protezione dei dati. “Ciononostante – commenta Gonzalo Carvacho, assegnista senior del QuantumLab – test di non-località multipartita sono stati limitati ai casi più semplici. Qui andiamo oltre, verso la realizzazione di reti quantistiche più grandi”.

Nello studio pubblicato su Nature Communications, il team ha scelto infatti una configurazione “a stella”, in cui si ha un nodo centrale che condivide uno stato quantistico correlato con quattro nodi periferici, tutti collocati in laboratori diversi, muniti di una sorgente di stati quantistici e da una stazione di misura.

Qui ogni nodo genera uno stato formato da due sottosistemi correlati e, attraverso una fibra lunga 30 metri, ne manda uno a quello centrale. A questo punto, sia il nodo centrale sia quelli periferici effettuano misure sul loro sistema, sincronizzandosi attraverso un sofisticato software realizzato ad hoc per l’esperimento.

“Infine – spiega Davide Poderini, studente di dottorato – abbiamo verificato che tra le sorgenti degli stati quantistici non ci fosse una comunicazione “classica”, bensì solo correlazioni quantistiche (o non classiche). Usando dei dispositivi totalmente diversi e scorrelati nei vari laboratori, possiamo assicurare, con un elevato livello di confidenza, la loro indipendenza”.

“Questo risultato – aggiunge Iris Agresti, da poco assegnista junior del QuantumLab – è un passo avanti significativo verso la realizzazione di una rete quantistica di grandi dimensioni, perché offre un prototipo scalabile, che va oltre gli scenari più semplici realizzati finora”.

I risultati dell’esperimento, per sua natura versatile, costituiscono un elemento chiave per nuovi studi su topologie diverse di rete capaci di generare correlazioni non-classiche di vari tipi, aprendo scenari inesplorati. Inoltre, l’apparato progettato potrà anche essere utilizzato per la realizzazione di nuovi protocolli di comunicazione e di crittografia.

“Il prossimo passo – conclude Fabio Sciarrino – sarà combinare le aree di esperienza del gruppo nella fotonica integrata e nella realizzazione di stati quantistici condivisi da più parti, per nuove applicazioni che si trovino all’intersezione tra la comunicazione e la computazione quantistica”.

Referimenti:

 

Experimental violation of n-locality in a star quantum network – Davide Poderini, Iris Agresti, Guglielmo Marchese, Emanuele Polino, Taira Giordani, Alessia Suprano, Mauro Valeri, Giorgio Milani, Nicolò Spagnolo, Gonzalo Carvacho, Rafael Chaves and Fabio Sciarrino – Nature Communications volume 11, Article number: 2467 (2020) DOI 10.1038/s41467-020-16189-6

rete quantistica Quantum Lab

Testo e immagini dall’Ufficio Stampa Università La Sapienza Roma